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ABSTRACT 

Recursive self-improving( RSI ) systems create new software iteratively. The newly 
created software iteratively generates a greater intelligent system using the current 
system, then this process leads to a phenomenon referred to as superintelligence. 
However, many existing studies on RSI systems lack clear mathematical formulation or 
results. In this paper, we provide a formal definition of RSI systems and then we present 
a recursive self-improvement model by three different approaches. The first one is to 
find an optimal program defined by given scores and program generation probabilities 
using Markov chain. The second one is to model by embedding histories when 
generating a new program. And the third is to model the programs taking a program as 
an argument and return a suggested improvement of the given program. We use 
simulation to show that we achieve logarithmic runtime complexity with respect to the 
size of the search space and realize good accuracy to a AI model of embedding 
histories. The results suggest that it is possible to achieve an efficient recursive self-
improvement. 

INTRODUCTION 

If research into strong AI produced sufficiently intelligent software, it would be able to 
reprogram and improve itself – a feature called "recursive self-improvement( RSI )". It 
would then be even better at improving itself, and could continue doing so in a rapidly 
increasing cycle, leading to a superintelligence. This scenario is known as an 
intelligence explosion. Such an intelligence would not have the limitations of human 
intellect, and may be able to invent or discover almost anything. 

Thus, the simplest example of a superintelligence may be an emulated human mind 
that's run on much faster hardware than the brain. A human-like reasoner that could 
think millions of times faster than current humans would have a dominant advantage in 
most reasoning tasks, particularly ones that require haste or long strings of actions. This 
also raises the possibility of collective superintelligence : a large enough number of 
separate reasoning systems, if they communicated and coordinated well enough, could 
act in aggregate with far greater capabilities than any sub-agent. 

The technological singularity – is a hypothetical future point in time at which 
technological growth becomes called intelligence explosion, an upgradable intelligent 
agent (such as a computer running software-based artificial general intelligence) will 
eventually enter a "runaway reaction" of self-improvement cycles, with each new and 
more intelligent generation appearing more and more rapidly, causing an "explosion" in 
intelligence and resulting in a powerful superintelligence that qualitatively far surpasses 
all human intelligence.  



Recursive self-improving( RSI ) systems create new software iteratively. The newly 
created software should be better at creating future software. With this property, the 
system has potential to completely rewrite its original implementation, and take 
completely different approaches. Chalmers’ proportionality thesis  hypothesizes that an 
increase in the capability of creating future systems proportionally increases the 
intelligence of the resulting system. With this hypothesis, he shows if a process 
iteratively generates a greater intelligent system using the current system, then this 
process leads to a phenomenon many refer to as super-intelligence. However, many 
existing studies of RSI systems remain philosophical or lack clear mathematical 
formulation or results.  

METHODOLOGY 

If it is possible for a system to improve itself, for example, for a program to rewrite its 
own source code to learn faster, or to store more knowledge in a fixed space, without 
being given any information except its own source code. This is a different problem than 
learning, where a program gets better at achieving goals as it receives input. An 
example of a self improving program would be a program that gets better at playing 
chess by playing games against itself. Another example would be a program with the 
goal of finding large prime numbers within t steps given t. The program might improve 
itself by varying its source code and testing whether the changes find larger primes for 
various t. 

In this paper, we provide a mathematical and other formulations for a class of RSI 
procedures and show that there are such different computable RSI systems or 
approaches. 

The methodology essentially consist of the following : 

 To find the optimal program following  RSI procedure defined by given scores 
and program generation probabilities using Markov chain. 

 To model by embedding histories when generating a new program. 

 To model the programs taking a program as an argument and return a suggested 
improvement of the given program. 

 

ARCHITECTURE 

OPTIMAL PROGRAM FOLLOWING RSI 

Recursive Self Improvement : Define an improving sequence with respect to G as an 
infinite sequence of programs P1, P2, P3,... such that for all i > 0, Pi+1 improves on Pi 
with respect to goal G and  G be the identity goal.  



Definition: P1 is a recursively self improving (RSI) program with respect to G if and only 
if Pi(-1) = Pi+1 for all  i > 0  and the sequence Pi, i = 1, 2, 3...is an improving sequence 
with respect to G. 

Definition (RSI system).Given a finite set of programs P and a score function S over P. 
Initialize p from P to be the system’s current program. Repeat until certain criterion 
satisfied, generate p'∈ P using p. If p' is better than p according to S, replace p by p'. 

From this definition, one needs to decide how p ∈ P generates a program. In general, 
we should allow the RSI system to generate programs based on the history of the entire 
process.  The way a program generates a new program is independent, and each 
program defines a fixed probabilistic distribution over P. This procedure defines a 
homogeneous Markov chain. We will see that even with this restriction, with some score 
function, the model is able to achieve a desirable performance. 

We illustrate the proposed formulation by an example. Consider a set of programs 
P={p1, p2, p3, p4} and a score function S over P such that S(pi) =i. According to our 
formulation, each program can be abstracted as a probabilistic distribution over P. To 
specify the distributions, let wi be a vector of probabilistic weights of length 4 that 
represents the probabilistic distribution over P corresponding to pi. In this example we 
set  w1= [0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],      w3= [0.25,0.25,0.25,0.25],       
w4= [0,0.58,0,0.42].Then a possible RSI procedure may do the flowing. It starts from p3. 
First p3 generates p4. Since S(p4)> S(p3), the current program is not updated. Then p3 
generates p2. The current program is updated to p2 because S(p2)< S(p3). Next p2 
generates p1, and the current program updates to p1. Since p1 has the lowest score 
(highest order), no future program will be updated. Figure 1 shows the corresponding 
Markov chain. 
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Fig. 1: The Markov chain corresponding to the RSI procedure defined by given scores 
and program generation probabilities. 
 
A reasonable utility measure is the expected numbers of steps starting from a program 
to find the optimal program following our RSI definition. Furthermore, the score function 
needs to be consistent with the expected numbers of steps from programs to the 
optimal program following the process defined by itself. We mean that a score function 

S is consistent if for all p, p′∈P, S(p)> S(p′)implies that the expected number of steps to 
reach the optimal program from p is greater than starting from p′. More generally, if one 
takes some measure for a programs’ ability to generate future programs, the score 
function needs to be consistent with this measure. 
 

Two nice properties hold for this construction. First, the programs are added in a non-
decreasing order of scores. Second, the score function equals the expected numbers of 
steps to reach the optimal program defined by this score function. We will prove the first 
property. The second property and the consistency of the score function are 
straightforward from the first property.  We describe an example of how such score 
function is computed given the distributions to generate programs of each program and 
the optimal program. Consider the same abstraction of programs as the above example, 
where P={p1, p2, p3, p4} with corresponding probabilistic weights w1= 
[0.97,0.01,0.01,0.01], w2= [0.75,0,0.25,0],                  w3= [0.25,0.25,0.25,0.25], w4= 
[0,0.58,0,0.42]. Fix p1 to be the optimal program. Initially set S(p1) = 0 and S(pi) =∞, 
i=2,3,4. The transition function of initial Markov chain is 
 

                                                                        
 

At the first step, the expected number of steps from p2, p3, p4 following the current 
Markov chain are 4/3,4,∞. Hence we update S(p2) = 4/3. Because of the change of 
score, transition of the Markov chain change to 

                                                                             
 

Then we compute the expected number of steps from p3 and p4 following the updated 
Markov chain. By some arithmetic we get the expectation are 8/3 for p3 and 



(approximately) 3.057 for p4. Since 8/3<3.057, update S(p3) = 8/3. By similar 
procedures, one can compute the score for S(p4). 

EMBEDDDING HISTORIES 

Recursive self-improvement describes software that writes its own code in repeated 
cycles of improvement. It is associated with artificial intelligence as self-improving 
software has potential to develop superintelligence. 

Recursion can be seen as an elegant 'architectural factorization' - building complexity by 
combining the results of smaller, similar patterns previously encountered.            
Computationally, recursion can always be converted into iteration so this form of 
elegance is  mainly of use in helping to make designs more comprehensible. 
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Figure 2: The EHM( Embedding History Model ) architecture. It contains three subsystems that 
are trained separately. In the image subsystem, the encoder can transfer an input (or predicted) 
image into a population representation vector I at the DNN layer (mimicking the Deep Neural 
Network  for high-level image representation), and the decoder can reconstruct a vector output 
from LSTM to a predicted image, which can be fed into the encoder to form the guided loop. In 
the code subsystem, The coding system  which consists of a mapping to transfer symbol texts 
into respective numeric and a RNN to extract the sequence dependencies from the input texts, 
and an output encoder to convert numeric values into text symbols. There is a memory layer 
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implemented by a RNN to extract sequence  information  from the  vector C. The LSTM layer 
serves as working memory, that takes the concatenated input [C, I] from both code and image 
subsystems, and output the predicted next element representation that could be fed back into 
both subsystems to form a guided loop. 

As is shown in Figure 2, the EHM network contains three main subsystems including 
the code, image and LSTM subsystems. The image encoder network was trained 
separately. After training, the encoder is separated into two parts: the encoder (or 
recognition) part ranges from the image entry point to the final encoding layer,  to 
provide the high-level abstract representation of the input image; the decoder part 
ranges  up to image prediction point. The activity vector of the  encoding layer  are 
concatenated with code activity vector  as input signals to the LSTM. Finally, the 
predicted  image is fed back to the encoder network for the next  iteration. The code 
processing component first converts the input text symbol into a sequence of binary 
vectors [C(t = 0), . . . ,C(T)], where T is the text length. To improve the code recognition, 
we added one RNN layer to generate the sequence dependencies  of the text.   The 
LSTM  training based on the next component prediction (NCP). The LSTM  is trained by 
the NCP principle, where the goal of the LSTM is to output the representation vectors 
(including both code and image) of the next component which required the 
understanding of the previous text code and observed images. The LSTM subsystem 
contains a LSTM and a full connected layer. It receives inputs from both code and 
image subsystems in a concatenated form of c(t) = [C(t),I(t)] at time t, and gives a 
prediction output a a'(t) = [C'(t), I'(t)], which is expected to be identical to a(t + 1) = [C(t + 
1), I(t + 1)] at time t+1. This has been achieved with a next component prediction (NCP). 
So given an input image, the LSTM can predict the corresponding code description. The 
strategy of learning by predicting its own next component is essentially an unsupervised 
learning.  Our LSTM subsystem was trained separately after code and image 
components had completed their functionalities. Finally, we demonstrate how the 
network forms a thinking loop with text code and predicted images. 

DATASET 

User Interface Elements 

When designing the user interface, the following Interface elements are considered but 

are not limited to: 

 Input Controls: pointer, checkboxes, radio buttons, dropdown lists, list boxes, 

buttons, toggles, text fields, date field, frames, combo boxes, timer, hscrollbar, 

vscrollbar, drivelistboxes, dirlistboxes, filelistboxes, shape, line, pictureboxes, data, 

ole, labels, charts 

 Navigational Components: breadcrumb, slider, search field, pagination, slider, 

tags, icons 



 Informational Components: tooltips, icons, progress bar, notifications, message 

boxes, modal windows, links 

 Containers: accordion 

A total of 40 user interface components / elements along with C programming language 
scripts / code associated with each visual component has been selected as dataset. 

We have for the Code Subsystem and used the following parameters with Recurrent 
Neural Network : 

• Size of a sequence: 50 
• Size of a batch: 40 
• Number of neurons  : 256 
• Depth of RNN: 2 
• Learning rate: 0.0005 
• AdamOptimizer to minimize our errors                                                                                  
• Dropout: 0.5 

The results  were obtained after  training the model on  CPU and the model is fit over 
100 epochs. 

It’s interesting to see that this model has clearly understood the general structure of a 
program related to visual components; A function, parameters,  variables, conditions, 
etc. 

Image Subsystem is an implementation of  building  a deep  neural network  with 
TensorFlow for Image Classification in user interface component dataset. 

We used 40 images of different visual components / elements from User Interface 
elements  dataset. 

We have constructed  neural network architecture, layer by layer with the help of the 
TensorFlow package. 

 Next, we build up the network.  
 Activation function : Relu, Rectified linear unit. 
 We constructed a fully connected layer that generates logits of size [None, 40].  
 With the multi-layer perceptron built out we define the loss function and the loss 

function we make use of is sparse softmax cross entropy. 
 We pick the ADAM optimizer, for which we define the learning rate at 0.001. 

The above has been implemented with Python and TensorFlow as a backend. 

We have now successfully trained our model with all the visual components. 



  

Then we loaded  in the test component  data and  run predictions , and found that 
images were classified with good  accuracy. 

The LSTM subsystem contains a LSTM and a fully connected layer. It receives inputs 
from both code and image subsystems in a concatenated form of c(t) = [C(t),I(t)] at time 
t, and gives a prediction output a'(t) = [C'(t),I'(t)]  , which is expected to be identical to a(t 
+ 1) = [C(t + 1),I(t + 1)] at time t+1. This has been achieved with a next component 
prediction (NCP) . So given an input image, the LSTM  can predict the corresponding 
code description.  The strategy of learning by predicting its own next element is 
essentially an unsupervised learning. 

The Training is based on the next component prediction (NCP). The LSTM-FC is trained 
by the NCP principle, where the goal of the LSTM-FC is to output the representation 
vectors (including both code and image) of the next component / element.  At time T, 
the LSTM of  EHM generated  the guided digit instance, which required the 
understanding of the previous code language and observed images. 

The  LSTM subsystem was trained separately after vision and code components had 
completed their functionalities. We have trained the network to accumulatively learn 
different components, and the related code results. Finally, it is demonstrated how the 
network forms a thinking loop with code  language and observed images.  

The LSTM  layer serves as working memory, that takes the concatenated input [C,I] 
from both code and image subsystems, and output the predicted next component 
representation that could be fed back into both subsystems to form a guided loop.  

PROGRAM AS AN ARGUMENT 

Recursive procedures are functions that invoke themselves either directly (call 
themselves from within themselves) or indirectly (calls another method that calls original 
method). 

Recursion: 

 .  An alternative to iteration  

           .  Recursion can be very elegant at times,   

 .  Not inexpensive to implement 

      .  Ease of writing and maintaining  procedures.  

 

Classic examples of recursion : 



 .  Recursive calculation of a string length, factorials, divide and   
 conquer, towers of Hanoi, binary searches, and more      

Recursive functions are used in many applied areas :   

.  In artificial intelligence.    

.  In searching data structures that are themselves "recursive" in nature, such as trees.   

The Expense of Recursive Functions : 

            .  RECURSION   has a significant overhead.  

  .  "DEEPER" WE GO,  Need ADDITIONAL COPIES OF THE DATA   

 . These ‘copies’ are stored in "STACK FRAMES“ which contain  current values                      
and outstanding function calls, and more. 

RECURSIVE FUNCTION IS WRITTEN AS: 

 int public factorial (int n) 

 { 

  if (n==1) 

   return (1)                         /*  THIS IS THE BASE CASE  */ 

  else 

   return (n * factorial (n-1) );     /* RECURSIVE CASE */ 

 }end factorial () 

       

RECALL:      

When a function calls itself, this implies development of a new set of local variables 
and  same “variable names” but very different variables (different memory addresses) 
and different values. There may also be some other temporary variables during the life 
of a particular ‘call.’ 

Base case is a very important notion and  determining the base case ensures the 
recursive function will terminate someday. 



SIMULATING RECURSION  

• logical simplicity and self-documentation of recursive solutions.  
• define binary tree and a LNR traversal as a ‘tree’ is a recursive data structure. 
• a problem solved naturally recursively. 

Let us write a Recursive program to print all permutations of a given string. 

A permutation, also called an “arrangement number” or “order,” is a rearrangement of 
the elements of an ordered list S into a one-to-one correspondence with S itself. A string 
of length n has n! permutation. 
 

The permutations of string “ABC” - consisting of six possible arrangement  or order( Ex.  
ABC ACB BAC BCA CBA CAB). 

The Recursion Tree for permutations of string “ABC” and the string is represented as a 
data structures that are themselves "recursive" in nature, such as  trees.   

A program to output all permutations of string has been implemented in Python and 
uses function “permute” recursively with three parameters. 

Algorithm Paradigm: Backtracking 
Time Complexity:  There are n! permutations and it requires O(n) time to print a  
permutation. 

RESULTS 

The test results of the proposed RSI procedure ( Wenyi Wang ) in simulation with 
randomly generated abstraction of programs where a fixed number of programs is 
chosen from n= 2l, l = 1,2,…..20. The first program is designed to generate programs 
uniformly over all programs. Other programs generate programs follow a weighted 
distribution over a subset of programs. With 10 repeats for each l = 1,2,……20, the 
expected number of steps for the first program to reach the optimal program has been 
calculated and the results suggest a linear relation between l ( Number of Programs ) 
and expected number of steps. 

After  200 steps training, EHM could not only reconstruct the input image  but also 
predict the element / component  with associated program script / code, correct 
parameters and variables just after the image classification.  After training of 200 steps, 
EHM could classify  various visual components with correct code (accuracy = 15%). 
Note that, the classification process is not performed  by large dataset, but by small 
number of training steps or iterations which is  resulting in less accuracy. However, 
accuracy can be improved if a program gets better at achieving goals as it receives 
input and a self-improving program would build complexity by combining the results of 
smaller, similar patterns previously encountered. The program improves itself by varying 



its source code or model and testing whether the changes find larger set of visual 
components. 

The results of Recursion Tree for permutations of string show that there are n! 
permutations and it requires O(n) time to output a  permutation. 

CONCLUSION 

Recursive self-improvement( RSI ) systems create new software iteratively using the 
current system  and this process leads to a phenomenon referred to as 
superintelligence. We presented a recursive self-improvement model by three different 
approaches. We used simulation to achieve logarithmic runtime complexity with respect 
to size of the search space and realize good accuracy with AI model of embedding 
histories. However, embedding histories can be seen as factorization – building 
complexity by combining the results of smaller, similar patterns previously encountered. 
The results suggest a possibility of more comprehensible recursive self-improvement. 
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