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Abstract: In this paper, we present identities of new generalization of Fibonacci and Lucas
sequences. The new generalization of Fibonacci and Lucas sequence are defined by recurrence
relation f, =2af _,+(b-a*)f,_, and I =2al_,+(b—a*)I_,. This was introduced by Goksal
Bilgici in 2014. Also we describe and derive sums and connection formulae. We have used
their Binet’s formula and generating function to derive the identities. The proofs of the main
theorems are based on special functions, simple algebra and give several interesting identities
involving them.
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1 Introduction

Sequences have been fascinating topic for mathematicians for centuries. The Fibonacci
sequence is a source of many nice and interesting identities. It is well known that the Fibonacci
numbers and Lucas numbers are closely related. These numbers are of great importance in the
study of many subjects such as Algebra, geometry and number theory itself. This sequence in
which each number is the sum of the two preceding numbers has proved extremely fruitful and
appears in different areas in Mathematics and Science.

The sequence of Fibonacci numbers [11], F, is defined by
F=F,+F_,,n>2with F, =0, F, =1 (1.1)

The sequence of Lucas numbers [11], L, is defined by

L =L ,+L ,,n>2with L, =2, L, =1 (1.2)
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The Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, Jacobsthal
sequence and Jacobsthal-Lucas sequence are most prominent examples of recursive sequences.
The second order recurrence sequence has been generalized in two ways mainly, first by
preserving the initial conditions and second by preserving the recurrence relation.

Kalman and Mena [10] generalize the Fibonacci sequence by
F =aF _,+bF _,,n>2 with F =0, F=1 (1.3)

Horadam [9] defined generalized Fibonacci sequence {Hn} by

H . =H ,+H, ,,n>3withH, =p, H,=p+q (1.4)
where p and q are arbitrary integers.

The k-Fibonacci numbers defined by Falco’n and Plaza [5], for any positive real number K, the
k-Fibonacci sequence is defined recurrently by

Fen=kKFR . +F.,,,n=2 with F, =0, F, =1 (1.5)

The k-Fibonacci numbers defined by Falco’n [4],
L.=kL,i+L,,,n=2 with L, =2, L, =Kk (1.6)

Most of the authors introduced Fibonacci pattern based sequences in many ways which are
known as Fibonacci-Like sequences and k-Fibonacci-like sequences [7, 8, 13, 17, 22, 25, 26].

Generalized Fibonacci sequence [7], is defined as
F=pF,+0F ,. k=2 with F,=a, F=b (1.7)
where p, g, a and b are positive integer.

(p,q) - Fibonacci numbers [19], is defined as
Fogn = PFogn +pr’q'n , N>2 with Frao=0, Fo.=1 (1.8)
(p,q) - Lucas numbers [20], is defined as

Lp’q’n = pr,q’n +bL n>2 with prqlo =2, Lp]q,n =p (1.9)

p.q.n?

Generalized (p,q) -Fibonacci-Like sequence [21], is defined by recurrence relation
Spqn = PS, 40 +0S n>2 with S ,=2k, S =1+kp (1.10)

p.q.n?

Goksal Bilgici [2], defined new generalizations of Fibonacci and Lucas sequences
f =2af_ +(b-a*)f_,,k>2 with f,=0, f,=1 (1.12)

| =2al,_,+({O-a’)l,_, k=2 with |,=2,1,=2a (1.12)



2 Preliminaries

Before presenting our main theorems, we will need to introduce some known results and
notations.
The sequence of new generalization of Fibonacci numbers f, , [2], is defined by

f =2af_ +(b-a*)f_,,k>2
First few generalized Fibonacci numbers are

{f,}={0,1,2a,3a° +b,4a° + 4ab,5a* +10a’b +b’,...|

The sequence of new generalization of Lucas numbers |, , [2], is defined by
|, =2al_, +({0-a*)l_,, k>2
First few generalized Lucas numbers are

{I. }={2.2a,2a” + 2b,2a’ + 6ab, 2a* +12a’b + 2b°, 2a° + 20’ +10ab’, ...}

Generating function for new generalization of Fibonacci and Lucas numbers are

3 X" X 2.1)
k=0

- 1-2ax—(b—a’)x?

2—2ax
| x¢ = 2.2
; T 1-2ax—(b—a?)x? (2.2)

The Binet’s formula for new generalization of Fibonacci and Lucas numbers are
[
1 2
where R, & R, are the roots of the characteristic equation x* —2ax—(b—-a*) =0,
with R, =a++b, R, =a—b ; R, +R,=2a, R, -R,=2¢b ,RR,=a’—b. Also
f, :_—1k f and I, :ﬁlk

(" ~b)

and | =R+ R}

3  Sums of New Generalization of Fibonacci and Lucas Numbers

In this section, we study the sums of new generalization of Fibonacci and Lucas numbers. This
enables us to give in a straightforward way several formulas for the sums of such numbers.

Theorem 3.1. Explicit sum Formula for new generalization of Fibonacci numbers

k-1
[T} k—-i-1 k-2i-1 2y
fo=> i (2a)<**(b-a?) (3.1)
i=0
Proof. By the generating function of new generalization of Fibonacci numbers, the proof is
Clear. L



Theorem 3.2. Explicit sum Formula for new generalization of Lucas numbers
k k-1
[E} k—i k-2i 2yi [T} k—i-1 k—2i 2yi
I, =22 : (2a)““(b-a%) - Z : (2a)“(b—a%) (3.2)

i—0 i=0
Proof. By the generating function of new generalization of Lucas numbers, the proof is clear. []

Lemma 3.3. For fixed integers p, q with 0 <q < p -1, the following equality holds
fp(n+2)+q = Ip fp(n+l)+q _(a2 _b)p fpn+q (33)
Proof. From the Binet’s formula of new generalization Fibonacci and Lucas numbers,

mp(n+l)+q _ ERp(n+1)+q
Ip fp(n+1)+q = (iRlp +m§) : 2
SRl - SRz

— 1 p(n+2)+q 2 P ¢ Pn+q 2 P ¢R Pn+q p(n+2)+q
_m[ml +(@% —b)P R — (a® —b) PRI —R? ]
— 1 p(n+2)+q p(n+2)+q 2 p pn+q pn+q
S [ {9 —REOD ) 4 (2 ~b)° (RO ) |
= fp(n+2)+q + (a2 - b)p fpn+q
then, the equality becomes,
fp(n+2)+q = Ip fp(n+l)+q _(a2 _b)p fpn+q L

Theorem 3.4. For fixed integers p, g with 0<q < p—1, the following equality holds

n 2 2
Z - fp(n+1)+q +(a _b)qlpfq - fq _(a _b)p fpn+q (34)
= |, —(a®-b)° -1
Proof. From the Binet’s formula of new generalization Fibonacci numbers,
n n ERDHQ _ERPHQ
Z Fing = Z . :
i=0 i=0 iRl _iRz
1 noo noo
— g{pwq _ mP'+Qi|
ERl _SRZ LZ(; ' .Z(; ’
3 1 SRlpn+q+p _ER? B ERng—q-ﬁ—p _mg
R, —R, Ry -1 Ry -1
1 2 p 2 q
S [(@=b)° fpq = Foanysg + Fo —(@7=D)1, |
(a _b)p_|p+1 pn+q p q q pP—q
_ fp(n+1)+q + (a2 _b)qlpfq - fq _(a2 _b)p fpn+q
I, —(a*-b)’ -1
This completes the proof. ]

Corollary 3.5. Sum of odd new generalization of Fibonacci numbers,
If p=2m+1 then Eq. (3.4) is



n

2 q 2 (2m+1)
f(2m+l)(n+1)+q + (a _b) I2m+1—q - fq - (a _b) f

f madisg = (2m+1)n+q (35)
; (2m+D)i+g I(2m+1) _(az _b)(2m+l) 1
For example
() If m=0thenp=1
Z”: ¢ foruqe +(@—D)_ — f, —(@-b)f,,. -
= 2a—(a’-h)-1 :
- " f . +2a—(a’—h)f
I For q=0 : f = _nd n
0 | Zo: ' 2a-(a’-b)-1
(2) If m=1thenp=3
i f. = f3”“1+3 + (a2 _b)q |3—q B 1tq - (a2 _b)3 f3n+q (3.7
< 39 93(2—a%) +3ab(2—ab) +b(3a* +b?) -1 :
(i)  Forq=0: Zn: fo— finag +(2a’ +6ab) —(a® -b)° f,,
C &% g%(2-a%) +3ab(2—ab) +b(3a* +b?) -1
i y fonoa +2(@* —b*)-1-(a* —b)° f
1 For q=1: f. = 3n+4 3n+1
o | zo I a3(2—a’) +3ab(2—ab) +b(3a* +b?) -1
("l) For q= 2: i f. .= f3”+5 +2a(a4 _b)2 —28.—(&2 _b)3 f3n+2
= 7?7 a’(2-a’)+3ab(2-ab) +b(3a’ +b?) -1
(3) If m=2thenp=5
n f az_bQI _f_a2_b5f
Z foinq = s *{ ) qu g ( N s (3.8)
= I,—(a"-bh)’ -1
Q) For q=0: N fo— f5n+5+|5_(a2_b)5f5n
=i . —(a?—b)° -1
(i)  Forgel: S f = femet@-Dl-(@-b]f,
— 5i+l |5 _ (a2 _b)5 _1
(i) Forgqe=2: Sf. =t +(a’-b)’l,—(a*-b)° f,, ,
i=0 5i+2 |5 _ (az _ b)5 _1
(V) Forq=3: S'f, - fsns +(@*-b)’l, - (@ -b)°* f;, .,
i=0 o I, — (a2 —b)5 -1
V) Forg=4: Y f,, = fonis +2a(a° —b)* —(@*—b)° .,
- ) 5i+4 —

|, —(a’ —b)*—1



f5n+1o + {2 - f5n+4} (a2 - b)5
l, —(@*-b)° -1

(vi) Forg=5: > fy,=
i—0

Corollary 3.6. Sum of even new generalization of Fibonacci numbers,
If p=2m then Eq. (3.4) is

—f,—(a2-b)*" f

— 2mi+q |2m _(az _b)2m _1

For example
(1) If m=1thenp=2

Zn: f. = f2“+2+q + (a2 _b)qIZ—q — fq B (az _b)z f2n+q
o o l,—(a>—b)> -1

: " f,,+(2a%+2b)— (a2 —b)* f
| For g=0: f = _2n+2 2n
X 1=0: 2t == ot by (@ by 1

. C f,.5+2a(@° —b)—1-(a’® —b)* f
|l For g=1: f o — _2ms3 2n+1
( ) q ; 2i+1 (2a2 +2b) _(a2 —b)2 _1
; fonea + 2(2° ~b)* —2a— (@’ ~b)’f
1]l Forq=2: f.  —=_2n+4 2n+2
( ) q ; 2i+2 (2a2 + 2b) . (a2 _b)2 1
(2) If m=2thenp =4
i f. = f4n+4+q + (a2 _b)q|4—q B fq - (8.2 _b)4 f4n+0|
o I,—(a*-b)* -1

: n f, o+l —(@>—h)*f
I For g=0: fo— anea Tl an
0 | Z;‘ o l,—(@°—b)* -1

i N faes +(@° —b)l;—1-(@* —b)* f
|l For g=1: f o —_4ms 3 4n+l
( ) q IZO: 4i+1 |4 _(az —b)4 _1

N 2_h\2] _9249_(a2_h)¢
(iiiy Forgq=2: zf4i+2:f4n+5+(a b)’l,-2a-(@°-b)*f, ,

=0 l,-(a’-b)* -1
n 2 _ 3 _ _ 2 _ 4
(iv) For g=3: = faniz +(2 Ib) 232 f34 (@°-b)*f, .,
=0 ,—(@=b)y" -1
n 2 _ 4 _ _ 2 _ 4
V) Forq=4: Yf, —mat(@ | b)*2— f, = (" =)"
=0 ,—(@ -b)" -1
(3) If m=3thenp=6
Zn: f. = f6“+5+q + (az —b)* Iefq _ fq - (az —b)6 f6n+C|
= l; - (a’ -b)* -1

(3.9)

(3.10)

(3.11)

(3.12)



: " fo.ct+l,—(@ —b)°f
[ Forq=0: ) f, =-%mo 5 on
() q ; 6i IG—(aZ—b)G -1

y n f _+@-h)l.—-1-(a>-b)°f
i For :1: f = 6n+7 5 6n+1
( ) q ; 6i+1 |6 _ (az _b)6 _1

n

f .+(@*-b)’l,—2a—(a’-b)°f
11 Forg=2: f _—_6n8 4 6n+2
) | Zo o |, — (% —h)° -1

. n +(@*-b)’l,—f,—(a*-b)° f
v For — 3 : f = 6n+9 3 3 6n+3
( ) q ; 6i+3 5 _ (aZ _b)6 _1

Theorem 3.7. For fixed integers p, g with 0<q < p—1, the following equality holds
Z( 1) f ( l) fP(“+1)+q +( 1) (a b)p fpn+q _(az_b)q fp—q +f
pi+q —

1 (3.13)
I+ (a®*-b)" +1
Proof. Applying Binet’s formula of new generalization of Fibonacci and Lucas numbers, the
proof is clear. ]
For different values of p&q:
. -D"f  +(-D"(@°-b)f —
(l) Z(l)f_( ) n+l ( )( )

2a+a’—b+1

.- i _ (_1)n f2n+2 +(_1)n(a2 _b)2 f2n —

(ii) Z( D' f, = (2a% 1 2b) + (2% —b)? +1

( 1) f2n+3+( 1) (a _b) f2n+1 (a _b)+1
(i) ;( D't = (287 +2b) +(a —b) +1

(i) Z( 1'f, _( " f,... +(=D)"@ -b)* f, -

I, +(a>—b) +1
(v) ;( N f,, = (-D)" .+ (- 1|) ia(a—i))b)f[lri (a2 -b)f, +1
o) DD = Y s + 1>I<a+ (—ab)_ g;nil (a® ~b)*2a+ 2

4 Confluent Hypergeometric Identities of new generalization of
Fibonacci and Lucas numbers

K. Dilcher [3], defined Fibonacci numbers in terms of hypergeometric function. C. Berg [1],
defined Fibonacci numbers and orthogonal polynomials. In [12], A. Lupas present a guide of
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Fibonacci and Lucas Polynomial and defined Fibonacci and Lucas Polynomial in terms of
hypergeometric form. In this section, we established some identities of new generalization of
Fibonacci and Lucas numbers in terms of confluent hypergeometric function. Proofs of the
theorem are based on special function, simple algebra and give several interesting identities
involving them.

Theorem 4.1. If f, and |, are new generalization of Fibonacci and Lucas numbers, then

(i) gfk%=e2“ R k+L— (b-a%)xX’ | (4.1)
(ii) glk kk. (2-2a)e™ |, [k+1— (b-a*)x’] 4.2)
(iii) |, =21, , —2af, 4.3)

Theorem 4.2. If f, and |, are new generalization of Fibonacci and Lucas numbers, then

(i) ikak—_ezax R [k+12L (b-a?)x] (4.4)
(ii) ilk);—kl (2-2a)¢™ ,F[k+1L; (h-a")x’ ] (4.5)

Proof (i). By the generating function of new generalization of Fibonacci numbers,
Z kak7 = . 2\ 2
oy 1-2ax—(b—a“)x

0

:Z{2a+(b a?)x}xt

M- l\”4 M 1

xk ( ](Za)k“{(b —a’)x}

i[kf'j(zav{(b—aﬁxz X

=0

:ko(zixl) 2<k+_') k{(b-a*)x’} (4.6)
if & R [k+1 -, (b-a?)x]

This is the first part of Theorem 6.
k -1

Also from (4.6), Zf _2(2 Z(k“) (1)'{(b %)X}

S, Xk_l = &, R [k+111 (b-a2)x ]
k=0 -
This completes the proof. L]



Proof (ii). By the generating function of new generalization of Lucas numbers,

i' W& = 2—2ax
" 1-2ax—(b—a%)x’

k=0

- (2—2ax)i{2a+ (b—a2)xpx*

k . _
=(2- 2ax)Zx Z[ j(Za)k"{(b—az)x}'

k=0 i=0

= (2~ 2ax)22[ j(za) {(b-a*)x)x"

k=0 i

~(2-2003 C2 5 KDty @
ilki—k':(2—2ax)e2axlFO[kJrl,—,(b—az)xZ]

k=0
This is the second part of Theorem 6.

AIsofrom(47)ZI ——2 2 )2(2 z(k“) (1)'{(b a?)x%y

ilk%: (2-2ax)e ,F [k +111; (b-a’)x’]
k=0 .

This completes the proof. [

We can easily get the following recurrence relation by using (4.1) and (4.2), also from (4.4) and
(4.5),
|, =2f,,, —2af,

5 Generalized Identities on the Products of new generalization of
Fibonacci and Lucas numbers

Thongmoon [23, 24], defined various identities of Fibonacci and Lucas numbers. Singh,
Bhadouria and Sikhwal [13], present some generalized identities involving common factors of
Fibonacci and Lucas numbers. Gupta and Panwar [6], present identities involving common
factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Panwar, Singh and
Gupta ([14, 15]), present Generalized Identities Involving Common factors of generalized
Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Singh, Sisodiya and Ahmed [18],
investigate some products of k-Fibonacci and k-Lucas numbers, also present some generalized
identities on the products of k-Fibonacci and k-Lucas numbers to establish connection formulas
between them with the help of Binet’s formula. In this section, we present identities involving
product of new generalization Fibonacci and Lucas numbers and related identities consisting
even and odd terms.

Theorem 5.1. If f, and |_are new generalization of Fibonacci and Lucas numbers, then

9



fyeplocr = Fapua +(@2—0)**f , where k>0 & p=>0 (5.1)
Proof. Applying Binet’s formula of new generalization of Fibonacci and Lucas numbers,
ER2k+p _m2k+p . .
f2k+p|2k+1 :( liRl—ERZZ (SRle 1+m§k l) (51)
Ak+p+l _ qpdk+p+l R.R 2k
:[9‘1 %, j+( ) (RPN, —RIN, )
ER1 - ER2 (iRl -t 2)
9{4k+ p+1 _m4k+p+1 ok ERp_l _ &Rp_l
=| — 2 +(RR,)™ (@ -b)| ———2—
YR1 - 9%2 JC{1 _mz
= f4k+p+l + (a2 - b)2k+l fpfl
This completes the proof. [

Corollary 5.2. For different values of p, (5.1) can be expressed for even and odd numbers:

(i) If p=0,then: f,l, ,=f,.,—(@ -b)* (5.2)
(i) If p=1,then: f, b= fu. (5.3)
(iii) If p=2,then: f, L, ., =f,.,+(@ —b)*" (5.4)

Following theorems can be solved by Binet’s formula of new generalization of Fibonacci and
Lucas numbers.

Theorem 5.3. f,,, by, = fusp, +(@ —b)*?f , , Wherek>0& p>0 (5.5)
Corollary 5.4. For different values of p, (5.5) can be expressed for even and odd numbers:
(i) If p=0,then: f,l,,,=f,. —2a(@*—b)* (5.6)
(i) 1 p=1,then: foy ., = fus—(@°—b)*" (5.7)
(iii) If p=2,then: f, ,l,., = fu., (5.8)
Theorem 55. f, |, =f,. +@ -b)*f , wherek>0& p>0 (5.9)
Corollary 5.6. For different values of p, (5.9) can be expressed for even and odd numbers:
@i If p=0,then: f, L, =f, (5.10)
(i) If p=1,then: f, I, =f,. +(@ —b)* (5.11)
(iiiy If p=2,then: f, I, =f, ,+2a(@ -b)* (5.12)
Theorem 55. f,, by, = fy p+(@ —b)**f ., wherek>0& p>0 (5.13)

Corollary 5.6. For different values of p, (5.13) can be expressed for even and odd numbers:

(i) If p=0,then: f,ly., =T -(a’ _b)Zk (5.14)
(i) If p=1,then: f, I, =f, —2a(@* -b)** (5.15)
(iii) If p=2,then: f, I, ., =f, —(3a*+b)(@’-b)*? (5.16)

10



Theorem 5.7. f,, L, =f, ,,+@ -b)**f_ , wherek>0& p=>0 (5.17)

Corollary 5.8. For different values of p, (5.17) can be expressed for even and odd numbers:

(i) If p=0,then: f,l,  =f,  +(@ -b)*" (5.18)
@) If p=1,then: f, L,,="f,, (5.19)
(iii) If p=2,then: f, L, =f, ,—(@°—b)*? (5.20)
Theorem5.9. f, I, =f,_ +(@ -b)*f , wherek>0& p=>0 (5.21)
Corollary 5.10. For different values of p, (5.21) can be expressed for even and odd numbers:
(i) If p=0,then: f, L, =f, (5.22)
(i) If p=1,then: f, I, =f,  —(@ -b)*" (5.23)
(iii) If p=2,then: f, I, =f, ,—2a(a’-b)*? (5.24)
Theorem 5.11. f, 1, = f,,,— (@ -b)*f , wherek>0& p>0 (5.25)
Corollary 5.12. For different values of p, (5.25) can be expressed for even and odd numbers:
(i) If p=0,then: f, L, =f, (5.26)
(i) If p=1, then: f,l, ,=f,., —(@ -b)* (5.27)
(iii) If p=2,then: f,l, ,=f,.,—2a(@*-h)* (5.28)
Theorem 5.13. 4bf,, f,,, =1, —(@*—b)*I , where k>0 & p=>0 (5.29)

Corollary 5.14. For different values of p, (5.29) can be expressed for even and odd numbers:

(i) If p=0,then: 4bf, f, =1, —2(a®—h)* (5.30)
(i) If p=1, then: 4bf, f, , =1, —2a(@*—b)* (5.31)
(iii) If p=2,then: 4bf, f, , =1,.,—2(@*+b)@ -b)* (5.32)
Theorem 5.15. L, l,,,, =1, +(@ —b)*I , where k>0 & p>0 (5.33)
Corollary 5.16. For different values of p, (5.33) can be expressed for even and odd numbers:
(i) If p=0,then: Il =1, +2(a®-b)* (5.34)
(i) If p=1,then: L, =1, +2a(@® -b)* (5.35)
(iii) If p=2,then: L1, ,=1,.,+2(@°+b)@® -b)* (5.36)

6 Sum and difference of squares of new generalization of
Fibonacci and Lucas numbers

In this section, sum and difference of new generalization of Fibonacci and Lucas numbers are
11



treated in the following theorem.

Theorem 6.1. 4b( 7, + f72,) =

n+1

2+l —2(a° —b)"{(a* -b)* -1} (6.1)

2n+

Theorem 6.2. 4b( 2, — f7,)=1,., — . —2(a* ~b)"{(a° —b)* -} (6.2)

By the Binet’s formula of new generalization of Fibonacci and Lucas numbers, the proof is
Clear.

7 Conclusion

We have derived some fundamental properties in this paper. We describe sums of new
generalization of Fibonacci numbers. This enables us to give in a straightforward way several
formulas for the sums of such generalized numbers. These identities can be used to develop
new identities of numbers and polynomials. We describe some confluent hypergeometric
identities and generalized identities involving product of new generalization of Fibonacci and
Lucas numbers. Also we present identities related to their sum and difference of squares
involving them.
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