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Abstract: The Lattice Boltzmann method, a molecule Kinetic-

based approach, is presented to solve fluid dynamics. Based on 

theory of turbulence and molecule kinetics, an extended Lattice 

Boltzmann equation is put forward to solve turbulent flow with 

high Reynolds number, in which turbulence sub-grid model is 

used to simulate vortex viscosity as well as turbulence relaxation 

time is introduced to modify the normal LBGK equation. The 

method to evaluate the turbulence relaxation time with particle 

distribution function is proposed combining with Smagorinsky 

turbulence model. Furthermore the extended Lattice Boltzmann 

method is applied to simulate the flows around square cylinder in 

the range of Reynolds number from Re=62 to Re= 9000. 

Keywords: Turbulent flow, extended LBM equation, High 

Reynolds number, square cylinder. 

I.  INTRODUCTION 

 Turbulence refers to the state of a fluid, liquid or gas, in 
which the velocity presents in every point a swirling character: 
vortices whose size, location and orientation vary constantly.    
Turbulent flows are therefore characterized by a very 
disordered appearance, a behavior that is difficult to predict 
and the existence of numerous spatial and temporal scales. 
Such flows occur when the kinetic energy source that sets the 
fluid in motion is relatively intense in front of the viscosity 
forces that the fluid opposes to move. Conversely, laminar is 
called the character of a regular flow. 

 This work concerns the study of turbulent flows around 
obstacles using the Lattice Boltzmann method (LBM). 

 As a first step, the lattice model D2Q9 is used to 
numerically model the flow of a fluid in a horizontal channel 
[3]. The model is validated by comparison of the analytical 
profiles is numerical speeds in the case of Poiseuille’s flow. In 
a second step, the scheme is then applied to simulate the flow 
around a square-section cylinder, the modeling of turbulence is 
approached, a large-scale Reynolds number scale modeling 
algorithm is developed and the model of Smagorinsky is 
implemented in the code. Indeed a numerical test case is used 
to validate the code and the simulation of a turbulent flow is 
realized. 

II. LATTICE BOLTZMANN MODEL 

A. Lattice Bolzmann Equation: 

First, The D2Q9 is a 2-dimensional model. The position of 
the particles is limited to the nodes of lattice. Momentum and 
microscopic speeds are considered equivalent because the 
mass is uniform (1 mass unit or mu), (lu) is the fundamental 
measure of the length in the model LBM, ts the time step is 
the unit of time [1]. Figure 1 shows the Cartesian network and 

speeds ae   0,1,2,3,4,5,6,7,8a . We have 
0 0e   

because the particle remains at rest. 

 

The velocity magnitude of 1e through 4e is
11 .lu ts , from 

 to  is
12 .lu ts . 
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     The macroscopic fluid density is: 
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The macroscopic average u is: 
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BGK approximation: 

 

 
 is the density fuction. 

 

  is the relaxation time.   
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Is the local equilibrium function. 
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aw if  8,7,6,5a  

B. Extended Lattice boltzmann  

In general, turbulence is composed of large-scale flows 

and small-scale fluctuations the energy cascade of large scales 

flows towards small-scale fluctuations; here the turbulence 

theory is applied to calculate the turbulent viscosity of all 

scales of the vortex movement since the anisotropic scales and 

the swirl viscosity model are introduced at LBE. The large 

scales are simulated exactly by the distribution functions f and 

the equilibrium distribution functions eqf , this resolved scale 

flux determines the local effective relaxation time to calculate 

the unresolved scales of the turbulent motion, hence the 

relaxation time tau (total) is computed locally for each cell in 

the simulation domain for each time step (ts), across sub-mesh 
scales. 

Discrete LBM equation becomes [2]: 
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1
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tot

f x e t t t f x t f f    
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       (1.5) 

0tot t    (1.6) 

tot need to be determined describing the dynamics of 

turbulent fluctuations, following the relationship between the 
relaxation time and the viscosity of the flow, the total 
relaxation time is expressed by: 
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The eddy viscosity is governed by the model of Smagorinsky: 

 
2

t SC S    (1.7) 

As 
SC  is the Smagorinsky constant,  is the filter size and  

 is the magnitude of the strain rate tensor. 

 

2 ij ijS S S (1.8) 

 can be evaluated with resolved-scale non equilibrium 

momentum tensor: 
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Where 
   1 eq

ij i je e f f   


   then the eddy 

viscosity is expressed as: 
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Where: 
ij ijQ   , consequently, the total relaxation time  

 can be solved by: 
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III. SIMULATION OF FLOW AROUND SQUARE CYLINDER 

The code of simulation is LB2D [4], developed by FIU 

(Florida International University). This code has been used to 

simulate Poiseuille’s flow and large eddy simulation. 

A. Poiseuille’s flow: 

The lattice used for this simulation is 100x24, 

x in x outu u  <0,1lu/ts. 

       The instabilities in the flow can be triggered at a low 

Reynolds number (Re) in the presence of a square stop 

obstacle of 12 lu positioned at the position (18lu, 12 lu). As 

Re increases from the slip flow the separation appears with 

vortex formation behind the obstacle. These vortices lengthen 

with decreasing number of Reynolds. Non-linear terms are 
currently in action. 

Figure (3.a) 
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Figure (3.b) 

 

 

Figure 4 

 

This figure shows the numerical profile of the speed in a 
section compared to the analytical profile. There is a total 

agreement between the numerical and analytical results. 

 

Figure (5.a) and (5.b) 
 

 

 

 

 

 

Figure 5 shows for laminar Reynolds flows the 

records of speeds 
xu and yu as a function of time are 

practically a straight line. 

B. Simulation of turbulent flow: 

After integrating the model of Smagorinsky we obtain 

these results, streamlines are obtained with tecplot:  
 

 
 

 

 

 

 

 

 

 

 

 

Figure (6.a) 

 
 

 

 

 

 

 

 

 

 

 

 

Figure (6.b) 

 

 

 

 

 

 

 

 

Figure (6.c) 
 

 

 

 

 

 

 

 
 

 

Figure (6.d) 
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        On the Figure (6.a) The Lattice used is 200x200. Initial 

velocity 0.01x inu   , 0,6  , The simulation performed 

using LBM assumes the periodic bounce-back  boundary 

conditions on the walls of the flow line, and the total number 

of iterations is 10000. The visualization of the density, 

vorticity and velocity shows the formation of two vortices 
symmetrical to the axis of flow. 

        On the figure (6.b), by taking 0.02x inu   , we can see 

the appearance of the first asymmetric vortices of turbulence, 

with appearance of small vortices on the lateral surfaces of the 

cylinder with square section. 

       On the figure (6.c) we observe Detachment of vortices at 

Re = 1236 Scheme 200x200. 

       On the figure (6.d), we notice a strong detachment of the 

vortices to a very large number of Reynolds. 

IV. CONCLUDING REMARKS 

In this work, the linearized Boltzmann lattice equation is 

solved numerically. For the implementation of the 

Boltzmann lattice method, we opted for the simulation of 
the Poiseuille’s flow to compare with the analytical 

solution. The solutions obtained show a very good 
agreement with the analytical results. 

On the other hand, the flow around an obstacle is 

considered. We have determined the critical Reynolds 
numbers for which there is appearance of Von Karman 

vortices or appearance of dynamic instabilities 
corresponding to an asymmetry of these vortices. 

To conclude this work, both the theoretical and the practical 

aspects of the Boltzmann lattice method have been studied. 

It has been shown that this method can be used to simulate 
delicate problems. 
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