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Abstract 

In the present study, the effects of flight-Mach number, flight altitude, fuel types, and intake air 

temperature on thrust specific fuel consumption, thrust, intake air mass flow rate, thermal and 

propulsive efficiecies, as well as the exergetic efficiency and the exergy destruction rate in F135 

PW100 engine are investigated. Based on the results obtained in the first phase, to model the 

thermodynamic performance of the aforementioned engine cycle, Flight-Mach number and flight 

altitude are considered to be 2.5 and 30,000 m, respectively; due to the operational advantage of 

supersonic flying at high altitude flight conditions, and the higher thrust of hydrogen fuel. 

Accordingly, in the second phase, taking into account the mentioned flight conditions, an 

intelligent model has been obtained to predict output parameters (i.e., thrust, thrust specific fuel 

consumption, and overall exergetic efficiency) using the deep learning method. In the attained 

deep neural model, the pressure ratio of the high-pressure turbine, fan pressure ratio, turbine inlet 

temperature, intake air temperature, and bypass ratio are considered input parameters. The 

provided datasets are randomly divided into two sets: the first one contains 6079 samples for model 

training and the second set contains 1520 samples for testing. In particular, the Adam optimization 

algorithm, the cost function of the mean square error, and the active function of rectified linear 

unit are used to train the network. The results show that the error percentage of the deep neural 

model is equal to 5.02%, 1.43%, and 2.92% to predict thrust, thrust specific fuel consumption, and 

overall exergetic efficiency, respectively, which indicates the success of the attained model in 

estimating the output parameters of the present problem. 
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Nomenclature 

𝐶𝑝 Specific heat capacity (J/kgK) 𝑉0 Flight speed (m/s) 

Ex 
Specific chemical Exergy of 

the fuel flow (kW) 
W Power output (kW) 

𝑒𝑥 
Airflow physical exergy 

(kJ/kg) 
𝑦𝑖 Actual output 

𝐸𝐷 Exergy destruction rate (kW)  �̂�𝑖 Predicted output 

𝑓(𝑥) Activation function  Greek letters 

𝐹 Thrust force (kN) ΔT Different Temperature (K) 

LHV Lower heating value (MJ/kg) 𝛼 Bypass ratio 

G 
Gradient on the current mini-

batch 
𝜂 Efficiency 

�̅� Specific enthalpy (kJ/kg) 𝜌 Flight air density (kg/m3) 

𝐻 Flight altitude (m) 𝜋 Pressure ratio 

𝐾 Specific heat ratio Subscripts 

𝐿(𝑤) Loss function 0 Ambient 

mt First moment 𝑎𝑐 Cold stream 

𝑚 Mass flow rate (kg/s) 𝑎ℎ Hot stream 

𝑀𝑤 Mass weight (g/mol) 𝑎𝑣 Average 

𝑀𝑎 Flight-Mach number 𝑎 Airflow 

MAE Mean absolute error 𝐶𝐶 Combustion chamber 

MAPE Mean absolute percentage error 𝑐 Compressor 

MSE Mean Squared Error 𝑑 Diffuser 

𝑁 Number of the samples 𝑓𝑎𝑛 Fan 

𝑃 Pressure (kPa) 𝑓 Fuel 

𝑅 Correlation factor 𝑒𝑥 Exergy 

𝑅2 Determination factor HPT High-pressure turbine 

RMSE Root mean square error LPT Low-pressure turbine 

𝑅𝑢 Global constant gas (J/kgK) 𝑚𝑖𝑥𝑒𝑟 Mixer 

𝑆̅ Specific entropy (kJ/kgK) 𝑛 Nozzle 

TSF Specific thrust (Ns/kg) 𝑁𝑂𝑥 Nitrogen oxides 

TSFC 
Thrust-specific fuel 

consumption (g/KNs) 
𝑃 Propulsive 

𝑇 Temperature (K) 𝑡ℎ Thermal 

𝑣𝑡 Second moment 𝑡𝑜𝑡𝑎𝑙 Total 

𝑉 Velocity (m/s) 𝑇 Turbine 

 

 

https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
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1. Introduction 

Gas turbines (GT) are one of the power generation cycle types that is an internal combustion engine 

(ICE) of a rotary machine. These engines operate on the Brayton cycle (BC). Classically, the GTs 

have extensive applications in various industries ranging from oil, gas, and petrochemicals to 

power generation plants and various propulsion systems like airplane propulsion structures. The 

simplest aero-GT engine configuration is Turbojet. The power turbine supplies the mechanical 

power required by the compressor. The emission gases generated from the fuel combustion and 

air after exiting the turbine are reflected in the nozzle. Accordingly, the flow velocity increases, 

then it depletes to the ambient. One of the most essential aero gas turbine engine types is the 

turbofan engine. The internal flow is separated into two fragments: the hot flow and the bypass 

flow in the turbofan engines. Turbofan engines are divided into two types: twin-spool, and three-

spool. Correspondingly, turbofan engines syndicate bypass flow as cold flow, and turbojet as the 

hot core [1, 2]. Another division of turbofan engines includes two types: the mixed-flow turbofan 

engine and unmixed-flow turbofan jet engine. In mixed turbofan, the fuel combustion products go 

into a high-pressure turbine (HPT) and then push through the low-pressure turbine (LPT) after 

crossing HPT. So, the output flow enters from the low-pressure turbine to the mixer, and it 

combines with the bypass flow or fan output flow. Subsequently, the mixer output flow arrives at 

the nozzle. Finally, it exhausts in the ambient. 

Recently, many studies have been done to improve turbofan engine performance. For example, 

Balli et al. [3] examined performance parameters, environmental sensitivity, and sustainability of 

the TF33 turbofan engine exploited widely in military aviation. In their investigation, valuation 

parameters including energy efficiency, exergy destruction ratio, fuel heating value ratio (FHVR), 

specific fuel consumption (SFC), and thrust were considered. Chen et al. [4] numerically 

investigated a turbofan with an inlet ejector nozzle fortified with a supplementary inlet door. This 

supplement has been used in the inlet bypass flow to ejector the nozzle. It increased the engine 

installed thrust. Also, the ejector nozzle model is applied to analyze the performance of its effect 

on the engine. Moreover, a prediction method has been proposed for the exhaust system 

of backward infrared radiation intensity prediction. The results indicated that the turbofan engine 

with an inlet ejector not only decreases the infrared radiation and specific fuel consumption 

compared to the conventional turbofan engine but also improved significantly the engine installed 

https://www.sciencedirect.com/topics/engineering/bypass-flow
https://www.sciencedirect.com/topics/engineering/specific-fuel-consumption
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thrust. Xu et al. [5] evaluated a new mixed-flow turbofan and called a novel re-cooled mixed-flow 

turbofan cycle (RMTC). It has been used for military aero-engine with a high thrust-weight ratio. 

Their investigation indicated that the specific thrust has been improved by increasing the outer fan 

flow temperature. Similarly, the turbine cooling air consumption can be concentrated by reducing 

the inner fan flow temperature during the compression process by adding a re-cooler. Also, they 

investigated the effects of bypass ratio on the specific thrust, fuel consumption rate, and re-cooler 

location on the RMTC performances in the applicable fight conditions. The parametric studies 

approved that the specific thrust enhancement of RMTC is more substantial at high flight-Mach 

number. Finally, the calculation results confirmed that the considered RMTC system proves 

potential application for high-speed military aircraft. Rao et al. [6] studied to improve the 

propulsive efficiency of a civil aero-engine design aimed at lowering specific thrust and idle 

descent conditions by swelling the bypass ratio. Also, the bypass ratio of discharge and core 

nozzles of a high-bypass ratio aero-engine have been studied in isolation and installed on an 

airframe. The results were showed that the supreme alteration in the bypass nozzle discharge 

coefficient between the installed and isolated aero-engine across the descent phase is ≃1.6%. Bali 

and Caliskan [7] examined the JT15D turbofan engine and its components based on the energy, 

exergy, environmental, aviation, and sustainability analysis. They calculated the specific fuel 

consumption, the energetic efficiency, and the exergetic efficiency with amounts of 15.8 g/kN.s, 

21.15%, 19.919%, respectively. Balli et al. [8] thermodynamically analyzed the TF33 turbofan 

engine with hydrogen fuel with conflicting kerosene fuel. The results showed that the fuel mass 

flow rate, the specific fuel consumption, energy efficiency, and thermal limit ratio were decreased 

by 63.83%, 60.61%, 0.757%, and 1.55%, respectively. In another study, Akdeniz and Balli [9] 

analyzed energy, exergy, and sustainability analysis for the PW4056 turbofan engine and its main 

components to detect the different fuel impacts at the same dead state conditions. They understood 

that the amount of fuel mass flow and the exhaust gases mass flow of the hydrogen fuel is lower 

than the kerosene fuel with the value of 1.03 kg/s, and 2.85 kg/s for the hydrogen fuel and 117.14 

kg/s, and 118.96 kg/s for the kerosene fuel, respectively. In both cases, the minimum exergy 

efficient component was calculated at 64.24 % in the combustion chamber for the kerosene case 

and 58.20 % for the hydrogen case. The lowest relative exergy loss ratio was determined to be 

28.28 % for fan outlet loss for hydrogen case, even though the maximum relative exergy 

https://www.sciencedirect.com/topics/engineering/propulsive-efficiency
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consumption ratio was determined to be 51.93 % for the combustion chamber in the case of 

hydrogen as fuel.  

Thermodynamic analysis of gas turbines is done to evaluate the performance of engines by design 

variables. In this regard, Ibrahim et al. [10] proposed energetic and exergetic analysis of a gas 

turbine plant cycle. They evaluated the effect of exergy flow, inlet flow, and outlet flow of 

compressor, turbine, and combustion chamber in terms of physical exergy and chemical exergy. 

Their results showed that the highest exergy destruction rate was associated with the combustion 

chamber. In another investigation, Zhao et al. [11] analyzed the first and second laws of 

thermodynamics analysis for intercooled turbofan engines (ITE) under different working 

conditions. Their results showed that the highest exergy destruction between engine components 

is in the combustion chamber. Also, the intercooler method is a cause of exergy destruction 

decreasing in the combustion chamber. Aygun and Turan [12] studied the exergy performance of 

the gas turbine variable cycles for the next-generation combat aircraft. Also, considering the 

bypass ratio and the input temperature of the turbine as design variables, optimization performed 

using a genetic algorithm to maximize fuel consumption. They calculated the lowest possible 

amount of fuel consumption as 17.41 grams per second. 

Najjar and Balawneh [13] thermodynamically analyzed and optimized turbojet propulsion as one 

of the GT types. In their study, the special thrust is strongly dependent on turbine inlet temperature 

(TIT). So, a 10 percent reduction in TIT leads to a 6.7% reduction of the specific thrust and a 6.8% 

reduction in specific fuel consumption. It is also the optimal value for the turbojet parameters in 

the flight altitude condition of 13,000 meters and the Mach number of 0.8 with the compression 

ratio of 14 and TIT of 1700 K. Also, Hendricks and Gray [14] produced a new tool for analyzing 

and optimizing the thermodynamics performance of GT-cycles. They called the device as pyCycle. 

The code can compute the data of thermodynamic cycles at a rate of 0.03 % compared to the results 

obtained by the NPSS program. In another study, Xue et al. [15] studied the effects of bypass ratio 

in the optimal compression ratio of fan in the Trent-XBW engine series. It showed that the bypass 

factor is a cause of more effective in reducing fuel consumption and increasing the thrust force.  

Previous studies show that the heat value of fuel affects the performance of gas turbine engines. 

Also, the specific chemical exergy and the heat value of the fuel are effective in the exergetic 

operation of gas turbine engines. In recent studies, the effect of the use of Hydrogen fuel compared 
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to hydrocarbon fuels on the performance of gas turbine engines has been investigated. Balli et al. 

[16] investigated the effect of using hydrogen fuel on the exergetic performance of a turbojet 

engine. Their results showed that with hydrogen fuel compared to hydrocarbon fuels, the exergy 

efficiency was reduced from 15.40% to 14.33 %. In another study, Gaspar and Souca [17] 

considered the effects of different fuels on the functional performance and environmental 

performance of a small turbofan engine. Also, the performance and intensity of ecological 

performance were investigated in the different working conditions. Verstraete [18] compared the 

action of the fueled hydrocarbon and fueled kerosene of long-range aircraft. Using hydrogen as 

fuel compared to the utilization of kerosene fuel, the direct operating cost and energy consumption 

have decreased by 3 and 11 %, respectively. Derakhshandeh et al. [19] simulated and optimized 

the environmental analysis and economic analysis of the GE90 turbofan engine. In their study, a 

comparison between hydrocarbon fuels and hydrogen fuels was performed on design conditions. 

In Hydrogen fuel, the GE90 turbofan engine economically and environmentally has been 

optimized. Their results showed that the optimized cycle increased the thrust force and thermal 

efficiency by 16.27% and 2.65 %, respectively by using Hydrogen fuel. Also, propulsive efficiency 

and overall efficiency decreased by 2% and 2.5%, respectively. 

Recent studies indicate that the variation of the input temperature affects on performance of gas 

turbine engines. The variation of air temperature changes causes the variation of the incoming air 

density and changes in the inlet airflow to the engine. Changes in the inlet air temperature on the 

engine cause the switching performance parameters and exergy efficiency of gas turbine engines. 

Also, Caposciutti et al. [20] studied the effect of ambient temperature variations on the 

performance of a gas turbine plant with biogas fuel. In their study, by reducing the input 

temperature, the power plant increased 4.5%. In addition, due to the operational advantages of 

flying at high altitudes, it is crucial to assess the challenges of the gas turbine engine cycle in high 

altitude flight conditions. In the study of Treuren and McClain [21], the values found in the fan 

pressure ratio and the bypass ratio for a turbofan engine are engines designed to fly at 65,000 feet 

above sea level. The fan pressure, compressor pressure, and bypass ratio have been calculated at 

1.57, 16.7, and 5.45, respectively. 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S019689042030412X?via%3Dihub#!
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2. Literature Review 

The importance of reviewing gas turbine engines studies by using different Machine learning (ML) 

methods [22] specially supervised learning approach [23] can be shown in the literature. In this 

regard, many studies are worked on the aero-system based on intelligent systems. For example, 

Park et al. [24] using an artificial neural network (ANN) predicted the operating features of a gas 

turbine combustor. They utilized real-time data from industrial gas turbines with design parameters 

including the turbine exhaust temperature, fuel mass flow, turbine inlet temperature, fuel 

distribution of each nozzle, NOx, operating pressure of combustor, and inlet air temperature of the 

combustor. The root mean square error did not show a stable trend, which indicates the need for a 

failure sensor to adjust the sensitivity analysis. Also, they state that when there was a sudden 

change in operation in a short time, the prediction error highly increased. 

Kaba et al. [25] intensely enhanced performance of civil and military aircraft engines using an 

improved least-squares estimation-based genetic algorithm (LSEGA) in fight phases. The thrust, 

SFC, and overall and exergy efficiencies are considered as parametric studies. They observed that 

the obtained model is successful in predicting all the considered thermodynamic parameters, so 

that the root mean square error for overall efficiency, exergy efficiency, SFC and thrust is 

0.000311, 0.000162, 0.0763, and 1.007, respectively. Eventually, they observed that the LSEGA 

algorithm has effectively converged into optimal solutions for all indexes, and flight conditions 

with high accuracy. Orozco et al. [26] using artificial neural networks, proposed a diagnostic 

system for externally fired gas turbines to detect inherent defects and the impact of the fuel. They 

showed whether a heating system operates at its optimum level or requires an optimization 

process. Giorgi and Quarta [27] used different machine learning techniques to estimate behavior 

of turbojet engine based on the Viper 632-43 engine regarding the exhaust gas temperature (EGT) 

as the key parameter. The EGT estimated by A multigene genetic programming (MGGP) 

technique, which was added to the one-step-ahead EGT prediction data set. This structure was able 

to predict the output in the next time step as a real-time series. 

Wang et al. [28] used semi-supervised deep learning method to estimate the remaining useful life 

(RUL) for reduce maintenance costs and develop maintenance strategies. They proposed a novel 

concurrent semi-supervised model (NCSS) to estimate the RUL of the aero-engine. The NCSS 

could be provided satisfying prediction results with only a small amount of labeled data. The 

experimental fallouts indicated that the considered method was operative in the commission of 
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RUL. Zhou et al. [29] utilized convolution neural networks (CNN) and recurrent neural networks 

(RNN) to fault diagnosis of gas turbine. They stated that the accuracy of CNN is better than RNN, 

in which the original CNN accuracy was 91.10%.  Talaat et al. [30] using artificial neural network, 

proposed an intelligent model to predict the deterioration of a power plant gas turbine for main 

engine components such as compressor, combustion chamber, and turbine. The neural network 

model is trained using the deterioration data obtained from the thermodynamic model. The optimal 

structure including the number of hidden layers, the number of neurons in these layers and the 

transfer function is attained with the aim of minimizing the mean square error. Also, the dissimilar 

deterioration data as testing data was produced in thermodynamic analysis to test the efficacy of 

the neural network. 

Zhou et al. [31] used Hopfield neural network based generalized predictive control strategy to 

optimize the performance of the turbofan engine. Using self-adaptive and identification modules, 

they designed an optimal controller. The results authorized the satisfactory performance of the 

proposed approach at the designated points and conditions rather than old-style algorithms. Also, 

the computer calculation time is significantly reduced. Tian et al. [32] proposed a maximum 

entropy reinforcement learning framework and the constrained Lyapunov-based actor-critic 

algorithm for an instantaneous model calibration. They suggested a novel framework for the 

inference of model parameters based on reinforcement deep learning to evaluate two dissimilar 

turbofan engines. Their experimental results demonstrated that the projected methodology 

outperformed all other verified methods in terms of speed and robustness, with high inference 

accuracy. 

The above literature review shows that, while there exists a large body of literature studying the 

thermodynamic analysis of gas turbine engines, it appears that a comprehensive investigation has 

not been considered on the F135 PW100 engine. Accordingly, in the present study, for the first 

time, the effects of flight-Mach number, flight altitude, fuel types, and intake air temperature on 

thrust specific fuel consumption, thrust, intake air mass flow rate, thermal and propulsive 

efficiencies, the exergetic efficiency, and the exergy destruction rate in F135 PW100 engine are 

investigated. Moreover, based on the results obtained in the first part, a deep neural model for 

predicting the thrust, thrust specific fuel consumption (TSFC), and overall exergetic efficiency is 

attained based on the deep learning approach. 

 

https://www.sciencedirect.com/topics/engineering/maximum-entropy
https://www.sciencedirect.com/topics/engineering/maximum-entropy
https://www.sciencedirect.com/topics/engineering/turbofan-engines
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3. Problem description and modeling 

 3.1. Energy and exergy modeling 

A schematic of the dual spools mixed-flow turbofan engine configuration with an inlet air cooling 

system illustrates in Fig. 1. In this system, the input airflow is driven into the fan from the inlet air 

cooling system. A portion of the fan output flow enters the bypass channel and enters the mixer. 

The other part of the fan output flow enters into a high-pressure compressor (HPC). The HPC 

output flow enters the combustion chamber (CC), and the air reacts with fuel in the CC. 

Subsequently, the flow of air combustion products with fuel enters a high-pressure turbine and 

drives it. The output flow of the high-pressure turbine enters the lower pressure turbine and then 

enters the mixer. Subsequently, the bypass channel output flow and the output flow of the LPT are 

combined in the mixer. Then the mixer output flow is produced by the nozzle; finally, it exhausts 

to the ambient. 

 

Fig. 1. Schematic of the dual spools mixed-flow turbofan engine configuration with inlet air cooling system. 
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The Governing energy analysis of this study is presented as follows. The changes in airflow 

pressure at the intake and cooling system are negligible, so the diffuser inlet pressure equals 

ambient air pressure (𝑃0 = 𝑃1). Also, the inlet temperature can be calculated as; 

𝑇1 = 𝑇0 + 𝛥𝑇 (1) 

where 𝑇0 and 𝛥𝑇 are ambient air temperature, and difference inlet temperature, respectively. 

Assuming the diffuser is isentropic, the diffuser exit air temperature is calculated as follows; 

𝑇2 = 𝑇1 (1 +
𝑘𝑑 − 1

2
𝑀𝑎

2) (2) 

where 𝑇1 and 𝑇2 are respectively inlet and exit air temperature to the diffuser, 𝑀𝑎 is the flight Mach 

number, and 𝑘𝑑 is the diffuser specific heat ratio defined as specific heat at constant pressure to 

specific heat in constant volume for air passing through the diffuser. 

The output air pressure of the diffuser is calculated as follows; 

(3) 𝑃2 = 𝑃1 (
𝑇2

𝑇1
)

𝑘𝑑
𝑘𝑑−1

 

where 𝑃1 and 𝑃2 are air pressure at the inlet and exit of the diffuser, respectively, and  𝑇1 and 𝑇2 

are inlet and exit air temperature to the diffuser. Assuming air and fuel combustion products with 

air are ideal gas, the fan output pressure is obtained from the following equation. 

𝑃3 = 𝜋𝑓𝑎𝑛𝑃2 (4) 

where 𝜋𝑓𝑎𝑛 is the fan pressure ratio, 𝑃3 is the fan exit air pressure, and 𝑃2 is the fan inlet air 

pressure. Also, fan output air temperature is calculated as follows; 

𝑇3 =
𝑇2

𝜂𝑓𝑎𝑛
[(

𝑃3

𝑃2
)

𝑘𝑓𝑎𝑛−1

𝑘𝑓𝑎𝑛
− 1] + 𝑇2 (5) 

where 𝜂𝑓𝑎𝑛 is the fan isentropic efficiency, 𝑇2 is the fan inlet air temperature, and 𝐾𝑓𝑎𝑛 is the 

specific heat at constant pressure to specific heat in constant volume for the passing air, which is 

calculated as a function of the average temperature of the passing air. Output air pressure of HPC 

is obtained as follows; 
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𝑃4 = 𝜋𝑐𝑃3 (6) 

where 𝜋𝑐 is the compressor pressure ratio of HPC, 𝑃4 is HPC output pressure, and 𝑃3 is the fan exit 

air pressure. the exit temperature of the compressor is obtained as follows; 

𝑇4 =
𝑇3

𝜂𝐶
[(

𝑃4

𝑃3
)

𝑘𝑐−1
𝑘𝑐

 − 1] + 𝑇3 (7) 

where 𝜂𝑐 is the HPC isentropic efficiency, 𝑇4 is HPC output air temperature, 𝑇3is the fan output 

air temperature, and 𝐾𝑐 is the specific heat at constant pressure to specific heat in constant volume 

for passing air of HPC is calculated as a function of the average air passing temperature of the 

HPC. Engine intake air real mass flow rate is calculated as follows; 

(8) 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑉0𝐴 

where A is a cross-section of an air inlet flow, 𝜌 is the density of inlet airflow, and 𝑉0 is flight 

velocity. The hot stream real air mass flow rate is obtained as follows; 

𝑚𝑎ℎ =
𝑚𝑡𝑜𝑡𝑎𝑙

𝛼 + 1
 (9) 

where 𝑚𝑡𝑜𝑡𝑎𝑙 is engine intake air real mass flow rate, and 𝑚𝑎ℎ is hot stream real air mass flow rate 

of engine core. Compressor power is obtained as follows; 

𝑊𝑐 = 𝑚𝑎ℎ𝐶𝑝3  
𝑇3

𝜂𝑐
[(

𝑃4

𝑃3
)

𝑘𝑐−1
𝑘𝑐

− 1] (10) 

where 𝑊𝐶, 𝑚𝑎ℎ, 𝜂𝑐, and 𝐶𝑝3 are HPC power consumption, hot-stream air mass flow rate, HPC 

isentropic efficiency, and the specific heat at a constant pressure of the HPC, respectively. Also, 

𝐾𝑐 is the ratio of specific heat in constant pressure to specific heat at constant volume in the HPC. 

Notably, both 𝐶𝑝3 and 𝐾𝑐 are calculated as a function of the average air passing temperature of the 

HPC. fan power consumption is obtained as follows; 

(11) 𝑊𝑓𝑎𝑛 = 𝑚𝑡𝑜𝑡𝑎𝑙𝐶𝑝2

𝑇2

𝜂𝑓𝑎𝑛
[(

𝑃3

𝑃2
)

𝑘𝑓𝑎𝑛−1

𝑘𝑓𝑎𝑛
− 1] 
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where 𝑊𝑓𝑎𝑛, 𝜂𝑓𝑎𝑛, and 𝐶𝑝2 are fan power consumption, fan isentropic efficiency, and the specific 

heat at a constant pressure of fan, respectively. Also, 𝑚𝑎𝑐 is bypass air mass flow rate, and 𝐾𝑓𝑎𝑛 

is the ratio of specific heat at constant pressure to specific heat to constant volume and specific 

heat at constant pressure, which is calculated as a function of the average fan air temperature.  

𝑚𝑎𝑐 = 𝑚𝑡𝑜𝑡𝑎𝑙 − 𝑚𝑎ℎ (12) 

where 𝑚𝑎𝑐 is bypass real mass flow rate and 𝑚𝑎ℎ is hot stream real air mass flow rate of engine 

core.  

Combustion chamber output pressure is obtained as follows; 

(13) 𝑃5 = 𝑃4 − ∆𝑃𝐶𝐶 

where 𝑃5 is the CC output pressure, and 𝑃4 is the compressor inlet pressure. Also, Δ𝑃𝐶𝐶 is a pressure 

drop in the combustion chamber, which is evaluated as a percentage of the air exit pressure of the 

compressor. The heat transfer rate is calculated as follows; 

𝑄ℎ = 𝑚𝑎ℎ𝐶𝑎𝑣,𝑐𝑐(𝑇5 − 𝑇4) (14) 

where 𝑄ℎ is heat rate, and 𝐶𝑎𝑣,𝑐𝑐 is the specific heat at constant pressure which is calculated as a 

function of average flow temperature in the combustion chamber. Also 𝑇4 is the inlet air 

temperature of combustion chamber, and 𝑇5 is the high-pressure turbine input air temperature. 

Accordingly, the fuel mass flow rate is calculated as follows; 

𝑚𝑓 =
𝑄ℎ

𝐿𝐻𝑉𝑓𝜂𝐶𝐶
 (15) 

where 𝐿𝐻𝑉𝑓 is the fuel's low heat value per kilograms, 𝜂𝐶𝐶  is combustion efficiency at the 

combustion chamber, 𝑚𝑓 is fuel consumption, and 𝑄ℎ is heat rate. Turbine intake mass flow rate 

is calculated as follows; 

𝑚𝑇 = 𝑚𝑎ℎ + 𝑚𝑓 (16) 

where 𝑚𝑓 is fuel consumption rate, and 𝑚𝑎ℎ is hot stream real air mass flow rate. 

HPT power is calculated as follows;  
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(17) 𝑊𝐻𝑃𝑇 = 𝑚𝑇𝐶𝑃𝑎𝑣,𝐻𝑃𝑇(𝑇5 − 𝑇6) 

where 𝑚𝑇 is HPT inlet mass flow rate, and 𝐶𝑃𝑎𝑣,𝐻𝑃𝑇 is the specific heat at constant pressure which 

is obtained as a function of the average temperature in the high-pressure turbine. low-pressure 

turbine power is calculated as follows;  

(18) 𝑊𝐿𝑃𝑇 = 𝑚𝑇𝐶𝑃𝑎𝑣,𝐿𝑃𝑇(𝑇6 − 𝑇7) 

where 𝑚𝑇 is turbine inlet mass flow rate, and 𝐶𝑃𝑎𝑣,𝐿𝑃𝑇 is the specific heat at constant pressure 

which is obtained as a function of the average temperature in the low-pressure turbine. Assuming 

that mechanical power losses in the spools are negligible, the high-pressure turbine power is equal 

to the high-pressure compressor power according to the energy conservation law; 

(19) 𝑚𝑇 . 𝐶𝑃𝑎𝑣,𝐻𝑃𝑇 . (𝑇5 − 𝑇6) = 𝑚𝑎ℎ𝐶𝑝3  
𝑇3

𝜂𝐶
[(

𝑃4

𝑃3
)

𝑘𝑐−1
𝑘𝑐

− 1] 

where 𝑇6 is the HPT exit temperature, 𝑇5 is the HPT inlet temperature, 𝑚𝑇 is the HPT mass flow 

rate, 𝜂𝑐 is the HPC isentropic efficiency.By obtaining the HPT output temperature of the equation 

(19), the turbine exit pressure is calculated as follows; 

(20) 𝑃6 = 𝑃5 [1 −
1

𝜂𝐻𝑃𝑇
(1 −

𝑇6

𝑇5
)]

𝑘𝐻𝑃𝑇
𝑘𝐻𝑃𝑇−1

 

where 𝑇6 is the output temperature of the high-pressure turbine, 𝑇5 is the inlet temperature of the 

HPT, 𝑃6 is the HPT output pressure, and 𝑃5  is the HPT inlet pressure. 𝑘𝐻𝑃𝑇 is the ratio of specific 

heat at constant pressure to specific heat at constant volume, which is a function of the average 

temperature during the high-pressure turbine, and 𝜂𝐿𝑃𝑇 is the LPT isentropic efficiency .Assuming 

that mechanical power losses in the spools are negligible, according to the energy conservation 

law, low-pressure turbine power is equal to Fan power.  

(21) 𝑚𝑇 . 𝐶𝑃𝑎𝑣,𝑇 . (𝑇6 − 𝑇7) = 𝑚𝑎𝑐𝐶𝑝2

𝑇2

𝜂𝑓𝑎𝑛
[(

𝑃3

𝑃2
)

𝑘𝑓𝑎𝑛−1

𝑘𝑓𝑎𝑛
− 1] 

where 𝑇7 is the LPT exit temperature, 𝑇6 is the LPT inlet temperature, 𝑚𝑇 is the LPT mass flow 

rate, 𝜂𝑓𝑎𝑛 is the fan isentropic efficiency. 
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The low-pressure turbine exit pressure is calculated as follows; 

(22) 𝑃7 = 𝑃6 [1 −
1

𝜂𝐿𝑃𝑇 
(1 −

𝑇7

𝑇6
)]

𝑘𝐿𝑃𝑇
𝑘𝐿𝑃𝑇−1

 

where 𝑇7 is the output temperature of the low-pressure turbine, 𝑇6 is the inlet temperature of the 

low-pressure turbine, and 𝑃7 and 𝑃6, respectively, are the LPT output pressure and LPT inlet 

pressure. 𝑘𝐿𝑃𝑇 is the ratio of specific heat at constant pressure to specific heat at constant volume, 

which is a function of the average temperature during the low-pressure turbine, and 𝜂𝐿𝑃𝑇 is the 

LPT isentropic efficiency. 

Regardless of the temperature and pressure changes in the bypass duct, the flow temperature at the 

mixer output is calculated in such a way; 

(23) 𝑇8 =
𝑇7𝐶𝑃7𝑚𝑎ℎ + (𝑚𝑎𝑐𝐶𝑃3𝑇3)

𝐶𝑃7
 

where 𝐶𝑃3 and 𝐶𝑃7, respectively, are a specific heat at constant pressure  at fan and LPT output, 

which is calculated as a function of the flow temperature. Moreover, 𝐶𝑃8 is the specific heat at 

constant pressure at  nozzle input,  𝐾𝑛 is the ratio of specific heat capacity at constant pressure to 

specific heat capacity at constant volume, which is calculated as a function of the average flow 

temperature at the nozzle, 𝑇7 and 𝑇8, respectively, are the flow temperature at the LPT output and 

the mixer output, 𝑚𝑎𝑐 is the cold-stream real air mass flow rate, and 𝑚𝑎ℎ is the hot-stream real air 

mass flow rate. Assuming the ideal gas, the flow at the mixer outlet and the flow pressure at the 

mixer outlet (𝑃8) is calculated in such a way; 

(24) 𝑃8 =
1

𝑀𝑤
𝜌𝑅𝑢𝑇8 

where 𝑅𝑢 and 𝜌 are the gas global constant from the mass conservation law and airflow density, 

respectively. The output mixer mass flow rate (𝑚8) is the overall mass flow rates of air passing 

through the engine core, fuel flow rate, and cold stream air mass flow rate; 

(25) 𝑚8 = 𝑚𝑎ℎ + 𝑚𝑎𝑐 + 𝑚𝑓 
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where 𝑚𝑎𝑐, 𝑚𝑎ℎ, and 𝑚𝑓 are, respectively mass of air passing through the cold path, the air passing 

flow through the engine core, and the fuel mass flow rate. The nozzle output pressure is calculated 

in such a way; 

(26) 𝑃9 = 𝑃8 [1 −
1

𝜂𝑛
(1 − (

𝑇9

𝑇8
))]

𝐾𝑛
𝐾𝑛−1

 

𝑇9  and 𝑇8, respectively, are the exit temperature and inlet temperature of the nozzle, 𝜂𝑛 is the 

nozzle isentropic efficiency, 𝑃8  and 𝑃9, respectively, are the inlet pressure and exit pressure of the 

nozzle.The velocity of the flow at the nozzle output (𝑉9) is calculated in such a way; 

𝑉9 = (2𝜂𝑛

𝐾𝑛

𝐾𝑛 − 1

𝑅𝑢

𝑀𝑤
𝑇8 [1 − (

𝑃9

𝑃8
)

𝐾𝑛−1
𝐾𝑛

])

0.5

 (27) 

where 𝑅𝑢 and 𝑀𝑤 are the gas global constant and molecular weight of combustion products, 

respectively. The thrust force of the engine is calculated in such a way [33]; 

(28) 𝐹 = 𝑚8(𝑉9 − 𝑉0) + 𝐴9(𝑃9 − 𝑃0) 

where 𝑃0 and 𝑉0, respectively, are the ambient pressure and flight speed, 𝐴9 is the area of the 

nozzle output section, 𝐹 is the thrust force of the engine, and 𝑚8 is the mixer exit mass flow rate. 

The specific fuel consumption is equal to the ratio of fuel mass flow rate to thrust force [33]; 

(29) 𝑇𝑆𝐹𝐶 =
𝑚𝑓

𝐹
 

Thermal efficiency (Ƞ𝒕𝒉) is calculated in such a way; 

(30) Ƞ𝑡ℎ =
𝑚8(𝑉9

2 − 𝑉0
2)

2𝑚𝑓𝐿𝐻𝑉𝑓
 

where 𝑚8 is the mixer output mass flow rate. Propulsive efficiency (Ƞ𝑃) is calculated in such a 

way [33]; 

(31) Ƞ𝑃 =
𝑉0𝐹

𝑚8(𝑉9
2 − 𝑉0

2)
 



16 
 

Exergy (Ex) is known as entropy-free energy (maximum amount of work) in each system [34]. 

Two types of exergies are defined in the thermodynamic analysis of the power generation cycles: 

the physical exergy and the chemical exergy. The physical exergy demonstrated the maximum 

workability that can be extracted from fluid flow and the chemical exergy designates the maximum 

work that can be extracted from fuel flow. Physical exergy of all engine components is 

premeditated for both inlet or outlet of airflow as; 

(32) 𝑒 = (�̅� − 𝐻0
̅̅̅̅ ) − 𝑇0(𝑆̅ − 𝑆0̅) 

where �̅�, 𝐻0
̅̅̅̅ , 𝑆̅, 𝑆0̅, and 𝑇0 are respectively the specific entropy of the fluid flow, the specific 

entropy of the dead state, the specific enthalpy of the fluid flow, the specific enthalpy of the dead 

state, and the ambient air temperature. The exergy flow rate is equal to the generation of the air 

mass flow rate in the air-specific exhaust  as follows [34]; 

(33) Ex = 𝑚𝑎𝑒x 

where 𝑒𝑥 is the airflow physical exergy.  Fuel flow chemical exergy rate is calculated as follows 

[35]; 

(34) 𝐸𝑥𝑓 = 𝑚𝑓𝑒𝑥𝑓 

where 𝑚𝑓 and 𝑒𝑥𝑓 are respectively, the fuel mass flow rate consumed by the engine, and the 

specific chemical exergy of the fuel. Specific chemical exergy of the hydrocarbon fuels is intended 

as follows [35]; 

(35) 𝑒𝑥𝑓 = 𝐿𝐻𝑉𝑓(1.04224 + (0.011925
𝑎

𝑏
) − (

0.042

𝑎
)) 

where 𝐿𝐻𝑉𝑓, a, and b are respectively the lower heating value of fuel, the number of carbon atoms 

in each fuel molecule, and hydrogen atoms in each fuel molecule. The overall exergetic efficiency 

of the turbofan engine is equal to the flight velocity multiplied by Thrust force to input fuel flow 

chemical exergy rate as [35]; 

(36) 𝜂𝑒𝑥 =
𝐹𝑉𝑜

𝐸𝑥𝑓
 

The fan exergy efficiency is intended as follows [35]; 
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(37) 𝜂𝑒𝑥,𝑓𝑎𝑛 =
𝐸3 − 𝐸2

𝑊𝑓𝑎𝑛
 

where 𝑊𝑓𝑎𝑛 , 𝐸3, and 𝐸2 are respectively the fan mechanical power consumption, the output fan 

exergy rate, and the fan inlet exergy rate. The fan exergy destruction rate (𝐸𝐷,𝑓𝑎𝑛) is written as 

[35];  

(38) 𝐸𝐷,𝑓𝑎𝑛 = 𝑊𝑓𝑎𝑛 + 𝐸2 − 𝐸3 

Compressor exergetic efficiency is given as follows [35]; 

(39) 𝜂𝑒𝑥,𝑐 =
𝐸4 − 𝐸3

𝑊𝑐
 

where 𝐸4, 𝐸3, and 𝑊𝑐  are the compressor outlet flow exergy rate, the compressor inlet flow exergy 

rate, and the consumed mechanical power of the compressor, respectively. Correspondingly, the 

rate of exergy destruction in the compressor (𝐸𝐷,𝑐) is calculated as follows [35]; 

(40) 𝐸𝐷,𝑐 = 𝑊𝑐 + 𝐸3 − 𝐸4 

The high-pressure turbine exergy efficiency is calculated as [35]; 

(41) 𝜂𝑒𝑥,𝐻𝑃𝑇 =
𝑊𝐻𝑃𝑇

𝐸5 − 𝐸6
 

where 𝑊𝐻𝑃𝑇, 𝐸5, 𝜂𝑒𝑥,𝐻𝑃𝑇 and 𝐸6 are respectively the turbine power output, the turbine exergy 

efficiency, the turbine input flow exergy rate, and the high-pressure turbine outlet flow exergy rate. 

Correspondingly, the turbine exergy destruction rate ( 𝐸𝐷,𝐻𝑃𝑇) is written as follows [35]; 

(42) 𝐸𝐷,𝐻𝑃𝑇 = 𝐸5 − 𝐸6 − 𝑊𝐻𝑃𝑇 

Low-pressure turbine exergy efficiency is calculated as [35]; 

(43) 𝜂𝑒𝑥,𝐿𝑃𝑇 =
𝑊𝐿𝑃𝑇

𝐸6 − 𝐸7
 

where 𝑊𝐿𝑃𝑇, 𝐸6, 𝜂𝑒𝑥,𝐿𝑃𝑇 and 𝐸7 are respectively LPT power output, the LPT input flow exergy 

rate, the low-pressure turbine exergy efficiency,  and the low-pressure turbine outlet flow exergy 



18 
 

rate. Correspondingly, the low-pressure turbine exergy destruction rate ( 𝐸𝐷,𝐿𝑃𝑇) is premeditated 

as follows [35]; 

(44) 𝐸𝐷,𝐿𝑃𝑇 = 𝐸6 − 𝐸7 − 𝑊𝐿𝑃𝑇 

Also, The combustion chamber exergy efficiency is intended in this way [35]; 

(45) 𝜂𝑒𝑥,𝐶𝐶 =
𝐸5

𝐸4 − 𝐸𝑓
 

where 𝐸𝑓, 𝜂𝑒𝑥,𝐶𝐶, 𝐸4, and 𝐸5 are respectively the chemical fuel flow exergy rate, the combustor 

exergy efficiency, combustor input flow exergy rate, and output flow exergy rate. The exergy 

destruction rate is considered in the combustion chamber as (𝐸𝐷,𝐶𝐶) as follows [35]; 

(46) 𝐸𝐷,𝐶𝐶 = 𝐸4 − 𝐸5 + 𝐸𝑓 

Also, The mixer exergy efficiency is intended in this way [35]; 

(47) 𝜂𝑒𝑥,𝑚𝑖𝑥𝑒𝑟 =
𝐸8

𝐸3 + 𝐸7
 

where 𝐸7, 𝜂𝑒𝑥,𝑚𝑖𝑥𝑒𝑟, 𝐸3, and 𝐸8 are respectively the LPT output flow exergy rate, the mixer exergy 

efficiency, fan output flow exergy rate, and the mixer output flow exergy rate. The exergy 

destruction rate is considered in the mixer as (𝐸𝐷,𝑚𝑖𝑥𝑒𝑟) as follows [35]; 

(48) 𝐸𝐷,𝑚𝑖𝑥𝑒𝑟 = 𝐸7 + 𝐸3 − 𝐸8 

Also, The nozzle exergy efficiency is intended in this way [35]; 

(49) 𝜂𝑒𝑥,𝑛 =
𝐸9

𝐸8
 

where 𝐸8, 𝜂𝑒𝑥,𝑛, 𝐸9 are respectively the mixer output flow exergy rate, the nozzle exergy 

efficiency, nozzle output flow exergy rate. The exergy destruction rate is considered in the nozzle 

as (𝐸𝐷,𝑛) as follows [35]; 

(50) 𝐸𝐷,𝑛 = 𝐸8 − 𝐸9 
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3.2. Deep learning 

The artificial neural network is a significant part of machine learning techniques that can be found 

in a large set of data inspired by the performance of the brain, i.e., approves practical 

implementation and optimized application in many aspects such as manufacturing, computer 

vision, engineering, robotics, emotional intelligence, natural language processing, etc.  The ANN 

is mainly composed of three parts: the first part consists of an input layer; the middle section 

contains one layer or more multi-hidden layers, and the last part contains an output layer, which is 

shown in Fig. 2.  

 

Fig. 2. Schematic of the deep neural network. 

 

Deep learning is a kind of neural network that has several layers and significant neurons in the 

hidden and output parts. The present study has received the network, the data, and the parameters 

affecting the process, such as fan pressure ratio, HPC pressure ratio, variation of intake air 

temperature (IAT), TIT, and bypass ratio in the input layer and gives the results in the output layer 

after deciphering the hidden layers. 

As shown in Fig. 2, hidden layer and output layers are composed of artificial neurons that have 

several weight coefficients and activation functions. The input values of each neuron are collected 
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together after a weighting process, and then the output of the neuron is calculated by the activation 

function. Activation functions as an example can be selected from among the Tanh, sigmoid, and 

rectified linear unit (Relu), which Relu has attracted much attention and is defined as follows; 

(51) 𝑓(𝑥) = {
𝑥𝑖𝑓𝑥 > 0
0𝑖𝑓𝑥 ≤ 0

= max (𝑥, 0) 

In the learning procedure of artificial neural networks, there are two basic approaches include, 

supervised learning and unsupervised learning. The first one, labeled data will help to predict 

outcomes while another one does not. In this study, such as many applications, we used a 

supervised approach where the output is compared with the actual output. In particular, the weight 

of the neuron is calculated in such a way that the predicted output in return for a series of inputs 

can be as close as possible. It should be noted that quantification of network error for 

approximation of the results is done using the cost function or loss function, one of the most 

common loss functions is mean squared error which is defined as follows; 

(52) 𝐿(𝑦, �̂�) =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 

where 𝑁 is the number of samples, 𝑦𝑖 is the actual output, and �̂�𝑖 is the predicted output. The mean 

squared error function is often used for deep neural networks with the objective of approximation 

continuous values (regression problems). As mentioned, in the learning process, the weight 

calculation of each neuron is considered to minimize the loss function. First-order optimization 

algorithms based on the gradient descent method are among the most popular methods for 

calculating the neuron's weight. If 𝑤 is the weight vector of the network weights, the loss 

function 𝐿(𝑤) can be defined as; 

where 𝐿𝑖 is the loss function of i-sampled and N is the number of the samples. 

There are several optimization algorithms to minimize loss function, such as standard gradient 

descent, stochastic gradient descent (SGD), root mean square propagation (RMSProp), and 

adaptive moment optimization (ADAM), which the latter of them has received a lot of attention 

due to computational efficiency, simplification in implementation, short memory requirement, etc.  

Adam is considered as a combination of RMSProp and SGD methods with momentum because 

like RMSProp uses the square gradient to scale the learning rate and resembles the momentum 

(53) 𝐿(𝑤) =
1

𝑁
𝐿𝑖(𝑤) 
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benefits from the moving gradient mean. Adam calculates the momentum as the weighted average 

of the gradients as follows: 

(54) 𝑚𝑡
(𝑗)

= 𝛽1𝑚𝑡−1
(𝑗)

+ (1 − 𝛽1)𝑔𝑡
(𝑗)

 

(55) 𝑣𝑡
(𝑗)

= 𝛽2𝑣𝑡−1
(𝑗)

+ (1 − 𝛽2)(𝑔𝑡
(𝑗)

)2 

where 𝑚𝑡 is the first moment, 𝑣𝑡 is the second moment, g is the gradient on the current mini-batch, 

and also 𝛽1and 𝛽2 are exponential decay rates respectively considered as 0.9 and 0.999. Then, the 

first moment and the second moment are bias-corrected as: 

Also, the updating of the weights is carried out according to the equations (57) with alpha learning 

which is assumed to be equal to 0.001. 

Using momentum instead of gradients to update neuron weights helps ADAM accelerate to find 

local minima. 

 

3.3. Keras 

Keras is an application program interface designed not only for machines but also for humans. 

Keras is an open-source programming platform that builds simple and compatible APIs, reduces 

the number of user actions, and provides practical and clear error messages. Keras can run various 

machine learning libraries such as Theano (developed by the University of Montreal), CNTK 

(designed by Microsoft), and TensorFlow (acquired by Google). Keras, which provides fast and 

easy prototyping with features of modularity, scalability, and user-friendliness, has been ranked 

second after TensorFlow in 2018 in the power ranking, which emphasizes popularity, and interest. 

In the Keras platform, which is programmed in Python, neural networks with different structures 

can be created. Also, in Keras, all activation functions, loss functions, and even optimization 

algorithms such as Adam, RMSProp and SGD are applicable. As a result, due to its widespread 

use and unique benefits, Keras has also been used in the Python context in this study. 

 

(56) �̂�𝑡
(𝑗)

=
𝑚𝑡

(𝑗)

1 − 𝛽1
𝑡 , 𝑣𝑡

(𝑗)
=

𝑣𝑡
(𝑗)

1 − 𝛽2
𝑡  

(57) 
𝑤𝑡+1

(𝑗)
= 𝑤𝑡

(𝑗)
−

𝛼

√𝑣𝑡
(𝑗)

+ 𝜀

�̂�𝑡
(𝑗)
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4. Validation 

The F135 PW100 turbofan engine is a mixed-flow turbofan. This engine is used as a propulsion 

system of the Lockhid Martin F-35 Lightning. The components of the F135 PW100 engine include 

an axial-flow fan with three stages, HPC with six stages, a combustion chamber, HPT with one 

stage, LPT with two stages, mixer, and nozzle [36]. The Input Parameters of the F135 PW100 

engine are shown in Table 1 [36]. 

 

Table 1. Input parameters of F135PW100 engine modeling. 

Parameters Symbol Value Unit 

Inlet air mass flow rate 𝑚𝑎 147 Kg/s 

Fan pressure ratio 𝜋𝑓𝑎𝑛 4.7 - 

High-Compressor pressure ratio 𝜋𝑐 6 - 

Isentropic efficiency of the fan 𝜂𝑒𝑥𝑐 0.90 - 

Isentropic efficiency of the high-pressure compressor 𝜂𝑒𝑥𝐻𝑃𝐶 0.85  

High-pressure turbine inlet temperature 𝑇𝐼𝑇 2175 K 

Isentropic efficiency of the high-pressure turbine 𝜂𝑒𝑥𝐻𝑃𝑇 0.90 - 

Isentropic efficiency of the low-pressure turbine 𝜂𝑒𝑥𝐿𝑃𝑇 0.91 - 

Isentropic efficiency of the combustion chamber 𝜂𝑒𝑥𝐶𝐶 0.995 - 

Bypass ratio 𝛼 0.57 - 

 

The efficacy of several fuel types, such as hydrogen fuel, and natural gas (LNG) has also been 

inspected on the performance of the proposed engine. The main component of LNG is methane, 

and residual components are ethane, propane, butane, and nitrogen [37], of which methane is a 

major part; so, it can be approximated as a pure methane fuel (𝐶𝐻4) that Su et al. [38] similarly 

supposed. JP10 is a missile and aero engines well-known fuel because of its high energy storage 

and high-energy-density fuels [39, 40]. JP10, also known as Exo-tetrahydro dicyclopentadiene 

(𝐶10𝐻16), as a cyclic single-component hydrocarbon [41-43]. The lower heating value (LHV) and 

Special chemical exergy of these fuels are given in Table 2. According to equation (35), the special 

chemical exergy of hydrocarbons fuels can be calculated. 
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Table 2. The fuel lower heating value and special chemical exergy of fuels [44-46].  

Hydrogen LNG Diesel JP10 Fuel type 

134.778 55.168 44.661  44.921 
Special chemical exergy of fuels 

(MJ/Kg) 

118.429 49.736  42.740  42.1   LHV (MJ/Kg)  

2 16 167 136 Molecular Weight (g/mol)  

𝐻2 𝐶𝐻4 𝐶12𝐻23 𝐶10𝐻16 Chemical Formula  

 

Particularly, the efficiency of fuel types, flight altitude, and intake temperature variation on the 

F135 PW100 mixed-flow turbofan engine is investigated in three validation cases. At first, the 

comparison was performed in the take-off conditions (𝑀𝑎 =  0, and 𝐻 =  0) with Ref. values 

[36], which represented in Table 3. The validation was evaluated for the thrust, the fuel 

consumption mass flow rate, and TSFC. The comparison shows that the error is in the acceptable 

range, which indicates the accuracy of the model. 

 

Table 3. The fuel lower heating value and special chemical exergy of fuels. 

Error [36] Ref. Modeling results  

-5.81% 125.903 118.580 Thrust (KN) 

5.72% 25 26.43 TSFC(g/KNs) 

-0.5% 3.15 3.134 Fuel mass flow rate (Kg/s) 

 

Second, the TSFC engine is compared with another turbofan engine known as F100 regarding 

flight altitude, which has been done by Aygun and Turan [12] shown in Fig. 3a. The comparison 

demonstrated that thrust is decreased by increasing flight altitude at both engines. Also, at near-

flight altitudes of 20,000 m; both engines have the same thrust. This confirmed a good agreement 

for thrust validation. Third, comparison was achieved with experimental work of Gunasekar et al. 

[47] where the exergetic performance of a gas turbine were evaluated by using hydrogen as fuel. 

As depicted in Fig. 3b, the mean absolute percentage error was calculated as 9.70 %, which showed 

a good agreement for using hydrogen fuel validation. 
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a) b) 

 
 

Fig. 3. Validation results a) based on thrust regarding flight altitude, and b) exergetic efficiency for nozzle and 

turbine. 

 

 

5. Results and discussion 

5.1. Engine performance analysis 

5.1.1. Effect of Mach number and flight altitude on engine performance 

In this subsection, the impact of Mach number and flight altitude on the intake air mass flow rate, 

TSFC, thrust, propulsive efficiency, and thermal efficiency of the F135 PW100 engine was 

investigated. Also, in this case, JP10 is used as fuel. The changes in intake air mass flow rate of 

the F135 PW100 engine with flight-Mach number and flight altitude are presented in Fig. 4a. It 

has been observed that the flight velocity increases at each constant flight height with increasing 

Mach number. Accordingly, the intake air mass flow rate to the engine increases as similar has 

been achieved in Ref. [48]. They evaluated the effect of flight-Mach number and flight altitude of 

turbofan engine on the intake air mass flow rate. Their results evidenced that the intake air mass 

flow increases at each flight altitude with increasing flight-Mach number [48]. 

Also, in each constant flight-Mach number, with increasing flight altitude, the intake mass flow 

rate to the engine decreases because the intake air density is reduced. Aygun and Turan [49] 

attempted to investigate the influence of flight-Mach number on the thrust in an aero- GT engine. 

They revealed that, with the higher flight-Mach number, there is an increase in the thrust force of 
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a gas turbine engine. The variation of the F135 PW100 engine thrust force with Mach number and 

flight altitude is represented by the use of JP10 fuel in Fig. 4b. At every constant flight height, with 

an increase in the flight-Mach number, intake airflow to the engine is increased, so the thrust force 

is increased as gotten in Ref. [50].  

At each flight-Mach number, with increasing flight altitude, the mass flow entering the engine and 

consequently the thrust decreases. The variations of the thrust specific force (TSF) of the F135 

engine are discussed at an altitude of 20,000 meters with flight-Mach using JP10 fuel in Fig. 4c. 

The modifications of the TSF of the F135 PW100 engine with flight altitude and flight-Mach 

number have been displayed in Fig. 4c by using JP10 fuel. The intake mass flow rate to the engine 

increases with increasing flight-Mach number at each constant flight height. Since with increasing 

flight Mach number, the intensity of the rising intake mass flow rate to the engine is higher than 

the intensity of the increase in the thrust, so TSF decreases with the increasing Mach number. 

The TSFC changes of the F135 PW100 engine with flight height and Mach number have been 

displayed using JP10 fuel in Fig. 4d. By increasing the intake air mass flow rate to the engine, 

more energy is needed to reach the combustion chamber outlet temperature (limit of TIT). 

Therefore, the heating rate and fuel consumption mass flow rate increase with increasing the inlet 

air mass flow rate. The inlet air flow rate increases with flight-Mach number at each constant 

altitude. However, the rate of increase in fuel consumption mass flow rate is higher than that of 

the thrust. The TSFC increases with increasing flight-Mach number due to the increase in the 

intake air mass flow as gotten in Ref. [49]. They also found that TSFC increases with flight-Mach 

number. 

Changes in thermal efficiency of F135 PW100 with flight-Mach number and flight altitude are 

shown in Fig. 4e. The representation showed that at each constant flight height with increasing 

flight-Mach number in the range of 1 to 2, thermal efficiency increases, and with increasing flight-

Mach number in the range of 2 to 2.5, thermal efficiency decreases. The variation of the propulsive 

efficiency is represented with flight-Mach number and altitude by using the JP10 fuel in Fig. 4f. 

Since the flight-Mach number increases, both the thrust of the F135 engine and flight velocity 

increase, and the propulsive efficiency increases with increasing Flight-Mach number in each 

constant flight altitude. 
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b) a) 

  
d) c) 

  
f) e) 

  
Fig. 4. The effects of Flight- Mach number and flight altitude of the F135 PW100 engine in a) the intake air mass 

flow rate, b) net thrust, c) TSF, d) TSFC, e) thermal efficiency, and f) thrust by using JP10 as fuel. 
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 5.1.2. Effect of fuel types on engine performance 

In present subsection, the effect of different fuels, including natural gas, hydrogen fuel, diesel fuel, 

and JP10 on performance parameters such as thrust, TSFC, thermal efficiency, and propulsive 

efficiency were investigated at the height of flight condition of 30,000 m altitude and Mach number 

of 2.5. Thrust force and TSFC changes are represented in Fig. 5a and Fig. 5b, respectively. The 

changes are applied by the fuel types at an altitude of 30,000 m and Mach number of 2.5. However, 

as the molecular weight of the fuel decreases, molecular weight of the combustion productions 

also decreases, resulting in an increase in the nozzle output velocity. As a result, the velocity term 

of the Thrust force increases. So, the thermodynamic cycle has the highest thrust force by using 

hydrogen as fuel, as shown in Fig. 5a. 

Also, the TSFC changes of the F135 PW100 engine with fuel type at a flight height of 30,000m 

and flight-Mach number of 2.5 are shown in Fig. 5b. Consequently, the fuel consumption mass 

flow rate is reduced by increasing the fuel’s lower heating heat value (𝐿𝐻𝑉𝑓). Accordingly, TSFC 

is reduced by increasing the 𝐿𝐻𝑉𝑓. Also, the thermal, propulsive, and overall efficiencies of the 

F135 PW100 engine are represented by the fuel type at a flight altitude of 30,000 m and Mach 2.5 

in Fig. 5c. Reducing the molecular fuel weight increases the nozzle exit velocity and thrust force, 

which in turn increases the rate of change in the kinetic energy of the flow along the engine. Also, 

due to the fact that the rate of increase in thrust force is lower than the rate of changes in kinetic 

energy of flow, accordingly as the molecular fuel weight decreases, the propulsive efficiency 

decreases. Also, the exit nozzle velocity and variation of the kinetic energy rate is reduced, by 
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increasing the molecular fuel weight along the engine. Consequently, thermal efficiency decreases 

with increasing the molecular fuel weight. As a result, the hydrogen fuel has the lowest amounts 

of TSFC, similarly achieved in Ref. [50]. They observed that the use of hydrogen fuel instead of 

hydrocarbon, TSFC is reduced, which Fig. 5b confirmed it. 

b) 

 

a) 

 
c) 

 
Fig. 5. The efficacy fuel type at an altitude of 30000m and flight-Mach number of 2.5 on a) TSFC, b) thrust force, 

and c) thermal efficiency, propulsive efficiency, and overall efficiency. 
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5.1.3. Effect of inlet air temperature changes on engine performance 

In this subsection, the effect of intake air temperature variation on the thrust, TSFC, thermal 

efficiency, and propulsive efficiency of the F135 PW100 turbofan engine is investigated by using  

hydrogen fuel at different flight altitudes and flight-Mach numbers. Two fragments are disused: 1) 

flight-Mach number is assumed constant as 2 and flight altitude in the range of 10,000 m to 30,000 

m; 2) The flight altitude is supposed constant as 20,000 m with varied flight-Mach number. These 

fragments are applied at three parameters. 

First, the changes in inlet air mass flow rate of F135 PW100 in terms of the difference in inlet air 

temperature with different flight altitudes and flight-Mach numbers have shown in Fig. 6a and Fig. 

6b. It has been observed that, at each flight altitude and Mach number, with decreasing inlet air 

temperature, the inlet air density increases, so the inlet air mass flow rate increases. Second, the 

changes in the thrust of the 135 PW100 engine with inlet air temperature are represented in Fig. 

6c and Fig. 6d at different flight conditions. The intake air mass flow rate increases with decreasing 

the inlet air temperature in each flight condition . Subsequently, the thrust is increased. 

Third, TSFC variation of the F135 PW100 engine is represented by decreasing inlet air temperature 

at different flight-Mach numbers and altitudes in Fig. 6e and Fig. 6f. In each case, reducing the 

intake air temperature requires more energy to deliver the flow temperature to the limit of TIT so 

the consumption fuel mass flow rate is increased.  

However, as the intake air temperature decreases, the rate of increase in fuel consumption mass 

flow rate is greater than that of the thrust force, TSFC increases at an altitude of 20,000 m in the 

Mach number below 1. On the contrary, in the Mach number above 1, as the intake air temperature 

decreases, the rate of increase in fuel consumption mass flow rate is lower than that of the thrust 

force, TSFC is decreased at flight-Mach number of 2 and flight altitude in the range 10,000 m to 

30,000 m. Also, the applied fragment is considered at the other performance parameters such as 

thermal efficiency, and propulsive efficiency. 
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b) a) 

  
d) c) 

  

f) e) 

  
Fig. 6. The influences of difference inlet air temperature of the F135 PW100 engine with a) intake mass flow rate-varied 

flight altitude, b) intake mass flow rate-varied Flight-Mach number, c) thrust-varied flight altitude, d) thrust -varied 

flight-Mach number, e) TSFC-varied flight altitude, and d) TSFC -varied flight-Mach number. 
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The thermal efficiency variation of the F135 PW100 engine with decreasing intake air temperature 

at different flight-Mach numbers and flight altitudes is shown in Fig. 7a and Fig. 7b. In each flight 

case, the air mass flow rate increases by decreasing intake air temperature. Therefore, as the inlet 

air temperature decreases, the rate of change in the kinetic energy of the flow along the engine 

increases. Since the intensity of the increase in variation rate of the kinetic energy along the engine 

is higher than the intensity of the increase in heating rate due to the decreasing intake air 

temperature, the thermal efficiency increased with decreasing intake air temperature. 

Correspondingly, the change of propulsive efficiency is represented by reducing the temperature 

of the inlet air at flight-Mach number and the different heights in Fig. 7c and Fig. 7d. 

The results showed that by decreasing the inlet air temperature, the kinetic energy of airflow to the 

engine increases. However, since the intensity rate of increase in the kinetic energy along with the 

engine is higher than the intensity of the increase in the thrust force due to the reduction in the 

intake air temperature, hence the input air temperature is reduced in any state, so it is the cause of 

decreasing in propulsive efficiency. 

 

5.2. Exergy analysis results 

5.2.1. Effect of Flight altitude and flight-Mach number 

In this subsection, the exergy efficiency, and the exergy destruction rate of F135 engine 

components containing the fan, HPC, HPT, LPT, nozzle, and mixer are investigated by using JP10 

as a fuel. In addition, the exergy efficiency and exergy destruction rate of the F135 PW100 engine 

with Mach number and altitude were analyzed by using JP10 as a fuel. The exergy efficiency and 

exergy destruction rate changes of the F135 PW100 engine and its components with changing the 

flight-Mach numbers and flight altitudes are indicated in Fig. 8a-d. 
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b) a) 

 
 

d) c) 

  

Fig. 7. The effects of the difference inlet air temperature of the F135 PW100 engine in terms of a) flight altitude 

variation in the range of 10,000 to 30,000 and constant flight-Mach number of 2 for thermal efficiency, b) flight-

Mach number Variation and constant flight altitude of 20,000 m for thermal efficiency, c) flight altitude variation 

in the range of 10,000 to 30,000 and constant flight-Mach number of 2 for propulsive efficiency, and d) flight-

Mach number Variation and constant flight altitude of 20,000 m for propulsive efficiency. 

 

In Fig. 8a and Fig. 8c, the flight-Mach number is assumed as a constant amount of 2, and also, in 

Fig. 8b and Fig. 8d, the flight altitude is presumed as constant at 15000 m. Both, the mixer 

exergetic efficiency and the overall exergetic efficiency were increased by increasing the flight-

Mach number at the constant flight altitude; similarly, recognized in Ref. [49].  They performed 

the efficacy of Flight Mach number on exergetic efficiency in GT engine. It has been demonstrated 

that exergetic efficiency is increased by increasing the flight-Mach number [49]. 
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Also, the variation of the exergy destruction rate of the F135 PW100 engine and its components 

with Mach number and flight height is shown in Fig. 8c and Fig. 8d. The results exhibited that the 

exergy destruction rate of the components and overall exergy destruction rate of the F135 PW100 

engine is decreased with increasing the flight altitude at constant flight-Mach number. Also, the 

exergy destruction rate of each component increases at the constant flight altitude by increasing 

the flight-Mach number. 

a) b) 

  
c) d) 

  
Fig. 8. Efficacy flight altitude and flight-Mach number of the F135 PW100 engine and its components a) 

exergetic efficiency with the constant flight-Mach number of 2, b) exergetic efficiency with a constant flight 

altitude of 15000 m, c) exergy destruction with constant flight-Mach number of 2, and d) exergy destruction with 

a constant flight altitude of 15000 m. 
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5.2.2. Effect of inlet air temperature changes 

In this subsection, the effect of reducing the intake air temperature on the overall exergy efficiency 

of the F135 PW100 engine and F135 PW100’s components including, HPC, HPT, LPT, fan, and 

mixer was investigated at an altitude of 20,000 m and Mach number of 2 by using JP10 as a fuel. 

Reducing the inlet air temperature is increased exergetic efficiency in flight conditions, which has 

been achieved in Ref. [51]. They investigated the effect of inlet air cooling on GT engine 

performance with different methods [51]. Their results proved that exergetic efficiency is increased 

when the inlet air temperature is reduced. In another study, Ibrahim et al. [10] showed that reducing 

of the inlet air temperature in open-GT engine increased exergetic efficiency. 

The overall exergy efficiency changes of the F135 PW100 engine and its components with intake 

air temperature are indicated in Fig. 9a. The results evidenced that the overall exergy efficiency of 

F135 PW100, and exergy efficiency of HPT, LPT, HPC, and fan are increased by decreasing the 

intake air temperature. Moreover, the exergy efficiency of the combustion chamber and mixer is 

reduced by reducing the intake air temperature. Next, the changes in the overall exergy destruction 

rate of the F135 PW100 engine and components of F135 PW100 are indicated in Fig. 9b with 

intake air temperature changing at flight conditions of 20,000 m altitude and Mach number 2 by 

using JP10 as a fuel. The results confirmed that the exergy destruction rate of Fan, HPT, LPT, and 

HPC of F135 PW100 is reduced by reducing the intake air temperature. Consequently, the exergy 

destruction rate of the combustion chamber and mixer is increased. 
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Fig. 9. The effects of difference inlet air temperature of the F135 PW100 engine and its components engine at a 

flight altitude of 20000 m and flight-Mach number of 2 via using JP10 fuel on a) exergetic efficiency, and b) exergy 

destruction. 

 
5.2.3. Effect of fuel types 

In this subsection, the exergy efficiency and exergy destruction rate of the F135 PW100 engine 

and its components of it including the HPC, HPT, LPT, and mixer at an altitude of 20,000 m and 

flight-Mach number of 2 are investigated by using hydrogen, natural gas and JP10 as fuels.  

The exergy efficiency changes of the F135 PW100 engine and its components with the fuel type 

used at 20000 m altitude and flight-Mach number of 2 are shown in Fig. 10a. The results 

demonstrated that among the fuels, the JP10 has the maximum overall exergy efficiency, and the 

highest exergy efficiency. Also, Hydrogen fuel has the lowest overall exergy efficiency, and the 

lowest exergy efficiency achieved at the combustion chamber, which can be approved formerly in 

the gas turbine engines  . For example, Gunasekar  et al. [47] observed that with the use of hydrogen 

fuel instead of the Jet A-1 as a hydrocarbon fuel in turbojet engine, overall exergetic efficiency is 

a) b) 
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reduced by about 10 %. Also, Ibrahim et al. [10] verified that combustion chamber has the lowest 

exergetic efficiency and highest exergy destruction rate compared to other components.  

Correspondingly, the effects of the exergy destruction rate of the F135 PW100 engine cycle and 

F135 PW100 engine’s components with the different fuel types used at 20000 m altitude and Mach 

number of 2 are shown in Fig. 10b. The results demonstrated that the least exergy destruction rate 

is achieved by a nozzle with JP10. Also, the highest exergy destruction rate is produced by the 

combustion chamber with JP10. In the application of hydrogen fuel, the highest exergy destruction 

rate has occurred in all of the F135 PW100 engine’s components. Also, the application of JP10 

has the lowest exergy destruction rate of all of the components for the F135 PW100 engine. 

 

a) b) 

 

 

Fig. 10. The efficacy fuel types of the F135 PW100 engine and its components at a flight altitude of 20000 m and 

flight-Mach number of 2 on a) exergetic efficiency, and b) exergy destruction. 
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5.3. Deep learning results 

Based on the results obtained in subsections 5.1 and 5.2, to model the thermodynamic performance 

of the F135 PW100 engine cycle, flight-Mach number and flight altitude are considered to be 2.5 

and 30,000 m, respectively, due to the operational advantage of  supersonic flying at high altitude, 

and higher thrust of hydrogen fuel. Accordingly, the appropriate datasets are provided and then 

randomly divided into two sets: the first set contains 6079 samples for model training and the 

second set contains 1520 samples for testing. Fig. 11 shows the relationship between all inputs and 

outputs. In the present deep neural network model, five input variables including the pressure ratio 

of the high-pressure compressor, fan pressure ratio, turbine inlet temperature, intake air 

temperature, and bypass ratio (𝛼) are considered as the characteristics of the model and three 

output variables consist of thrust, thrust specific fuel consumption, the exergetic efficiency as 

labels. The data were extracted from python 3.9 software. To facilitate the training process, the 

input variables are normalized between zero and one. In this study, the Adam optimization 

algorithm, the cost function of the mean square error, and the active function of Relu are used to 

train the network. The final deep network prototypical, as shown in Fig. 10, has three hidden layers, 

the first to third layers have 512, 256, and 128 neurons, respectively, which are manually adjusted 

based on experience. 

The loss function diagram in terms of each epoch is shown in Fig. 12 for each of the outputs such 

as thrust, TSFC, and exergetic efficiency. The results show a stable convergence process that has 

reached a very small amount for each output. The convergence trend is similar for all three outputs, 

although the final loss value of exergetic efficiency is greater than the TSFC, and the TSFC is 

greater than the thrust. This is due to the difference in the level of the output values that are 

observed in the plot (see the scales of outputs parameters such as thrust, TSFC, and exergetic 

efficiency  ( . It is also observed that for each of the outputs, on average in the first ten epochs, the 

loss function is reduced by 90%. 
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Fig. 11. The general plot of input and output variable relationships 

 

To show the performance of the deep learning method in predicting outputs, Fig. 13 shows the 

predicted value of thrust, TSFC, and exergetic efficiency with respect to the True values in the test 

section. It can be seen that the deep neural model has been very successful in predicting outputs; 

Because the blue points inside the diagrams are very close to the midline 𝑃 = 𝑇. This means that 

the predicted value is very close to the corresponding true value. In some of these diagrams, it can 

be seen that the data aggregation and also the distance of some of them from the centerline is 

greater, which indicates the greater numbers of data in these areas and, consequently, the greater 

the probability of error. For example, to predict the second output (TSFC), the accumulation of 

blue dots is greater in the range 21 ≤ 𝑇𝑆𝐹𝐶 ≤ 22. 
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Fig. 12. Loss function variations with respect to Epochs for outputs variables. 

 

 

Fig. 14 shows the error distribution of the 1520 test sample. For the thrust, 1347 samples (88.61%) 

are in the error range ± 1. Also, for the TSFC and exergetic efficiency, 1424 and 1381 samples, 

respectively, equivalent to 93.68% and 90.85% of the data are in the same error range. This high 

error distribution in the near-zero range indicates the success of the deep neural network in 

predicting test data. 

Also, in order to measure the accuracy of the obtained model, the correlation factor (𝑅), 

determination factor (𝑅2), root mean square error (RMSE), mean square error (MSE), mean 

absolute error (MAE), and mean absolute percentage error (MAPE) are utilized.  The values of 

RMSE, MSE, and MAE express the difference between the predicted outputs and the true values. 

The closer these coefficients are to zero, the lower the error (higher accuracy) of the model. 

TSFC 

Overall exergetic 

efficiency 

Thrust 
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Fig. 13. Predicted output values with respect to true values. 

 

The correlation and determination coefficients represent the correlation between the true values 

and the data predicted from the deep neural model. The closer the values of 𝑅 and 𝑅2 to one, the 

closer the estimated values are to the true values. Finally, the Mean absolute percentage error 

provides a good indication of the accuracy of the obtained model. In general, the RMS, MSE, and 

MAE criteria depend on the amplitude of the output values, while the 𝑅, 𝑅2, and MAPE 

coefficients can ignore the amplitude effect and provide a relative comparison. All the desired 

indicators are defined as follows: 

Overall 

exergetic 

efficiency 

 

TSFC Thrust 

 

Overall exergetic 

efficiency 
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(58) R =
∑ [(yi − yi

mean)(ŷi − ŷi
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i=1 ] 
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𝑛
∑ |
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𝑦𝑖
|

𝑛

𝑖=1

 

where 𝑦𝑖 is the true values for i-sample, �̂�𝑖 is the output predicted by the deep model for i- sample, 

𝑦𝑖
𝑚𝑒𝑎𝑛  is the mean of true values and �̂�𝑖

𝑚𝑒𝑎𝑛 is the mean of predicted data. The index is listed for 

two training and test sections as shown in Table 4. To predict the first output, it is observed that 

the indicators 𝑅 and 𝑅2 are 0.96 and 0.93, respectively. Also, the values of RMSE, MSE, and MAE 

are in the range of 0.5 and even lower. Also, the MAPE is about 5%; due to the mentioned values, 

the accuracy of the deep neural network is evaluated as very high. For the second output, 𝑅 and 

𝑅2 are about 0.93 and 0.86, respectively. Error index values are also low and MAPE is about 1.5%. 

As a result, the success of the deep learning method in predicting the second output is also evident.  

Finally, for the third output, the 𝑅 and 𝑅2 indices are 0.99 and 0.99, respectively, which is very 

close to 1, indicating a very high correlation between the predicted and the true values. Also, the 

MAPE is calculated below 3%. As a result, it can be seen that the highest correlation coefficients 

belong to the third output, and the lowest MAPE value belongs to the second one. The first output 

also achieves a balance between the two indices. In general, the network accuracy of all outputs is 

evaluated as very high. It is noteworthy that with the aid of the attained intelligent model, the 

behavior of the considered engine can be analyzed and predicted in different flight conditions. It 

can also be determined whether the engine performance is optimal or whether it is necessary to 
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use the optimization algorithm to achieve better energy and exergy performances of a turbofan 

engine, in the future study. 

  

 
Fig. 14. Error distribution of the test samples for output variables. 

 
 
Table 4. Indicator values in the learning and testing sections. 

 
Thrust TSFC Overall exergetic efficiency 

Train Test Train Test Train Test 

𝑅 0.9676 0.9686 0.9302 0.9276 0.9982 0.9982 

𝑅2 0.9362 0.9383 0.8653 0.8604 0.9964 0.9965 

RMSE 0.545 0.5367 0.7003 0.6966 0.8281 0.8118 

MSE 0.297 0.288 0.4904 0.4853 0.6858 0.6591 

MAE 0.3024 0.3013 0.3256 0.3164 0.5641 0.5604 

MAPE 5.1216 5.023 1.4713 1.4393 2.1154 2.9212 

 

 

TSFC Thrust 

Overall exergetic 

efficiency 
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6. Conclusion 

In the present study, the thermodynamic analysis and intelligent modeling of the F135 PW100 

engine have been performed. Particularly, a deep neural model was developed to predict the 

performance of the considered turbofan engine for flight-Mach number of 2.5 and the flight 

altitudes of 30,000 meters, which can be used to optimize the energy and exergy performances of 

a F135 PW100 engine. Based on the performed analyzes, the most important findings are as 

follows: 

1) At constant flight altitudes, as the flight-Mach number increases, the intake mass flow rate 

to the engine rises, resulting in an increase in thrust, thrust specific fuel consumption, and 

propulsive efficiency. Also, in the same condition, the exergy efficiency of the low-

pressure turbine decreases while that of the combustion chamber and mixer increases. 

2) At constant flight-Mach number, as the flight altitude increases, the intake mass flow rate 

to the engine decreases, which in turn decreases the thrust and increases the thrust specific 

fuel consumption.  

3) As the inlet air temperature in the engine decreases, the intake mass flow rate increases, 

resulting in an increase in thrust and thermal efficiency and the reduction of thrust-specific 

fuel consumption and propulsive efficiency. Also, in the same condition, the exergetic 

efficiency of high-pressure turbine, low-pressure turbine, and high-pressure compressor 

increases while that of the combustion chamber decreases. 

4) It was found that among the considered fuels, hydrogen fuel has the highest thrust and 

thermal efficiency as well as the lowest propulsive efficiency. Conversely, using JP10 fuel 

results in lower thrust and thermal efficiency and higher propulsive efficiency. 

5) The correlation factor for the prediction of thrust, thrust-specific fuel consumption, and 

overall exergetic efficiency is calculated as 0.96, 0.93, and 0.99, respectively. Moreover, 

the mean absolute percentage error for the aforementioned outputs are 5.02%, 1.43%, and 

2.92%. Accordingly, the accuracy of a deep neural network for predicting all considered 

outputs is evaluated as very high. 

6) According to the obtained deep neural model, the behavior of the considered engine in 

different flight conditions can be predicted and analyzed. For future study, the engine 

parameters can also be optimized to achieve better energy and exergy performances of a 

turbofan engine. 
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