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Abstract. The exponential increase of big data volumes demands a
large capacity and high-density storage. Deoxyribonucleic acid (DNA)
has recently emerged as a new research trend for data storage in vari-
ous studies due to its high capacity and durability, where primers and
address sequences played a vital role. However, it is a critical biocom-
puting task to design DNA strands without errors. In the DNA synthesis
and sequencing process, each nucleotide is repeated, which is prone to
errors during the hybridization reactions. It decreases the lower bounds
of DNA coding sets which causes the data storage stability. This study
proposes a metaheuristic algorithm to improve the lower bounds of DNA
data storage. The proposed algorithm is inspired by a moth-flame opti-
mizer (MFO), which has exploration and exploitation capability in one
dimension, and it is enhanced by opposition-based learning (OBL) strat-
egy with three-dimension search space for the optimal solution; here-
after, it is MFOL algorithm. This algorithm is programmed to construct
the DNA storage codes by reducing the error rates of DNA coding sets
with GC-content, Hamming distance, and No-runlength constraints. In
experiments, 13 benchmark functions and Wilcoxon rank-sum test are
implemented, and performances are compared with the original MFO
and three other algorithms. The generated DNA codewords by MFOL
are compared with a state-of-the-art Altruistic algorithm and KMVO al-
gorithm. The proposed algorithm improved 30% DNA coding rates with
shorter sequences, reducing errors during DNA synthesis and sequencing.

Keywords: DNA data storage · Biocomputing · DNA coding sets ·
Opposition-based learning · MFO algorithm

1 Introduction

International Data Corporation estimated that the digital data would exponen-
tially grow from 33 ZB to 175 ZB (2.5 EB/day) during 2018-2025 due to ex-
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tensive usage of IoT worldwide [1]. Meanwhile, the limitation of storage density
and longevity in the existing storage media demands the development of the lat-
est technology. DNA is a step-forward molecular-based solution due to primers
that play a vital role in its density and long-lasting stability. It comprises four
nucleotides – adenine (A), thymine (T), cytosine (C), and guanine (G). The A
and T nucleotides are integrated by dual Hydrogen bonds while C and G with
triple H-bond and form a double helix with the pairing of complementary bases
known as hybridization. In DNA synthesis, primers are added into the strands
during the data writing which is utilized in polymerase chain reaction (PCR)
amplification for particular required data during the data reading process. As
DNA molecules lack particular spatial organization, the encoded strands should
have a specific address to recognize their location in the data stream [2]. Each
DNA strand is divided into blocks to encode a big amount of data, as presented
in Fig. 1. DNA has the capability to store 4.2 × 1021 bits binary data per gram
of single-strand, which is 420 billion times high-performance bio-computing than
existing electromagnetic media [3]. DNA data storage technology can be defined
by following three fundamental steps [3–5]: (1) Digital data is converted into
binary form and encoded into DNA strands (A, T, C, or G strings) with a par-
ticular coding scheme. These stings are called DNA codes or codewords. (2) The
encoded DNA strands are synthesized into oligonucleotides by a DNA synthe-
sizer, and data is stored. This process is called data writing on DNA. (3) DNA
strands are decoded by DNA sequencing to retrieve the original digital data,
which is called data reading from DNA.

Fig. 1. DNA strand structure with primers, payload, sense (s) and address.

A plethora of studies have shown the novel tracks for its developments. For
instance, Church [4] encoded 5.27 MB files into DNA chemical molecules and effi-
ciently decoded those files by DNA sequencing. Goldman [5] proposed a scalable
method to store the 739 kilobytes of digital information. Bornholt [3] delivered
random access features by XOR encoding scheme and synthesized DNA of 151
KB dataset. The author has developed an end-to-end DNA data storage system
to overcome the challenges of high risks in data loss [6]. It proposed a self-
contained DNA storage system with three different methods, which thoroughly
reduce the data redundancy and improve the DNA coding sets. The reported re-
sults indicate the significance of DNA sequence codes. All the above-mentioned
studies found that DNA coding sets directly affect DNA synthesis and sequences
efficiency. Thus, it is strongly required to develop robust DNA coding sets that



An Algorithm to Design DNA Data Storage Codes 3

must satisfy the DNA coding constraints. It is compulsory to detect the error
source to avoid the insertion, substitution, and deletion errors that occur during
the development of DNA codes. For example, a DNA code: ACAGGGTACT,
G has been consecutively repeated, which will be considered a single G for the
reading process and caused the lowest convergence rate for the DNA reading
and writing. Thus, GC content and homopolymer length constraints are deemed
initially in the DNA Fountain code [2].

Song [7] proposed a coding method that satisfied No-runlength and GC-
content constraints, but still, it generated errors during the encoding and decod-
ing and reduced the DNA codes. Therefore, DNA codewords have been signif-
icantly improved with the constraints and stochastic search algorithm recently.
Metaheuristic algorithms, i.e., moth-flame optimization (MFO) [8], firefly opti-
mization algorithm (FOA) [9], grey wolf optimizer (GWO) [10], harris hawks
optimization (HHO) [11], and mean-variance optimization (MVO) [12], have
been efficiently used in various aspects of computation engineering. For exam-
ple, KMVO [13] has been adopted for DNA coding sets for DNA-based data
storage by using MVO. Their results stated that the proposed algorithm at-
tained a bunch of sequences that satisfy the energy-free constraint at a particular
melting temperature. The motivations of this paper are KMVO and Altruistic
algorithms [14]. KMVO algorithm attained the 1.5 times higher DNA coding
set than Altruistic algorithm with the same purpose. However, authors [13, 14]
suggested it further can be improved by mutation strategy. In biocomputing, A
mutation strategy enables the alteration in the nucleotides sequence to generate
high-quality codes—for example, the opposition-based learning (OBL) strategy
focuses on exploring the solution in the opposite dimension. To the best of our
knowledge, the MFO algorithm with the OBL mutation strategy has not been
reported in the literature to construct DNA coding sets for data storage.

In this paper, moth-flame optimization (MFO) has been enhanced by the
opposition-based learning (OBL) strategy to generate DNA coding sets – here-
after, its MFOL. MFO algorithm has the exploration and exploitation ability
in one dimension of search space that is improved by OBL; which considers the
opposite solution of the concerned solution in three dimensions to boost the local
search capability. The experiments are conducted on 13 benchmark functions,
including unimodal and multimodal functions. As a result, the MFOL algorithm
efficiently enhanced the global exploration and exploitation abilities to improve
the convergence rates. The results are compared with 4 different well-known
optimizers. MFOL algorithm is applied to design DNA codes for DNA-based
data storage systems. To overcome the critical issue of error occurrence during
the DNA synthesis, the MFOL algorithm is utilized with GC-content, Hamming
distance, No-runlength constraints. The results are compared with the state-of-
the-art Altruistic algorithm and KMVO. The overall mechanism of the MFOL
algorithm with the opposition-based learning strategy and existing constraints
reported the high quality of large DNA coding sets with improved lower bounds
to construct a dense-based DNA storage system. The significant contributions
are as follows:
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• A novel algorithm (MFOL) is proposed based on a moth-flame optimizer
which synergy by opposition-based learning mutation strategy for faster con-
vergence and stronger exploration and exploitation capabilities.

• The proposed algorithm is applied to construct DNA codewords. It con-
tributes to improving the lower bounds of DNA coding sets, and it is vali-
dated by computing the temperature variance.

• The MFOL algorithm satisfies the DNA coding constraints to avoid the
non-specific hybridization for storing larger digital data files in the shorter
sequence of DNA to deliver a stable data storage system.

The structure of the rest article is as follows; Section II introduces the exist-
ing DNA constraints, Section III elaborates the proposed algorithm, Section IV
explains the experiments and results, Section V concludes the work.

2 DNA Code Constraints

The critical aspect of DNA storage is to design DNA strands with the least errors
during its vital processes; synthesis and sequencing. The existing state-of-the-
art constraints (GC-content, Hamming distance, and No-runlength) are used to
design the DNA codes with C(n, M, d), wherein n is the length of the sequence
and d presents Hamming distance and M is a symbol to indicate GC-content
with ⌊n/2⌋ parameters.

The GC-content constraint in C(n, M, d) set is the ratio of the sum of bases
content (G and C) to the total number of bases. It can be defined for s sequence
length as [7]:

GC(s) = ∣G +C ∣
∣s∣ × 100% (1)

Similarly, the No-runlength constraint is to avoid the existence of homopoly-
mers in a sequence, and for a DNA sequence S with n bases (S1, S2, S3, . . . ,Sn)
can be presented as [11]:

Si ≠ Si+1, i ∈ [1, n − 1] (2)

Meanwhile, the Hamming distance H between 2 sequences (α & β ) of the
same length in C(n, M, d) set can be computed by the sum of different base
elements by satisfying the H(α,β) ≥ d, where, d is threshold [15]:

H(α,β) =
n

∑
i=1

h (αi, βi) , h (αi, βi) = {0, αi = βi
1, αi = βi

(3)

In Hamming distance, H determines the similarity between 2 DNA sequences
by calculating the d. The greater H shows the greater distance and less similarity
among the particular sequences, which avoids non-specific hybridization. Overall,
these constraints aim to develop feasible DNA codes with different lengths.
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3 Proposed Algorithm – MFOL

The proposed algorithm leverages the moth-flame optimizer (MFO) [8], where
the moth uses a transverse orientation (TO) navigation mechanism. The TO
method enables a moth to fly by adjusting a fixed angle by the moon’s focal
point. Meanwhile, the moth collided with artificial lights and lost its destina-
tion. However, the moth persists in maintaining the same angle, which causes
its deadly spiral path. This concept provides a mathematical optimizer algo-
rithm that supports the convergence of an object or moth. MFO algorithm has
two candidate solutions; Moths (M) and Flame (F ). In a population-based al-
gorithm, there can assume another array of fitness (f) values for all solutions.
Both candidate solutions can be considered in the following matrices.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 m1,2 . . . m1,d

m2,1 m2,2 . . . m2,d

⋮ ⋮ ⋮ ⋮
mn,1 mn,2 . . . mn,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Mf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Mf1
Mf2
⋮

Mfn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4)

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1,1 F1,2 . . . F1,d

F2,1 F2,2 . . . F2,d

⋮ ⋮ ⋮ ⋮
Fn,1 Fn,2 . . . Fn,d

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Ff =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ff1
Ff2
⋮

Ffn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where n shows the candidate solution number and d is the dimension variable.
The only difference between both solutions is the system how we deal with

them in the iteration process. The moth flies in the search space and acts as
a search agent, while the flame is the optimal solution for the moth to achieve
it as a destination in the search space. Thus, a moth flies around the search
space by focusing the destination (flame) on finding a globally optimal solution.
In this paper, the parameters have been chosen as given in the original work of
MFO. As the motivation of this optimizer is TO, the moth updates its position
corresponding to the flame with the following mathematically model:

Mi = S (Mi, Fj) =Di ⋅ ebt ⋅ cos(2πt) + Fj (6)

where Mi represents the i-th moth, S indicates the spiral function, Fj presents
the j-th flame, Di shows the distance of i-th moth for the j-th flame, b is a
constant for spiral function, and t is a random number [−1,1].

Eq. (6) adjust the moth’s spiral path, which allows a moth to fly around a
flame. The spiral function is a key component of MFO which decides the moth
movement with respect to flames. Thus, it enables the MFO algorithm to attain
the ability of exploration and exploitation in the search space. The logarithmic
spiral, position with different t curves and space around the flame are illustrated
in Fig. 2.

Apart from these spiral functions of the MFO algorithm, the following variable-
based array is also considered as lower bounds for MFO:

ub = [ub1, ub2, ub3, . . . , ubn−1, ubn] (7)
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Fig. 2. Logarithmic spiral, position concerning t and space around the flame [8].

lb = [lb1, lb2, lb3, . . . , lbn−1, lbn] (8)

where ub and lb indicate the upper bounds and lower bounds with n number of
moths, respectively.

These bounds decide the search space limit of the moth after the initializa-
tion. The optimization of this mechanism enables the moth to acquire the best
position in the search space. However, a problem can occur due to one dimension
search space that causes MFO to fall into local optima and affects searchability.
In order to maintain the balance between exploitation and exploration and find
the best optimal solution, this paper utilized the following mutation strategy.

3.1 Opposition-based Learning Strategy

In optimizing any problem, solution Z is estimated as Ž, which is not the exact
solution. It is not a best practice to consider the initial guess as to the best
result. Practically, for all the optimal solutions, the optimized system should
focus on all dimensions or aspects, more specifically toward the opposite direc-
tion/dimension [16]. Tishoosh et al. (2005) reported opposition-based learning
(OBL) mutation strategy for computational intelligence [17]. The OBL strat-
egy tackles the moth solution Z in three dimensions (3D) if its searching is
advantageous in the opposite direction with opposite moth solution Ž. In which,
considering the 3D interval (a, b, c), the solution for the concern problem can be
observed in moth Z. The Ž will be generated at the opposite interval (a′, b′, c′)
of initial moth Z, as illustrated in Fig. 3. It will prior search the opposite moth
solution Ž according to the following definitions.

Definition I: Let Z ∈ R is a real number for a particular interval; Z ∈ [a, b, c].
The opposite number Ž can be defined as follows:

Ž = a + b + c − Z (9)

For a + b = 0 and c = 1, or vice versa, then,
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Fig. 3. Three-dimension search space for the moth solution Z and opposite moth so-
lution Ž for the Opposition-based learning mutation strategy.

Ž = 1 − Z (10)

Meanwhile, this behavior of opposite number for multiple dimensions can be
defined as follows:

Definition II: let Z (a1, a2, . . . , an) is a location in n-dimensional search
space for the coordinate system with ai ∈ [xi, yi] and i ∈ 1,2, . . . , n. The opposite
location or area Ži = (a′1, a′2, . . . , a′n) is defined as follows:

Ži = a′1 + a′2 + a′n −Zi i = 1,2, . . . , n. (11)

Based on Eq. (11), the moth Z or opposite moth Ž are close to a solution
with respect to the flame. The 3-dimension interval can recursively optimize
until either moth or opposite moth come close enough to the targeted solution.
These characteristics furnish the opportunity for the MFOL algorithm to access
the global optima solution by balancing between exploitation and exploration
abilities. The computation time complexity of MFOL is also same as the MFO
algorithm (O(MFOL) = O(tn2+tnd)), where d is the number of variables and t is
the maximum number of iterations [8]. The pseudo-code of the MFOL algorithm
is presented in Algorithm 1. The architecture of MFOL is illustrated in Fig. 4.

4 Experiments & Results Evaluation

The experiments were executed in an integrated environment; for instance, all
algorithms performed on MacBook 2.4 GHz, 8 GB DDR3, Python with 3.7.10v,
platform Google’s Colab, and 3D convergence plots into MATLAB R2018b. To
construct DNA codewords, DNA bases (A, T, C, and G) are mapped with the
quarterly number (A-0, T-1, C-2, and G-3). It employed 13 mainstream functions
(mathematically defined in [8]) to demonstrate the optimization performance
of MFOL. A set of different parameters have been implemented. However, the
significant results presented in this paper are based on these parameters; the
number of moths or population size: 50, and the number of iterations for each
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Algorithm 1: Pseudocode of proposed MFOL algorithm

Input: The population size N for two candidate solutions (M,F ), Location
of moth (L), FitnessFunction of moth Mf , Fitness Function of flame Nf .
Output: Global best individual solution Xm.
1: Initialize random population Xi

2: for (each moth Xi ) do
3: Calculate fitness of Mf and Ff population using Eq. (4) and (5);
4: if (population N converge) then
5 ∶ Update the moths’ position L for lb using Eq. (8);
6 ∶ Compute global optimal L with opposition-based learning strategies

(Eq. 11); else
7 ∶ while (not converge) do
8 ∶ for i = 1 ∶ n;
9 ∶ update candidate solutions (M,F ) with Eq. (6)
10 ∶ end for
11 ∶ end while end if
12 ∶ end for
Return: Global optimal solution Xm.

Fig. 4. An Architecture of the proposed MFOL algorithm is presented based on the
MFO algorithm and Opposition-based learning mutation strategy.



An Algorithm to Design DNA Data Storage Codes 9

function: 500. If an algorithm performs for n times will yield average or standard
deviation (SD) with the best solution. The following mechanism is utilized to
report the optimal solution for average and SD values.

• The lowest the average value, the highest the algorithm’ performance.
• The minimum the SD value, the maximum the stability of the algorithm.

Additionally, the proposed algorithm MFOL is compared with the original
MFO [8] and the other three algorithms; FOA [9], GWO [10], and HHO [11]. A
non-parametric Wilcoxon Rank-sum test [18,19] is accompanied to validate the
result’s originality of MFOL algorithms and compare with MFO [8]. Further-
more, the MFOL algorithm is trained with available DNA coding constraints,
i.e., GC-content, Hamming distance, etc., to overcome the occurrence of the
error of sequences for the DNA storage effectiveness. The lower bounds values
are compared with the state-of-the-art Altruistic algorithm [14]. Eventually, a
thermodynamic analysis is performed on existing constraints to validate the gen-
erated sequences by computing the temperature variance of DNA coding sets.

4.1 Benchmark Functions’ Evaluation

This study used 2 types of benchmark functions; Unimodal (F1-F7) and Multi-
modal Functions (F8-F13), to test the MFOL performance. Unimodal functions
have the exploitation capability, deal only with 1 global optimal score, and do
not consider the local optimal values. In contrast, multimodal functions have ex-
ploration ability due to having numerous numbers of local optimal solutions [8].

Table 1. Comparison of different algorithms with MFOL for Unimodal functions.

Functions Metrics MFO [8] FOA [9] GWO [10] HHO [11] MFOL

F1 AVG 8.63E+03 3.61E+03 6.29E+02 1.51E+04 1.49E+02
SD 1.48E+04 9.78E+03 4.80E+03 2.14E+04 3.80E+03

F2 AVG -7.61E+03 -3.55E+03 -4.18E+03 -1.22E+04 0.00E+00
SD 1.26E+03 2.22E+02 1.91E-02 1.02E+03 0.00E+00

F3 AVG 3.50E+04 1.75E+04 3.24E+03 4.77E+04 0.00E+00
SD 1.65E+04 2.52E+04 1.28E+04 3.53E+04 0.00E+00

F4 AVG 6.44E+00 1.38E+01 3.51E+00 5.62E+01 0.00E+00
SD 6.55E+00 2.26E+01 1.29E+01 9.36E+00 0.00E+00

F5 AVG 2.01E+07 7.58E+06 1.63E+06 9.15E+07 0.00E+00
SD 4.94E+07 2.76E+07 1.60E+07 1.04E+08 0.00E+00

F6 AVG 3.44E+01 5.04E+04 5.59E+04 2.36E+04 5.27E+01
SD 1.26E+04 5.10E+03 2.64E+03 6.78E+03 3.05E+03

F7 AVG 1.55E+01 4.75E+00 7.31E-01 3.57E+01 1.17E+00
SD 2.04E+01 1.41E+01 7.04E+00 4.50E+01 4.10E-01
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Tables 1 and 2 indicate the average and standard deviation of unimodal
and multimodal functions, respectively. In Table 1, a general trend presents
the improved performance of our proposed algorithm in various functions. For
instance, the functions F2-F5 achieved the best convergence in both matrices of
average and SD. However, the score of MFOL with F6 lags behind the original
MFO due to probably larger optimization intervals. In table 2, MFOL exhibits
superior performance with the lowest average and SD scores as compared to MFO
[8]. The average and SD scores of F8 and F10-F12 secured the global optimal
solution after 500 iterations, demonstrating the proposed algorithm jumping-
out performance from the local optimum. Meanwhile, the proposed algorithm
failed to attain the maximum global optimal solution for F9 due to high variance
values as compared to the rest of the other algorithms. This insufficient result
may be appeared due to the moth’s large interval for optimization in search
space. As compared to the remaining three optimizers, the proposed optimizer
competitively jumps out of the local optimum and secures itself in the global
optimum solution with minimum magnitude and variances. These significant
results indicate the demand and importance of the OBL strategy.

Table 2. Comparison of different algorithms with MFOL for Multimodal functions.

Functions Metrics MFO [8] FOA [9] GWO [10] HHO [11] MFOL

F8 AVG 1.09E+04 3.33E+10 2.81E+10 8.32E+09 0.00E+00
SD 1.18E+11 7.43E+11 6.28E+11 1.82E+11 0.00E+00

F9 AVG 1.92E+02 1.64E+02 1.50E+02 1.60E+02 2.42E+02
SD 6.75E+01 9.48E+01 8.45E+01 1.26E+02 5.93E+01

F10 AVG 1.69E+01 8.56E+00 1.65E+01 1.19E+01 6.16E-01
SD 1.70E+00 3.99E+00 2.75E+00 2.88E+00 8.28E-01

F11 AVG 9.18E+01 1.12E+00 5.71E+00 1.40E+02 1.05E+00
SD 1.34E+02 8.87E+01 4.35E+01 2.02E+02 1.19E+00

F12 AVG 3.50E+07 1.34E+07 3.43E+06 2.57E+08 2.61E+00
SD 1.01E+08 5.70E+07 3.56E+07 2.76E+08 3.99E+00

F13 AVG 1.00E+08 2.88E+07 7.02E+06 4.23E+08 2.38E+04
SD 1.98E+08 1.16E+08 7.09E+07 4.89E+08 7.37E+08

4.2 Convergence Efficiency

The convergence curve is a vital criterion to assess the algorithm convergence
speed and capability to jump out from the local optima [8]. The convergence
curves with 3D representation are depicted in Figure 5. This paper considers
only one function’s outcome from each unimodal and multimodal function due
to their significant convergence efficiency and paper page limit. In the unimodal
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F5 function, MFOL converges speedily than MFO and other algorithms to attain
the global optimal solution. In contrast, in the multimodal F12 function, the pro-
posed algorithm achieved optimal solution at 50 iterations, while MFO fell into
the local optima. In summary, the MFOL convergence curves are experimentally
guaranteed by quantitative and qualitative metrics that exhibit the competitive
results over the state-of-the-art algorithms by establishing a balanced nature
between exploration and exploitation.

Fig. 5. A 3D representation and convergence efficiency of Unimodal function F5 and
Multimodal function F12 is illustrated separately. Each function has its particular
search space, search history, and convergence curves indicating the highest performance
for the MFOL algorithm.

4.3 Wilcoxon Rank-sum Test

The results of benchmark functions indicate the algorithm’s general performance,
while the statistical test, Wilcoxon Rank-sum Test, proves the algorithm’s statis-
tical significance [19]. According to the Wilcoxon test’s hypothesis, an algorithm
is considered statistically significant if the P − value is greater than 0.05. This
study compared the statistical significance between MFO and MFOL by ranking
any 2 samples of the 30 iterations from unimodal and multimodal functions. In
Fig. 6, the results met the criteria in most cases which present the optimum
results of the proposed algorithm.
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Fig. 6. Compersion of Wilcoxon rank-sum test for MFO [8] and MFOL with (a) Uni-
modal functions and (b) Multimodal functions. A dotted line at the P −value of 0.0500
indicates the threshold level for this rank-sum test.

4.4 Bounds on DNA Storage Constraints Coding

MFOL algorithm is trained and practically applied to improve the lower bounds
of DNA storage coding sets with GC-content, No-runlength, and Hamming dis-
tance constraints CGC,NL(n,M,d), where n indicates sequence length, d presents
the Hamming distance, andM shows the GC-content with ⌊n/2⌋ parameters. The
Altruistic [14] and KMVO [13] algorithms used 4 ≤ n ≤ 10 and 3 ≤ d ≤ n bounds
to satisfy the constraints CGC,NL(n,M,d). In Table 3, the values in parenthesis
with superscripts ’a’ and ’k’ indicate the Altruistic and KMVO’s lower bounds,
respectively. In contrast, the bold black values are outperformed the bounds val-
ues of the MFOL algorithm. A plethora of lower bounds delivered by the MFOL
algorithm are better than the existing algorithm. For instance, at n = 10 and d
= 5, the size of our DNA coding set is 25% better than the KMVO algorithm.
In all sequences with d = 4, new DNA codes are 37% higher than the Altruistic
algorithm and 30% better than the KMVO algorithm. Overall, MFOL enhanced
30% and 17% DNA coding sets in the given boundary compared to the Altruistic
and the KMVO algorithm, respectively. These significant improvements are due
to the consideration of the OBL mutation strategy with MFO, which empowers
the exploration and optimization ability of the MFOL algorithm. In addition,
Table 4 presents the DNA coding sets satisfying the CGC,NL(n,M,d) constraints
when n = 10 and d = 7.

Furthermore, these improvements of lower bounds for the given sequence
length are directly advantageous to the improvements of DNA coding rates.
The coding rate (R) defines as; R = log4K/n, where K is the number of DNA
coding sets, and n is the number of sequence lengths [13]. The analysis of Table
5 indicates that the improved MFOL algorithm attained the same coding rate
with shorter sequence lengths in 89% coding sets. For instance, the Altruistic
algorithm achieved the coding rate R = log4 86/8 = 0.4016 when n = 8 and d=4.
In contrast, the proposed algorithm reported a 0.4010 coding rate when n = 7
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Table 3. Comparison of lower bounds of MFOL algorithm with Altruistic and KMVO
algorithms for CGC,NL

(n,M,d).

n d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

4 11 (11a
)

5 24 (20k
) 8 (7a

)

6 58 (44a
) 26 (16a

) 7 (6a
)

7 148 (127k
) 49 (36a

) 19 (11a
) 6 (4a

)

8 328 (289a
) 114 (94k

) 35 (32k
) 11 (9a

) 6 (4k
)

9 906 (680k
) 281 (202k

) 83 (65k
) 30 (23k

) 9 (8a
) 4 (4a

)

10 2254 (2081k
) 721 (547k

) 189 (151k
) 79 (54k

) 17 (7a
) 5 (5a

) 5 (4a
)

Table 4. DNA storage coding sets when n = 10 and d = 7.

GACACTATAG CTATACAGTG AGCACATGAC TATGCTACAT
ATCACACAGT ATACAGCGAT GAGTATACAT ATAGCACATC
CTACTGACTA CAGCATGATC ATAGCAGATG TACACGATAC
GTCACGTACT CAGTAGAGCA GACGATGCTG ATGCATCGAT
TCTAGCATCA

and d = 4. Similarly, the KMVO algorithm attained a 0.5227 coding rate when
n = 9 and d = 3. In comparison, the MFOL algorithm has a 0.5223 coding
rate when n = 8 and d = 3. Thus, it analytically proved that shorter sequences
can also accomplish the same DNA storage performance as longer sequences. It
indicates that shorter sequences are less expensive and easier to synthesize with
more stable conditions, which shows the improved lower bounds effectiveness for
the further deployment of the DNA data storage system.

4.5 Temperature Variance of DNA Codes

The validity of DNA coding constraints is empirically computed by the temper-
ature variance of DNA coding sets. In the coding of DNA storage, the melting
temperature (Tm) is a certain temperature when half of the double-strand DNAs
convert into single-strand DNAs during the denaturation process [20]. Tm de-
pends on GC content, which affects the reaction rates of DNA molecules: the
higher GC content presents, the higher Tm. In PCR amplification, sufficiently
lower Tm can be more effective in binding the forward and reverse primers. Thus,
both primers must be having similar Tm that can avoid the non-specific hy-
bridization possibility. The non-specific hybridization is associated with oligonu-
cleotides structure and its thermodynamic properties. Therefore, each DNA se-
quence should be with the same Tm to construct the DNA coding sets. The tem-
perature variances are utilized to distinguish the sequence quality; the smaller
the temperature variance, the more stable the Tm of the DNA coding set [21].

As the primary focus of this study was to construct the DNA codes with
shorter sequences, an empirical thermodynamic test is conducted to validate the
DNA sequences. For the temperature variance, the empirical values of primer
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Table 5. Comparison of CGC,NL for Tm variance of DNA codes with 5 < n < 10 and
2 < d < 9.

n / d Constraints d=3 d=4 d=5 d=6 d=7 d=8

6 CGC,NL 3.6311 4.2734 4.0246

7 CGC,NL 5.3691 4.1368 3.6814 4.7168

8 CGC,NL 3.9812 3.2451 3.1931 3.0161 4.364

9 CGC,NL 4.6841 5.3017 5.8054 2.8972 3.9218 2.7204

concentration are set at 200nM while the salt concentration is set at 50nM.
For example, based on these concentrations, a primer (TATGTAGTAC) with
sequence length 10 delivers the 30% GC-content, and nucleotides degeneration
is allowed at Tm = 26°C. The coding sets with the proposed MFOL algorithm
are analyzed with existing constraints for its correlated Tm values. Table 12
compared the Tm variances with CGC,NL constraints for 5 < n < 10 and 2 < d < 9
lower bounds. The results present the significantly lowest Tm variance for the
CGC,NL. This analysis signifies the practical implication and necessity of the
MFOL algorithm with the OBL strategy for DNA coding sets. These smaller
Tm variances of DNA coding set advantageous the more stable PCR reaction
due to reduction of non-specific hybridization.

5 Conclusion & Future work

This paper proposed a novel MFOL algorithm based on MFO that is synergized
by the OBL strategy to construct the DNA coding sets. In experiments, the
MFOL’s exploration and exploitation capabilities are compared with 4 different
state-of-the-art optimization algorithms. Based on MFOL’s competent results
(Tables 1 & 2 and Fig. 5), MFOL is applied in practical problems to generate
DNA codewords with GC-content, Hamming distance, No-runlength constraints.
It improved 30% and 17% lower bounds DNA coding sets compared to the
Altruistic and the KMVO algorithms, respectively (Table 3). Meanwhile, the
temperature variance with CGC,NL constraints for the given lower bounds also
reported practical implications and the necessity of the MFOL algorithm for
DNA data storage (Table 5). It is concluded that improved lower bounds can
avoid further non-specific hybridization, and the shorter sequences can reduce
more errors during the DNA synthesis and sequencing.

In the future, the DNA sequences generated by the MFOL algorithm will
be assessed by the combinatory constraints of GC and RC. As the OBL strat-
egy significantly improved the proposed algorithm capabilities, this work can
be further extended by testing Levy flight or Cauchy mutation strategies with
more benchmark functions (F1-F19). The effective efficiency of this stochastic
algorithm will support the generation of the DNA codewords for a DNA-based
data storage system.
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