ﬁ EasyChair Preprint

Ne 15433

Distillation-Based Model Compression
Framework for Swin Transformer

Mazen Amria, Aziz M. Qaroush, Mohammad Jubran, Alaa Zuhd
and Ahmad Khatib

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 16, 2024

Distillation-based Model Compression Framework
for Swin Transformer

Mazen Amria
Department of Electrical
and Computer Engineering
Birzeit University
Ramallah, Palestine
mramria@birzeit.edu

Alaa Zuhd
Department of Electrical
and Computer Engineering
Birzeit University
Ramallah, Palestine
azuhd @birzeit.edu

Abstract—Vision Transformers (ViTs) have gained significant
attention in computer vision due to their exceptional model capa-
bilities. However, most ViT models suffer from high complexity,
with a large number of parameters that demand considerable
memory and inference time, limiting their applicability on
resource-constrained devices. To address this issue, we propose
a distillation-based framework for compressing large models
for smaller datasets. The framework leverages fine-tuning and
knowledge distillation to accelerate the training process of com-
pressed models. To evaluate its effectiveness, two compressed
Swin Transformer models, Swin-N and Swin-M, were introduced
and tested on the CIFAR-100 dataset. Experimental results
demonstrate that when trained using the proposed framework,
both Swin-N and Swin-M exhibit significant improvements in
accuracy compared to their counterparts trained from scratch,
with Swin-N achieving an 18.89% increase and Swin-M showing
a 20.10% improvement. Additionally, Swin-M closely approx-
imates the accuracy of the Swin-T teacher model, further
validating the effectiveness of the framework.

Index Terms—ViT, Swin, model compression, knowledge dis-
tillation, fine-tuning

I. INTRODUCTION

Vision Transformers (ViTs), inspired by the success of
transformer-based architectures in Natural Language Process-
ing (NLP), have become a leading paradigm in Computer Vi-
sion (CV), surpassing Convolutional Neural Networks (CNNis)
in numerous applications. Despite their impressive perfor-
mance, ViTs tend to have a large number of parameters to
achieve better results, which in turn increases training and
inference time, as well as the required space when deployed.
For example, the Swin Transformer [1] employs between 28
million and 197 million parameters (depending on the version)
and is pre-trained on either ImageNet-1K (over 1 million
images) or ImageNet-22K (over 14 million images), yielding
strong results in downstream detection and segmentation tasks.
However, the extensive computational resources required for
ViTs pose challenges for deployment on low-end devices, such

Aziz M. Qaroush
Department of Electrical
and Computer Engineering
Birzeit University
Ramallah, Palestine
aqaroush@birzeit.edu

Mohammad Jubran
Department of Electrical
and Computer Engineering
Birzeit University
Ramallah, Palestine
mjubran @birzeit.edu

Ahmad Khatib
Department of Electrical
and Computer Engineering
Birzeit University
Ramallah, Palestine
1182828 @student.birzeit.edu

as IoT and mobile devices, affecting their real-time respon-
siveness in sensitive applications [2], [3]. To address these
challenges, recent research has focused on enhancing ViTs
through compression techniques. These efforts aim to reduce
the model size and increase throughput, making ViTs more
suitable for deployment in resource-constrained environments.
This work seeks to downsize vision transformers, focusing
on compressing large models for use in simpler tasks on
resource-constrained devices. Specifically, it explores how to
effectively transfer knowledge from large-scale transformers
to smaller models and leverage extensive data to enhance the
representational capabilities of these compressed models.

Swin Transformer has multiple variations, ranging from the
smallest model, Swin-T (Tiny), to the largest, Swin-L (Large).
Although the model is pre-trained on the large ImageNet-
1K dataset, fine-tuning it on smaller datasets like CIFAR-
100 often results in a performant yet redundant model. This
work introduces a framework for compressing large models
for smaller datasets, with Swin Transformer on CIFAR-100
serving as a test case. The framework leverages fine-tuning
and knowledge distillation to accelerate the training process of
compressed models. To evaluate the framework, we introduced
two compressed Swin transformer models designed for smaller
tasks, Swin-N and Swin-M. The primary contributions of this
paper are as follows:

1) Introducing a framework to accelerate the training of
smaller Swin transformers on simpler tasks.

2) Developing smaller versions of Swin transformers with
fewer parameters and higher throughput.

3) Demonstrating model redundancy in Swin-T when fine-
tuned on simpler tasks like CIFAR-100, as the smaller
model, Swin-M, was able to approximate its perfor-
mance.

4) Proposing joint loss weights scheduling (a-scheduling)

and harmonic mean as mechanisms to dynamically
control the contribution of each loss component in
knowledge distillation.

The structure of this paper is as follows: Section 2 reviews
related works. Section 3 details the proposed framework. Sec-
tion 4 presents the experimental results and analysis. Finally,
Section 5 concludes the paper and suggests potential directions
for future research.

II. RELATED WORK

ViTs have demonstrated impressive performance in com-
puter vision tasks, but their large model size and computa-
tional demands limit their practicality on resource-constrained
devices. To address these challenges, this section explores four
primary techniques for compressing ViTs: Efficient Architec-
tures, Pruning, and Knowledge Distillation [2]-[4].

A. Efficient Architectures

Efficient Architectures focus on designing ViT models that
are inherently smaller and more computationally efficient [5]—
[7]. This involves optimizing the number of layers, attention
heads, and feature dimensions to reduce model complexity
without sacrificing performance.

Hierarchical models enhance the efficiency of ViTs by
structuring visual processing into multiple levels, emulating
the human visual system, which starts with coarse features
and refines details. A significant advantage of these models is
their optimization of the self-attention mechanism. Traditional
self-attention processes an N x [N matrix, resulting in quadratic
complexity. In contrast, hierarchical self-attention partitions
this matrix into smaller % X % blocks, calculating attention
within each block separately, thus reducing complexity to
linear and significantly improving efficiency.

The Swin Transformer exemplifies a hierarchical ViT, pro-
cessing images in progressively smaller windows at each layer
to capture local information. It employs shifted windows and
hierarchical token merging to capture long-distance patterns
effectively. This balance of efficiency and performance makes
it suitable for resource-constrained environments. Figure 1 il-
lustrates the architecture of the Swin Transformer, specifically
Swin-T.

To address the computational limitations of standard ViTs,
researchers have focused on developing lightweight models
such as MobileViT [8] and LVT [9]. These models aim
to reduce the model size and complexity while maintaining
performance. MobileViT, a lightweight ViT that incorporates
convolutional-like operations, was introduced in [8]. The Mo-
bileViT block consists of components similar to convolutional
layers, including unfolding, folding, and matrix multiplication.
By replacing the matrix multiplication with a stack of trans-
former layers, MobileViT combines the strengths of CNNs and
ViTs. This innovative design enables MobileViT to outperform
both CNN-based and ViT-based models across various tasks
and datasets. LVT is a lightweight ViT that integrates two

types of self-attention mechanisms [9]. It incorporates a con-
volutional layer to enhance low-level features and a recursive
atrous self-attention layer to increase representational capacity.

B. Pruning

Pruning is a critical technique for optimizing ViTs by
reducing size and computational complexity while preserving
accuracy. This method involves selectively removing redun-
dant components—such as weights, attention heads, or entire
layers—to streamline ViTs, enhancing efficiency for deploy-
ment in resource-constrained environments. Pruning can be
categorized into two types: unstructured and structured pruning
[10]-[13].

Unstructured pruning selectively zeroes out individual
weights, particularly those with minimal magnitudes, to reduce
model size without altering its architecture [14]. This approach
exploits sparsity by limiting computations to non-zero ele-
ments, leading to substantial reductions in computational cost.
However, it may cause irregular computation patterns that can
be inefficient on some hardware, limiting practical benefits
[10].

Structured pruning removes entire groups of weights, such
as attention heads or layers, streamlining the model for better
hardware implementation [14], [15]. This method is more
compatible with hardware, as it removes contiguous matrix
blocks, improving efficiency. However, structured pruning
generally achieves a lower compression ratio than unstructured
pruning, as fewer zero elements are bypassed, which may limit
model size reduction [10].

C. Knowledge distillation

Knowledge distillation is a powerful technique for com-
pressing ViTs by transferring knowledge from a larger, more
complex teacher model to a smaller, more efficient student
model. This process enables the student model to achieve com-
parable performance with significantly reduced computational
resources [16], [17]. This process is done by optimizing the
loss between the teacher’s and the student’s outputs. The loss
between the student’s output and the hard labels is jointly
optimized as well to ensure the correctness of the output.
Equation 1 shows the equation of the joint loss where L is
the total loss, L, is the distillation loss, L, is the hard-label
loss, and « is the weight of the student loss.

L=(1-a) Lq+a-L, (1)

The Early Exit technique proposed in [18] involves training
the model with multiple output points at different layers,
creating a form of knowledge distillation where earlier exits
serve as student models and later exits as teacher models.
Knowledge is transferred through back-propagation, with a
weighted sum of losses used to address branching paths.

Knowledge distillation enhances the learning capabilities of
the smaller model by guiding it with knowledge from the
larger model. However, the effectiveness of this technique
can be limited by the knowledge transfer methods employed.

HxWx3

Images [P

=] B0
o =
= :
E 5]
& =
=} =
S 2
= <
[~

(a) Architecture

s

(b) Two Successive Swin Transformer Blocks

Fig. 1: Architecture diagram for Swin-T [1].

Careful selection and implementation of knowledge distillation
techniques are crucial for achieving optimal results [19].

III. PROPOSED WORK

In this paper, we propose a distillation-based framework
to accelerate the training of smaller transformers on simpler
tasks. To evaluate the framework, we introduced two com-
pressed Swin transformer models, named Swin-N and Swin-
M. Table I outlines the architectural differences between our
models and the standard Swin models. The primary variation
across the models lies in the depth of the third layer, specifi-
cally the number of blocks. Following this trend, our models
feature depths of 2 and 4 in the third layer for Swin-N and
Swin-M, respectively, compared to a depth of 6 in Swin-T.
We utilized the CIFAR-100 dataset to test the framework.

TABLE I: Architecture of the existing and proposed models.

Model Depths Number of Heads
Swin-N [2,2,2,2] 3,6,12,24]
Swin-M [2,2,4,2] 3,6,12,24]
Swin-T [2,2,6,2] [3,6,12,24]
Swin-S [2,2,18,2] 3,6,12,24]
Swin-B [2,2,18,2] [4,8,16,32]

Our framework begins by fine-tuning a pre-trained large
model on the target dataset, which in this case involves fine-
tuning Swin-T on CIFAR-100. Next, the earlier blocks are
transferred to the smaller model, specifically copying the first
6 blocks from the fine-tuned Swin-T to Swin-N. Finally,
knowledge distillation is applied, where the fine-tuned large
model (Swin-T) serves as the teacher and the smaller model
(Swin-N) acts as the student. Figure 2 illustrates the process of
compressing Swin-T into Swin-N for CIFAR-100. Algorithm
1 shows the steps of the framework.

The fine-tuned model can be divided into two parts: F(x),
which represents the portion before the first cut point, and
G(z), which is the remainder of the model. The full fine-tuned
model can be expressed as G o F. Our framework suggests
using the part after the second cut point, G, to approximate
G. Successfully approximating G means compressing it into
C;, resulting in a compressed model represented as C; o F.
Therefore, the difference between the output of the compressed

Algorithm 1: Compressing a Swin transformer 7" into
a smaller Swin transformer S.

Input: Pre-trained model 7', Dataset, cut points p1, pa,
loss weights wg, ws
T < FineTune(T, Dataset);
S < CreateNetworkLike(Compose(T[: p1], T'[p2)));
S[: p1] « CopyWeights(T'[: p1]);
for each batch (X,Y) in Dataset do
Og, O1 < Forward(S, X), Forward(T, X);
Ly + DistillationLoss(Og, O7);
L, <+ HardLabelLoss(Og, Y);
L <+ HarmonicMean(Ly, Lg, wg, ws);
S < UpdateWeights(S, L);
end

model and that of the original model is initially driven by the
gap between G and G. Through knowledge distillation, the
outputs of both models are aligned, gradually forcing G to
approximate G.

Finally, we proposed using the Harmonic Mean for the
knowledge distillation joint loss, as described in Equation 2,
instead of the arithmetic mean.

e —— @
ZIGIE O]

where L is the total loss, Ly is the distillation loss, and
L, is the hard-label loss. The arithmetic mean can cause
instability because a loss with a significantly larger magnitude
may dominate the backpropagation process. In contrast, the
harmonic mean provided more stable learning curves and

better overall performance.

IV. EXPERIMENTS AND RESULTS

To evaluate the framework, we first assess how each tech-
nique contributes to accelerating the training of the smaller
models. Next, we examine the impact of combining these
techniques on training speed. Finally, we compare all the
results.

For a specific model, such as Swin-N, all experiments
share the same model configurations, training algorithm, and

Pre-trained on ImageNet-1K
4x4 8x8 16x16 16x16 16x16 | 32x32
CHI?AR_IOO Patch Patch Patch Patch Patch Patch Loss
mage Size Size Size Size Size ‘ Size
CIFAR-100
Label
(a) Fine-tuning Swin-T (pre-trained originally on ImageNet-1K) on CIFAR-100.
Fine-tuned on CIFAR-100
4x4 8x8 16x16 16x16 16x16 | 32x32
- Patch Patch Patch Patch Patch Patch ~
Size Size Size Size Size ‘ Size
F(z) G(z)
Copy Weights
Swin-N
4x4 8x8 16x16 32x32
CHI?AR_IOO Patch Patch Patch Patch Loss
mage Size Size Size Size
F(z) é(z)
CIFAR-100 Y,
Label

(b) Copying the weights of the earlier blocks of Swin-T to Swin-N and using knowledge distillation to the Swin-N output

distribution to Swin-T output distribution.

Fig. 2: Compressing Swin-T into Swin-N using the proposed framework.

parameters, including the number of epochs. Therefore, if a
particular technique achieves higher performance within the
same number of epochs compared to another, we can conclude
that this technique accelerates the training process.

A. Baseline Models

First, we trained the smaller models on CIFAR-100 from
scratch to establish a baseline for comparison. We followed
the configurations provided by [20], which include using the
AdamW optimizer with a weight decay factor of 0.01, a cosine
learning rate scheduler with 5 warmup epochs, and an initial
learning rate of 0.0002. These configurations were also applied
to train the other models. Since our primary goal is to evaluate
how the framework accelerates model training, we limited
training to 60 epochs to observe how much progress can be
made within such many epochs. Table II presents the top-1
accuracy scores for the baseline models.

TABLE II: Accuracy of the baseline models.

Model Accuracy
Swin-N 66.32%
Swin-M 67.04%

B. Knowledge Distillation

Each of the smaller models is subsequently trained using
knowledge distillation. To implement knowledge distillation,
three parameters need to be configured:

1) Teacher Model

The teacher model is a pre-trained model used to com-
pute the distillation joint loss. For this purpose, we fine-
tuned three Swin models originally trained on ImageNet-
1K on CIFAR-100. These models are Swin-T, Swin-S,
and Swin-B. Table III displays the top-1 accuracy scores
for these models both before fine-tuning (on ImageNet-
1K) and after fine-tuning on CIFAR-100.

TABLE III: Accuracy of the Fine-tuned models.

Model Original Accuracy Fine-tuned Accuracy
Swin-T 81.2% 87.35%
Swin-S 83.2% 89.38%
Swin-B 83.5% 92.01%

2) SoftMax temperature 7
This parameter smoothes the SoftMax output, as the
output in well-trained models may be sharp enough to
look like a hard label, whereas, in knowledge distilla-
tion, we’re interested in learning the distribution of the

teacher model [21]. In theory, [22] proved that when
applying the Kullback-Leibler divergence loss (KLDiv),
the attention moves from the label matching to the logits
matching as 7 grows, and vice versa. Furthermore, the
same study found that when logits matching is used, per-
formance improves. Furthermore, it was proved in that
work that the mean squared error (MSE) loss surpasses
the Kullback-Leibler divergence loss as 7 approaches
infinity. Based on these results, MSE should be used
instead of KLDiv, eliminating the need to tune 7.

3) Student loss weight in the joint loss «

We determined the value of « through tuning. Specifi-
cally, we tested five values for «, uniformly distributed
over the range [0,1]. These values were 0.0 (training
only with the teacher model), 0.25, 0.5, and 0.75, with
1.0 representing standard training without distillation
(baseline).

Each model was trained with every combination of o and
teacher model, resulting in a total of 24 different experiments.
Table IV presents the results of these knowledge distillation
experiments. Due to limited computational resources, the
experiments were conducted for only 30 epochs instead of 60.
Since our primary focus is on training speed, 30 epochs were
sufficient to indicate which configuration accelerates training
the most.

TABLE IV: Accuracy of the distilled models after training
them for half runs.

Model « Swin-T Swin-S Swin-B
0 70.06% 67.69% 68.78%

Swin-N 0.25 71.74% 69.29% 68.60%
0.5 70.27% 67.33% 67.67%

0.75 68.64% 66.49% 66.98%

0 71.06% 70.11% 69.33%

Swin-M 0.25 72.56% 69.21% 69.64%
0.5 70.27% 68.51% 68.87%

0.75 68.30% 67.24% 67.54%

The results in Table IV show that using smaller teacher mod-
els, which are more similar in complexity to the compressed
models, yields better performance than using larger models.
Additionally, a larger gap between the teacher and student
models tends to decrease the effectiveness of knowledge
transfer, as the student model struggles more to learn the
distribution of the teacher model due to the capacity mismatch
[19], [23]. Furthermore, smaller values of o generally led to
better performance, although a value of O resulted in poorer
performance because the student model no longer benefited
from the hard label loss. The results in Table IV suggest that
using Swin-T as the teacher model and setting o to 0.25
is optimal for both compressed models. Table V shows the
results of using these configurations and training the models
for the full duration. Comparing the results with those in Table
II, it is evident that knowledge distillation has accelerated
the training process. The student models achieved higher
performance within the same number of epochs, with accuracy
improvements of 8.98% and 8.91%.

TABLE V: Accuracy of the distilled models after full runs on
tuned parameters.

Model Accuracy
Swin-N 75.30% (4+8.98%)
Swin-M 75.95% (+8.91%)

C. Scheduling o

The parameter o controls the contribution of each loss
component based on its importance. It can also be used to
adjust the magnitudes of the components, as the two different
loss functions might be scaled differently. Figure 3 illustrates
the behaviour of each loss component throughout the training
process. Each curve represents a separate training run for
that specific loss component alone, without the joint loss, to
eliminate any interaction between the behaviours of the two
components.

—— Student’s Loss L
Distillation Loss L,

Training Loss (L or Lg)

T T T T T T T
0 2000 4000 6000 8000 10000 12000

Iteration
Fig. 3: Student and Distillation losses in Swin-N.

The figure indicates that the student loss magnitude de-
creases more rapidly than the distillation loss. To balance the
magnitudes over time, a dynamic value for «, based on the
ratio between the distillation loss and the total loss, can be
utilized. Formally, o can be defined as:

B Lq(t)
0= W L

However, this approximation of «a is highly sensitive to
noise in the loss curves. To address this, two exponential
functions (A,ePs* +C, and AgzeP+t +C;) were used to fit the
loss curves. The approximation of « is then calculated based
on these fitted curves. Figure 4 displays the ratio plot.

The figure shows that the approximation of a behaves
almost like a linear function of time. Consequently, a linear
scheduler for o was tested. Although the plotted range for « is
[0.50,0.75], various ranges were explored to account for the
interaction between the loss components. Table VI presents
the results of these experiments on Swin-N.

3)

0.75

0.70

0.65

Approximated optimal o

0.60

0.55 1

T T T T T T T
0 2000 4000 6000 8000 10000 12000

Iteration
Fig. 4: Distillation Loss to Joint Loss Ratio.

TABLE VI: Accuracy of Scheduling o Linearly over different
intervals.

« Interval Accuracy
[0.5,1.0] 72.83% (+6.51%)
[0.0,1.0] 74.45% (+8.13%)
[0.0,0.5] 75.43% (+9.11%)

D. Harmonic Mean

Returning to the approximation of «, substituting it into the
joint loss defined by Equation 1 yields the harmonic mean
joint loss function, defined by Equation 2. This approach
can be beneficial compared to using the arithmetic mean,
as it mitigates the impact of mismatched magnitudes while
still allowing for weighting based on the importance of each
component. Equation 4 shows how weighting can be applied
to the harmonic mean joint loss, where wq is the weight of
the distillation loss L4 and wy is the weight of the hard-label
loss L.

L(t)= —Wdttws

4
T v

Table VII shows the results of tuning the weights for the
harmonic mean joint loss, specifically for Swin-N with Swin-
T as the teacher model. Swin-M was also trained using the
tuned configurations of Swin-N, which involved the harmonic
mean with wy set to 13. The highest accuracy achieved by the
model was 77.02% which is an improvement of 9.98% over
the baseline model.

E. Fine-tuning

In this experiment, the weights from the trained Swin-T
are used for the smaller models instead of initializing them
randomly. The weights before the cut point are retained, as
they are typically trained to extract features and encode the
input image. However, the weights after the cut point need

TABLE VII: Accuracy of using different sets of weights in
Weighted Harmonic Mean.

L4 Weight (wg) Ls Weight (ws) Accuracy

1 1 69.62% (+3.30%)
2 1 71.17% (+4.85%)
3 1 72.85% (+6.53%)
5 1 73.87% (+7.55%)
10 1 75.27% (+8.95%)
12 1 75.82% (+9.50%)
13 1 76.13% (+9.81%)
15 1 75.65% (+9.33%)

to be trained to accommodate different inputs. Table VIII
presents the results after applying fine-tuning.

TABLE VIII: Accuracy of the Fine-tuned models (i.e., pre-
serving blocks’ weights from the larger model).

Model Accuracy
Swin-N 82.71% (+16.93%)
Swin-M 85.10% (+18.06%)

Fine-tuning has significantly accelerated the training of the
smaller models. This improvement arises because the models
are now only adjusting the randomly initialized part G, and the
initial parameter values are much closer to the convergence
point.

F. Full framework and Comparison

Finally, both fine-tuning and knowledge distillation (using
the optimal configurations) are combined. Table IX presents
the results of these combined experiments, compared to all the
results from previous experiments.

TABLE IX: Comparing results of normal training, knowledge
distillation, fine-tuning, and a combination of fine-tuning and
knowledge distillation.

Model Initialization Distillation Accuracy
Random Initialization No 66.32%

Swin-N Random Initialization Yes 76.13%
Fine-tuning No 82.71%

Fine-tuning Yes 85.21%

Random Initialization No 67.04%

Swin-M Random Initialization Yes 77.02%
Fine-tuning No 85.10%

Fine-tuning Yes 87.14%

The results demonstrate that combining fine-tuning with
knowledge distillation further enhanced the training speed,
as the accuracy improvements over the baseline model were
18.89% and 20.10% for Swin-N and Swin-M respectively.
This allowed the models to achieve performance close to
that of the teacher model. In particular, Swin-M reached an
accuracy of 87.14%, while the fine-tuned Swin-T achieved
87.35% on CIFAR-100. This suggests that, for smaller tasks,
certain layers in the model may be redundant, and the model
can be compressed effectively by removing these layers,

retaining the weights of the earlier layers, and learning the
distribution of the original (pre-compression) model.

G. Models Size

Additionally, this section provides an intuition of the size of
the proposed models and the effectiveness of the compression.
Table X shows the throughput and the number of parameters
in each model on CIFAR-100.

TABLE X: Performance on CIFAR-100.

Model Throughput (img/s) Num. Of Params. Accuracy
Swin-N 573.8 20.5M 85.21%
Swin-M 494.5 24.0M 87.14%
Swin-T 422.5 27.6 M 87.35%
Swin-S 246.5 48.9M 89.38%
Swin-B 165.3 86.9M 92.01%

In Table X, Swin-N shows a significant improvement in
throughput (573.8 img/s) compared to Swin-T, although its ac-
curacy (85.21%) is lower. This suggests that either the optimal
size for the smallest Swin model in solving CIFAR-100 lies be-
tween Swin-N and Swin-M, or that Swin-N may benefit from
additional training epochs. Since our focus is on accelerating
training, we aimed to achieve accuracy improvements within
the same number of epochs, rather than focusing solely on
maximizing the model’s performance. Swin-M, while offering
a smaller gain in throughput (494.5 img/s), is able to closely
match Swin-T’s accuracy (87.14% vs. 87.35%).

V. CONCLUSION

This paper presents a novel framework that significantly
accelerates the training of compressed ViTs, particularly
Swin Transformers, for resource-constrained environments. By
leveraging knowledge distillation and fine-tuning techniques,
we effectively expedite the training process of Swin-N and
Swin-M models, achieving substantial performance gains on
the CIFAR-100 dataset.

Our framework introduces innovative techniques, such as
joint loss weight scheduling and harmonic mean, to dynam-
ically control the knowledge distillation process and balance
the contribution of each loss component.

We demonstrate the effectiveness of our approach by
comparing the performance of our trained models to those
trained from scratch. Our results show that Swin-M achieves
comparable accuracy to the larger Swin-T model after only
60 epochs of training. Moreover, both Swin-N and Swin-M
exhibit significant improvements in accuracy compared to their
counterparts trained from scratch, with Swin-N achieving a
18.89% increase in accuracy and Swin-M showing a 20.10%
improvement.

For future work, we plan to explore the use of skip con-
nections with joint optimization as an alternative to model
duplication. This approach aims to reduce memory usage
during training by maintaining a single model in memory
while still producing multiple outputs. By jointly optimizing
these outputs, the shorter path can approximate the output of
the full path, resulting in an internally compressed model.

ACKNOWLEDGMENT

To enhance readability and language quality, all sections
of this paper were grammatically revised and edited using
the OpenAl ChatGPT system. The authors then reviewed and
edited all content to ensure accuracy and alignment with our

research objectives.

REFERENCES

[1] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows,” 2021.

[2] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in Vision: A Survey,” ACM Comput. Surv., vol. 54, sep
2022.

[3] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, “A Survey on Vision
Transformer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 1, pp. 87-110, 2023.

[4] L. Papa, P. Russo, I. Amerini, and L. Zhou, “A Survey on Effi-
cient Vision Transformers: Algorithms, Techniques, and Performance
Benchmarking,” IEEE transactions on pattern analysis and machine
intelligence, vol. PP, 2023.

[5] H. Cai, J. Li, M. Hu, C. Gan, and S. Han, “EfficientViT: Multi-Scale
Linear Attention for High-Resolution Dense Prediction,” 2024.

[6] H. You, Y. Xiong, X. Dai, B. Wu, P. Zhang, H. Fan, P. Vajda, and Y. C.
Lin, “Castling-ViT: Compressing Self-Attention via Switching Towards
Linear-Angular Attention at Vision Transformer Inference,” 2024.

[71 Y. Li, C.-Y. Wu, H. Fan, K. Mangalam, B. Xiong, J. Malik, and
C. Feichtenhofer, “MViTv2: Improved Multiscale Vision Transformers
for Classification and Detection,” 2022.

[8] S. Mehta and M. Rastegari, “MobileViT: Light-weight, General-purpose,
and Mobile-friendly Vision Transformer,” 2022.

[9] C. Yang, Y. Wang, J. Zhang, H. Zhang, Z. Wei, Z. Lin, and A. Yuille,
“Lite Vision Transformer with Enhanced Self-Attention,” 2021.

[10] A. Kumar, “Vision Transformer Compression with Structured Pruning
and Low Rank Approximation,” arXiv preprint arXiv:2203.13444, 2022.

[11] L. Yu and W. Xiang, “X-Pruner: eXplainable Pruning for Vision Trans-
formers,” 2023.

[12] H. Yang, H. Yin, M. Shen, P. Molchanov, H. Li, and J. Kautz, “Global
Vision Transformer Pruning with Hessian-Aware Saliency,” 2023.

[13] M. Zhu, Y. Tang, and K. Han, “Vision Transformer Pruning,” 2021.

[14] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, “Chasing
Sparsity in Vision Transformers: An End-to-End Exploration,” 2021.

[15] Z. Lin, J. Z. Liu, Z. Yang, N. Hua, and D. Roth, “Pruning Redundant
Mappings in Transformer Models via Spectral-Normalized Identity
Prior,” 2021.

[16] H. Lin, G. Han, J. Ma, S. Huang, X. Lin, and S.-F. Chang, “Supervised
Masked Knowledge Distillation for Few-Shot Transformers,” 2023.

[17]1 S.Ren, Z. Gao, T. Hua, Z. Xue, Y. Tian, S. He, and H. Zhao, “Co-advise:
Cross Inductive Bias Distillation,” 2021.

[18] S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast
Inference via Early Exiting from Deep Neural Networks,” CoRR,
vol. abs/1709.01686, 2017.

[19] J. H. Cho and B. Hariharan, “On the Efficacy of Knowledge Distillation,”
in Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4794-4802, 2019.

[20] K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan,
“Tiny ViT: Fast Pretraining Distillation for Small Vision Transformers,”
2022.

[21] G. Hinton, O. Vinyals, J. Dean, et al., “Distilling the Knowledge in a
Neural Network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[22] T. Kim, J. Oh, N. Kim, S. Cho, and S.-Y. Yun, “Comparing Kullback-
Leibler Divergence and Mean Squared Error Loss in Knowledge Distil-
lation,” 2021.

[23] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved Knowledge Distillation via Teacher Assis-
tant,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 34(04), pp. 5191-5198, 2020.

