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Abstract—Real-time and continuous processing of citywide
spatial data is an essential requirement of smart cities to
guarantee the delivery of basic life necessities to its residents
and to maintain law and order in it. With the availability of
low cost 3D scanners recently, citywide 3D spatial data can be
obtained easily. 3D spatial data contains a wealth of information
including images, point-cloud, GPS/IMU measurements, etc., and
can be of potential use if integrated, processed and analyzed in
real-time. The 3D spatial data is generated as continuous data
stream, however traditionally it is processed offline. Many smart
city applications require real-time integration, processing and
analysis of spatial stream, for-instance, forest fire management,
real-time road traffic analysis, disaster engulfed areas monitoring,
people flow analysis, etc., however they suffer from slow offline
processing of traditional systems. To make the most of this
wealthy data resource, it must be processed and analyzed in
real-time. This paper presents a framework for the continuous
and real-time processing and analysis of 3D spatial streams.
Furthermore, we propose a distance-based window for the
continuous queries over 3D spatial streams. An experimental
evaluation is also presented to prove the effectiveness of the
proposed framework and the distance-based window.

Index Terms—3D spatial data, Data stream, Point-cloud data,
Real-time processing, Continuous query, Distance-based window

I. INTRODUCTION

Smart cities development and management require real-time
processing and analysis of citywide data. With the increase in
the availability of inexpensive 3D scanners these days, detailed
citywide 3D scanning data of earth surfaces (planes, trees),
road segments, building interior and exterior can be obtained
easily. 3D spatial data is usually generated as a stream of
points by mounting scanning equipment on drones and cars
for large area scanning or on some stationary platform for
small area scanning or indoor scanning. Fig. 1 shows different
types of 3D scanning, for instance, a road segment (Fig.
1(a)), a human face (Fig. 1(b)) and an indoor space (Fig.
1(c)). 3D spatial data streams or spatial mapping data obtained
through 3D scanners provides a detailed representation of real-
world surfaces. 3D spatial data streams, in contrast to 2D
spatial data streams which consist of geographical location in
terms of longitude and latitude, consist of images, GPS/IMU
measurements and point-cloud [1]. Images and GPS/IMU mea-
surements are obtained by mounting cameras and GPS/IMU
devices on 3D data collection platform respectively, whereas
the point-cloud data is obtained through optical scanners (e.g.,

LiDAR - light detection and ranging) that uses laser light to
densely sample the earth’s surface, producing highly accurate
X,y,z measurements. In addition, each point in the point-cloud
may contain some or all of the following attributes: intensity,
return number, number of returns, RGB (red, green, and blue)
values, GPS time, edge of flight line, scan angle and scan
direction [2].

3D scanning data is generated continuously as a stream of
3D points and images, as the platform on which the scanners
are mounted moves. The 3D spatial stream is voluminous.
For instance, aerial scanning of a road segment (Fig. 1(a))
consists of 5-10 points per square meter resulting in a set
of billions of points for an average city [5]. Similarly, 3D
stream is velocious, for instance an MMS (Mobile Mapping
System) vehicle can move at a speed of 80 kilometers/hour
resulting in the generation of millions of points per second
[6]. 3D spatial data is generated as a stream however, tra-
ditionally it is processed offline due to the inherent noise,
huge volume and high velocity, i.e., the data is first stored
on a secondary storage, denoised and is then queried and/or
analyzed. Examples include [5], [7], [8], where the authors
assumed static point-cloud available in a HDFS cluster or some
distributed database and made use of distributed computing for
its processing [9]. However, many applications require real-
time integration, processing and analysis of 3D spatial streams.
For instance: 1) The spatial stream from several airborne
lidar sensors must be integrated in real-time and analyzed
interactively to manage forest fire, 2) The spatial stream of
road traffic must be monitored in an online fashion to manage
road traffic and identify speeding vehicles, 3) Citywide people
flow must be analyzed in real-time to better manage the city
resources, etc. These and other similar applications suffer
from the traditional offline processing which cannot handle
continuously arriving spatial stream in real-time. Integrating,
processing and analyzing 3D spatial stream in real-time is
challenging due to its size, structure and inherent noise.

Keeping in view the importance of real-time processing
and analysis of 3D spatial stream, this work presents and
demonstrates a robust distributed framework named “CQ3D”.
The proposed framework takes raw 3D spatial streams as
input, pre-processes/cleans them, performs different point-
cloud operations (object detection, segmentation, etc.) on
them, executes different continuous queries on the resultant



(a) Road segment

(b) Human face [3]

(c) Indoor space [4]

Fig. 1. Different types of 3D scanning

data (filtration, projection, join, etc.) and produces real-time
continuous output which may be used for analysis. Since the
streams are unbounded, a bounding mechanism is needed to
execute different types of queries on it. Traditionally count-
based or time-based windows are used to limit the amount of
data for query processing over data streams. However such
windows do not make much sense on spatial data stream as
the queries are mostly related to the trajectories of moving
platform or moving objects. Therefore we require a mechanism
to bound the length of moving object trajectories. Hence,
we propose and define a distance-based window to execute
continuous queries on spatial data streams. This work assumes
that the 3D spatial streams are ordered.

The main challenges in the development of CQ3D include
the handling of noisy, high volume and high speed data in
real time, which require distributed and scalable computing
resources. Furthermore, due to the absence of standardized 3D
spatial data format, the incoming data from different scanning
devices consist of varying number of formats and different
number of attributes which must be pre-processed to generate
a uniform input for CQ3D, which is quite challenging. 3D
spatial data operations are computationally expensive, hence
their real time processing require distributed deployment,
which is quite challenging. Furthermore, to identify if a certain
part of a trajectory lies within the boundaries of distance-based
window, distance between consecutive spatial points need to
be computed. Considering a stream of moving objects, a large
number of distance computations are required in real-time
which is another challenging part of this work.

In the proposed framework we address the above challenges
with the following contributions:

« A continuous querying framework for the real-time pro-

cessing of spatial data streams

« Semantics of a distance-based window

« Experimental evaluation to prove the effectiveness of the

proposed framework and the distance-based window

The rest of the paper is organized as follows. Section
IT discusses the related work. Section III discusses general
continuous query processing over data streams and windowing.
Section IV presents the proposed distance-based window. In
Section V, the proposed continuous querying framework for
3D spatial stream is presented. Detailed experimental evalua-
tion is presented in Section VI while Section VII concludes
this paper and discusses some of the future directions.

II. RELATED WORK

Recent past era has witnessed development of many general
Stream Processing Engines (SPEs). Apache Spark Stream-
ing [10], Stanford STREAM [11], Apache Samza [12] are
among the state-of-the-art SPEs and are being used by many
data giants including Amazon, TripAdvisor, Yahoo, etc. to
process their business data streams. Current era is witnessing
a new type of big data, i.e., 3D spatial data or point-cloud data
with several applications, however existing SPEs do not pro-
vide functionalities/operators to process it efficiently. Typical
processing over point-cloud data includes object identification,
segmentation, difference detection (between two point-cloud
versions), Digital Elevation Model (DEM) construction [8],
etc., which are not supported by any of the existing stream
processing engine. Most of the existing point-cloud data
processing frameworks [5], [7] can handle only static point-
cloud and are too slow to support its real-time processing and
analysis.

Beside the above mentioned SPEs, there exist a few contin-
uous 3D spatial stream processing solutions. For instance, [13]
gave a Euclidean-distance based approach for the continuous
clustering of point-cloud data. In their work, given a set of
point-cloud the proposed algorithm identifies a disjoint group
of point that can be potential objects surrounding the sensor.
The proposed algorithm uses single pass to cluster the LiDAR
point-cloud data. To achieve the continuous processing, the
authors make use of fine-grained pipeline. Authors in [14]
proposed an algorithm for segmenting a continuous stream of
3D range data in real-time. The proposed algorithm computes
normal vectors of incoming points from their local neighbor-
hood and clusters the new points by assessing their Euclidean
and angular distance to previously clustered points. Kim et
al. gave a continuous query approach for 3D objects [15].
However their focus was perspective query. Perspective query
requests data with different levels of detail according to the
importance of data. In contrast, this work presents a distributed
framework for the real-time processing and analysis of 3D
spatial data stream.

Since a data stream is an infinite sequence of tuples,
windowing spatial data streams is an important research issue.
The works [16], [17] proposed methods for approximate
join computation over data streams by using sliding windows.
GrubJoin [18] considers sliding-window join with CPU load
shedding. Grubjoin uses window-harvesting which picks the



most profitable segments of individual windows for the join
processing, in an effort to maximize the join output rate.
However, the existing windows are either count-based or time-
based, which cannot answer continuous queries by bounding
the length of the trajectories. Hence, we propose a distance-
based window to execute continuous queries on spatial data
streams.

III. CONTINUOUS QUERY PROCESSING AND WINDOWING

This section presents a quick overview of general contin-
uous query processing and the use of windows for it. Data
stream is an unbounded, or at least unknown, collection of
events which arrive continuously and usually at high velocity.
In order to process and query continuously evolving data
streams, many Stream Processing Engines (SPEs) have been
developed. Spark [19], Samza [12], Kafka [20], etc. are
some of the well-known and commonly used SPEs. When
a user registers a Continuous Query (CQ) to an SPE, it is
executed continuously on the newly arriving stream tuples
and generates continuous output. Usually the CQ output is
generated incrementally, i.e., the output is generated only for
the stream tuples which arrived after the generation of last
output.
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Fig. 2. A comparison of time-based and count-based windows

Since the data stream is unbounded, windowing is usually
used for the execution of stateful operators (relational join, ag-
gregation, etc.). Windowing splits the unbounded data stream
into finite sets, or windows, based on some specified criteria.
A window is an in-memory table in which events/tuples
are added and removed based on a set of policies. Golab
[21] suggested two models for windows: 1) Fixed (tumbling
window): The fixed window model periodically clears the
accumulated data. That is, a stream is divided into non-
overlapping partitions and data are kept only for that part of
a stream which falls within the current partition. 2) Sliding:
The sliding window model expires old events as new events
arrive. That is, a stream is divided into overlapping partitions
of newest events. Both the window models can be broadly
divided into two types: 1) Time-based: Stores only those events
which have been generated or have arrived in the last X time
units. E.g., Events/Tuples generated in last 24 hours. 2) Count-
based: Stores the N newest events. E.g., A window consisting
of recent 1 million tuples.

Fig. 2 shows the time-based (above time line) and count-
based (below time line) sliding windows. Assume a time
ordered stream of events between ty and t5. The size of time-
based window is 2 time units with a slide step of 1 time unit,
i.e., the window stores events which have been generated in
the last 2 time units and slides with the step of 1 time unit.
In Fig. 2, the boundaries of time-based window 1 (TWinl)
is from ¢y to to, which slides with the availability of new
data at t3 and causes the generation of new window (TWin2)
with boundaries ¢; to £3. On the other hand, the count-based
window in Fig. 2 contains 10 events. Since the slide step in
case of count-based window is 1 event, the window slides
with the arrival of each new event to generate new window,
i.e., CWinl, CWin2, CWin3,..., as can be observed from Fig.
2.

IV. DISTANCE-BASED WINDOW

Depending upon the mounting of 3D scanner i.e., on static
platform (case I) or on mobile platform (case II), two different
types of spatial data stream can be generated. In case I, the
data stream is generated for a fixed region r for the course of
time. Whereas in case II, the spatial stream is generated for the
changing surroundings as the platform moves. Both the cases
have different applications and can answer different queries.
For instance in case I, a user may be interested in difference
detection, i.e, identifying the change in surroundings during
the course of time that may include counting the number
of vehicles passing the region r over the course of time,
computing the crowd flow, or detecting the changes in the
surroundings’ structure with respect to time. Such queries can
be answered via our proposed framework CQ3D (Sec. V) by
utilizing time-based window discussed in Sec. III. For the case
Il (i.e., mobile platform), the queries are mainly based on
trajectories or length of trajectories.

Example 1: Assume a mobile platform m scanning a road
segment through 3D scanner and generating a stream of 3D
spatial data. As the data stream arrives, the user is interested
in detecting the different objects (people, cars, trees, etc.) in it
and execute continuous queries on it by bounding the stream
for a particular length of trajectory. Let the user would like
to know the number of different objects detected in last x
distance units. Since the speed of m is not uniform, using
the existing window semantics, one can obtain the number of
objects detected in last ¢ time units however cannot obtain
the number of objects detected in last x distance units. We
call the window, capable of bounding or tracking the length
of trajectory to answer the continuous queries, the distance-
based window.

Distance-based window can be useful for many real-world
spatial continuous queries and perspective queries, however
it is not supported by any of the existing SPE or geo-spatial
platform. Keeping in view its importance, this work proposes
the distance-based window. In the following, we formally
define the distance-based window semantics and the distance
functions.



A. Window Semantics

Let I' be a discrete time domain with total order <. A time
instant ¢ is any value from I', which denotes the application
time, i.e., the time of the event occurrence and not the system
time. For the sake of simplicity, we assume that the I' is a set
of non-negative integers {0,1,2,3,...}. Let S is a potentially
infinite ordered sequence of events e, obtained from a moving
object. Each e € S consists of an object’s unique id (v),
its spatial location A in terms of longitude and latitude at
timestamp ¢ € I' and a timestamp ¢ € I', forming a spatial
tuple of the form: (¢, A, t).

« Trajectory: Consider a moving object o;, generating a
continuous stream of events. By sampling the movement
of o0;, a polyline p is obtained. In geometrical terms,
this polyline is called trajectory [22]. Fig. 3 shows the
movement of a spatial object (spatial trajectory) in 2
dimensional space and its corresponding spatio-temporal
trajectory in 3 dimensional space. As shown in the figure,
a trajectory can be represented by a polyline.

o Trajectory length: It can be defined as the length of
the polyline, which is approximately equal to the ground
distance covered by the spatial moving object (spatial tra-
jectory). Consider a spatial trajectory polyline p; (similar
to the one shown in Fig. 3), composed of the ordered
events, €1, €2, ..., €;j, where e;1.t < g0t < ... < eij-t,
then the trajectory length corresponding to the p; is given
by:

j—1
TLength(e;, ei;) = Z dist(€ia-N, €j(at1)-A) (1)
a=1
where the function dist denotes the geographical distance
between two event locations, discussed in Sec. IV-B.

We can now define the distance-based window as follows:

Definition 1: Distance-based Window: Assuming a set of n
moving objects O = {01, 02, ..., 0, } With trajectory polylines
P = {p1,p2,-..,pn}- A distance-based window of size x
contains the events’ tuples corresponding to the trajectories of
moving objects in O, such that the trajectory length of each
0; € O is at most x.

According to the Definition 1, the distance window contains
the latest trajectory tuples such that the trajectory length is
at most the window size x. Older trajectory tuples must be
deleted periodically to keep the trajectory length within x.
To achieve this, for each new trajectory event tuple that is
inserted into the distance-window, the length of its correspond-
ing trajectory is computed. If the length is greater than z,
the oldest trajectory tuples are deleted recursively until the
trajectory length is at most x. To support efficient insertion
and deletion of the new and the old trajectory tuples, doubly
linked list data structure is used for the distance-based window
with O(1) insertion and deletion complexities.

A distance-based window can be tumbling (fixed) or sliding.
In a tumbling window, spatial stream is divided into non-
overlapping partitions and the stream tuples are kept only for

that part of the stream which falls within the current partition,
whereas in the distance-based sliding window, the old tuples
expire as new tuples arrive and is divided into overlapping
partitions of newest tuples.

B. Distance Functions

This section discusses the available geographic distance
functions to compute the trajectory length. Although there
exist a number of geographic distance functions, in this
work we make use of the following three: 1) Haversine, 2)
Equirectangular, and 3) Spherical law of cosines.

« Haversine: The Haversine formula calculates the great-
circle distance between two points, i.e., the shortest
distance over the earth’s surface, giving an “as-the-crow-
flies” distance between the points (ignoring any hills they
fly over). The word haversine comes from the function:
haversine(f) = Sin®(0/2). For the details on how the
haversine function can be used to compute the distance
between two geographical coordinates, please refer [23].

« Equirectangular approximation: As the name indicates,
equirectangular is an approximate geographic distance
function. This function uses only one trigonometric func-
tion compared to the seven trigonometric functions used
by the haversine function, to reduce the computation cost
at a small cost of accuracy. For details, please refer [23].

« Spherical law of cosines: This distance function is as
accurate as the haversine function, however makes use
of six trigonometric functions compared to the seven
trigonometric functions used by the haversine function.
Spherical law of cosines is slightly less computationally
expensive than the haversine. For details, refer [23].
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Fig. 3. The movement of spatial object and the corresponding trajectory

V. A FRAMEWORK FOR THE REAL-TIME PROCESSING OF
3D SPATIAL STREAMS

This section presents a framework for the real-time pro-
cessing of 3D spatial streams. To facilitate continuous queries



(CQs) capable of bounding spatial trajectory length, the pro-
posed framework implements the distance-based window pro-
posed in Sec. IV. In the following, we present the architecture
and the query processing of the proposed framework.

A. Architecture

The architecture of the proposed framework is shown in Fig.
4. Its main components include pre-processor, existing point-
cloud operators, continuous query processor and a persistent
storage. The 3D spatial data format varies drastically depend-
ing upon the 3D scanning technology and the combination of
devices used. 3D spatial data may also contain missing values
and noise. The purpose of the pre-processor is to provide
integrated, clean and uniform data to all the components
of the framework. For instance, an MMS vehicle generates
synchronized streams of images, GPS/IMU measurements and
point-cloud [1]. Different spatial operators require different
streams in different formats, for instance some object detection
algorithms require both the image and point-cloud streams,
while others require only image stream or only point-cloud
stream, in addition to the GPS/IMU measurements. Hence,
depending upon the requirements, different streams are inte-
grated and cleaned and are available to the existing point-cloud
operators and continuous query processor components of our
framework.
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Fig. 4. Framework for the real-time processing of spatial streams

There exist a number of libraries providing real-time op-
erations over point-cloud data including segmentation [14],
object detection [24], etc. The existing point-cloud operators
enables the integration of the existing point-cloud libraries to
our framework rather than reinventing the wheel for all the
point-cloud operations. The continuous query processor on
the other hand can either take input from the pre-processor or
the existing point-cloud operators. This component is meant
to support continuous queries directly over 3D spatial data
streams and/or on the output of the existing point-cloud
operators component. The persistent storage stores the output
of different operations over 3D spatial data for later use.
Furthermore, various operations involve join between fresh
stream and historical data, e.g., change detection algorithm,
where the historical data may be obtained from the persistent
storage component.

For the development of highly distributed, scalable and
fault-tolerant pipeline corresponding to the proposed CQ3D
architecture, we propose the use of Apache Spark Streaming
and Apache Kafka. Apache Spark [10] is a distributed in-
memory framework for handling batch, real-time analytics,

and data processing workloads, while Apache Kafka [20] is
a distributed streaming platform for building real-time data
pipelines and stream processing applications. Kafka uses fop-
ics to store data tuples. The reasons for using spark streaming
are multifold. Compared to other state-of-the-art streaming
engines, it supports many APIs including Scala, Java and
Python. Furthermore it is the main memory based system,
i.e., there is no I/O overhead, hence resulting in throughput
of millions of tuples per second on a single computing node.
Similarly Apache Kafka is a scalable, high performance,
low latency messaging system, highly supported and recom-
mended by Spark Streaming for building high throughput
production pipelines. In our framework, Spark Streaming is
used as a distributed CQ processor whereas Kafka is used
as a distributed messaging system to provide communication
between the different components of the framework. For the
persistent storage, we made use of Apache Cassandra, which
is a distributed, fault tolerant and highly scalable database.
Since our main requirement from persistent storage is to speed-
up data retrieval for real-time data/join processing, Cassandra
supports it with the use of columnar storage. Use of the highly
scalable and fault-tolerant distributed streaming, messaging
and persistent storage systems make our framework robust and
scalable.

B. Query Processing

In order to get data processed by the proposed framework,
a Python daemon script need to be executed in addition
to the submission of a CQ. The CQ3D pre-processor on
receiving 3D spatial streams from variety of different sources
and in different formats, cleans and integrates them so that
uniform data may be provided to the other components of
the framework. The pre-processor makes use of daemon
scripts written in Python to achieve this task. Please note
that multiple computing nodes are utilized to speed-up the
pre-processing in parallel. The cleaned tuples are then loaded
into Kafka topics. Existing point-cloud operator gets the pre-
processed data from the Kafka topics and perform one or more
operation(s) (object detection, segmentation, etc.) followed by
loading the resultant tuples into the Kafka topics. As the name
indicates, existing point-cloud operators makes use of existing
point-cloud libraries to perform different operations on cleaned
3D spatial data. Just like pre-processor, this component is
deployed across multiple nodes to speed-up the processing.
CQ registered to the continuous query processor gets data
from Kafka topics, processes it and generates results which
are available to users and applications via APL.

Example 2: Assume an MMS vehicle scanning a road
segment and generating streams of point-cloud, images and
IMU/GPU measurements. The CQ3D pre-processor cleans
and integrates them and loads them to Kafka topic. After
pre-processing, the stream is supplied to the existing point-
cloud operators which implements an object detection library
to detect objects from the pre-processed stream. The Query
1 registered to the continuous query processor receives the
stream of detected objects and performs a window-based count



of the objects by applying filters on the object_type and predic-
tion_score attributes. The query implements the distance-based
window proposed in Sec. IV of size 2000 meters which slides
every 200 meters. The CQ results, corresponding to the size
of sliding window, are available to the end-user for analysis
through APL

windowedCount = predictionStream .groupBy (window
($”detection_timestamp”, ”2000_meters”, ”200_meters”),
$”object_type”, $”prediction_score”).count()

.filter ($”object_type” === “car”)

.filter ($” prediction_score” > 0.5)

Query 1. A windowed CQ with aggregate and filter operators

VI. EXPERIMENTAL EVALUATION

We divide the evaluation section into the following two sub-
sections. 1) Distance-based window and, 2) CQ3D framework.

A. Distance-based Window

1) Data and Experimental Setup: To evaluate the distance-
based window, GeoLife GPS Trajectory dataset is used col-
lected by Microsoft Research Asia [25]. The GPS trajectory
dataset was collected by 178 users during a period of over four
years (from April 2007 to October 2011). A GPS trajectory
is represented by a sequence of time-stamped points, each
of which contains the information of latitude, longitude and
altitude. Each trajectory is available as a separate CSV file,
which were integrated and supplied as a stream of tuples to the
distance window. The distance-window is implemented using
c++, which is available as open source on Github!. The code
is evaluated on a machine running Ubuntu 16.04 LTS OS with
Intel Core i7-6700 @ 3.40 GHz CPU and 16 GB memory.

2) Evaluation: First of all, the three distance functions
presented in Sec. IV are evaluated. Namely, we compare the
famous Haversine distance function with the Equirectangular
approximation and the Spherical law of cosines distance
functions. Fig. 5(a) compares the relative execution cost of
the three distance functions. The execution cost is computed
by setting the window size to 3000 meters and passing
all the trajectory tuples through the window. Since at any
time, trajectories’ tuples corresponding to the latest 3000
meters can be kept in the window, for each arriving tuple,
corresponding trajectory length (TLength) is computed using
the distance functions. Table I lists the number of distance
function computations performed by the window to process
all the trajectory tuples. From the Fig. 5(a), Haversine seems
to be the most expensive, followed by the Equirectangular
approximation and the Spherical law of cosines, however from
the Table I, the number of distance computations required in
case of Equirectangular function for the same amount of data
is far higher than the other two. This proves that although
the Equirectangular approximation is computationally less
expensive than the other two functions however the number
of distance computations required is quite high due to its
approximate computation. On the other hand, the Havesine

Thttps://github.com/salmanahmedshaikh/Distance Window

TABLE I
NUMBER OF DISTANCE COMPUTATIONS

| Window Size
Dist. Function | 1000 | 3000 | 5000
Haversine 19114852 | 45383697 | 65698136
Equirectangular | 27550232 | 62701249 | 88022883
Law of Cosines | 19114852 | 45383697 | 65698136

and Spherical Law of Cosines can produce accurate results,
however the Spherical Law of Cosines is computationally less
expensive.

Next we compare the relative throughput of the distance-
based window by varying the window size, where throughput
can be defined as the maximum number of input tuples
processed per second. From Fig. 5(b) it is obvious that the
throughput decreases with the increase in window size for all
the distance functions. With the increase in window size, the
trajectories’ length in the window also increases, hence larger
number of distance computations are required for the TLength
computation, resulting in lower throughput. Another thing to
note in the figure is that the throughput is the highest for the
Spherical law of Cosines function for all the window sizes,
because this function is the least expensive to compute (Fig.

5(a)).
B. CQ3D Framework

This section compares the proposed CQ3D framework with
the traditional framework. The implementation of the two
frameworks for the experiments is shown in Fig. 6. The figure
divides both the frameworks into three phases, i.e., I. object
detection, II. loading detection data and metadata and III.
query processing and output generation.

1) Data and Computing Cluster: For the CQ3D evaluation,
MMS drive data available from Kitti [1] is used. It is a
computer vision benchmark suite containing a number of
real 3D spatial datasets collected from MMS vehicle drive.
The dataset includes streams of camera images (color and
grayscale), laser scans (point-cloud), GPS measurements and
IMU accelerations. Since the Kitti benchmark is aimed at
object detection, the individual drive data is not so large,
hence we integrated all the drive data available from Kitti
and supplied that repeatedly to the experimental frameworks
for the sake of evaluation.

Since the Kitti benchmark data is available in the form of
flat files, it is supplied as files to both the frameworks for
the detection of objects (Phase I), without loss of generality,
the phase I is equally capable of processing real-time data
streams. In the phases II and III, the data is available as
stream in the proposed framework while as static data in the
traditional framework. Since the traditional approach makes
use of distributed database system to store the data, we made
use of Apache Cassandra, which is a distributed columnar
database and Apache Spark as a query processor. Whereas
for the proposed approach, we made use of Apache Kafka
as a messaging system and Apache Spark Streaming as a
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Fig. 6. Experimental frameworks
windowedOutput = predictionStream
.groupBy (window ($” distance”, ”100m”, ”100m”),
TABLE II $7drive”, $7drive_date”, $”object_type”).count()
DEPLOYMENT DETAILS OF EXPERIMENTATION CLUSTERS .filter ($” object_type”==="people” ||
$”object_type’==="car”)
Cluster | Nodes # | Memory | Details -filter ($7drive”==="0001")
Apache Spark 5 256 GB | 1 master and 4 worker nodes Query 4. Windowed query
Apache Kafka 3 128 GB 1 zookeeper and 2 broker nodes P
Apache Cassandra | 3 128 GB | 1 seed node 3) Evaluation: Firstly, we compare the proposed CQ3D

query processor. Since the first phase in both the frameworks
is implemented in the same way, we only compare the second
and the third phases for the execution time. The experiments
utilizes 3 different clusters, namely, Apache Spark, Apache
Kafka and Apache Cassandra. The clusters are deployed on
AIST AAIC cloud [26], where each VM has 20 CPU cores
and each core uses Intel skylake 1800 MHz processor. Table
IT shows the deployment details of each cluster.

2) Queries: For the sake of evaluation three continuous
queries, i.e, Query 2, Query 3 and Query 4 are used. Query 2 is
a simple filtering query, Query 3 is a group-by query whereas
Query 4 is a distance-based windowing query with filtering
operator. Since we made use of Apache Spark and Apache
Spark Streaming for the continuous queries which have APIs
in Scala, Java, Python, etc., the queries are written in Scala
programming.

filteredOutput predictionStream
.filter ($” prediction_score” >0.5)
.filter ($”object_type”==="people” ||

framework with the traditional framework by utilizing queries
Query 2 and Query 3. In this evaluation we compare the
data loading time and the query execution time. It is worth
mentioning here that the input data is available as either Kafka
topic or Cassandra table, where the Kafka topic has replication
factor of 2 and is divided into 80 partitions whereas Cassandra
table has replication factor of 2. Both the queries takes the
same amount of input, i.e., 5,033,350 prediction records/tuples
consisting of 13 attributes including “latitude”, “longitude”,
“object type”, ’detection accuracy” and “bounding box”’, how-
ever producing different number of output tuples, i.e., 116,590
and 44 respectively. The reason for mentioning the number
of output tuples is that the measured execution time includes
output tuple writing time to the respective storage, i.e., to
Apache Cassandra in case of the traditional approach and to
Apache Kafka in case of the proposed approach. From the
Fig. 7(a), it is evident that the per tuple processing cost of
the traditional approach is computationally expensive mainly
due to the loading time and the query result writing time.
Please note the log scale on y-axis. Per tuple loading time
(second phase in Fig. 6) of Apache Cassandra is approx 1.23
milliseconds which is hundreds of time expensive compare
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Fig. 7. Per tuple processing cost and throughput evaluation

to the 7 micro seconds in case of Kafka. This is due to
the expensive index building at the time of data loading in
case of databases, which is not required in our framework.
Besides loading, execution cost per tuple is also slightly higher
for traditional approach (third phase in Fig. 6) because the
execution time also include query results writing time to the
Cassandra DB which is expensive compared to writing data
to Kafka.

TABLE III
SAMPLE OUTPUT OF QUERY 4

window (meters) | drive | driveDate | objectType | count
100, 200 0001 | 28 car 2
100, 200 0001 | 28 people 7
200, 300 0001 | 28 car 2
200, 300 0001 | 28 people 8
300, 400 0001 | 28 people 3
300, 400 0001 | 28 car 3
400, 500 0001 | 28 car 3
500, 600 0001 | 28 car 3
600, 700 0001 | 28 car 3
700, 800 0001 | 28 car 3
800, 900 0001 | 28 car 3
900, 1000] 0001 | 28 car 1

Next we compare the relative throughput of the three
queries, i.e., Query 2, Query 3 and Query 4 in Fig. 7(b).
Query 2 has the highest throughput because it is the simplest
query with the least number of operators, followed by the
group-by query (Query 3) and windowed query (Query 4).
The Query 4 is the most expensive query because it contains
window operator in addition to filtering and group-by opera-
tors. The window operator causes the group-by operation to
be performed for each window. A sample output of Query 4 is
shown in Table III. The Query 4 makes use of distance-based
tumbling window of size and sliding step of 100 meters each.
Table IIT shows the window-based count of object types ’car”
and “people” by grouping the output with respect to attributes
drive, driveDate and objectType. Please note the window size
and slide duration, i.e., [100, 200], [200, 300], etc., which are
non-overlapping, hence representing tumbling window.

VII. CONCLUSION AND FUTURE WORK

With the availability of low cost 3D scanners recently, 3D
spatial data can be obtained easily. The 3D spatial data is
generated as continuous data stream, however traditionally it
is processed offline, i.e., the data is first stored on a secondary
storage, denoised and is then queried and/or analyzed. Tradi-
tional approaches to process 3D spatial streams make heavy
use of secondary databases to store the intermediate query
results, which is IO expensive. Due to this, existing solutions
are too slow to support real-time processing of 3D spatial
streams. To solve this issue, we proposed CQ3D, which is
a main-memory based distributed continuous querying frame-
work capable of processing the 3D spatial data streams in real-
time. Furthermore, we proposed a distance-based window to
support the continuous queries over spatial data streams, where
a user is interested in querying a particular length of spatial
trajectories, and implemented it in our proposed framework.
For the sake of evaluation, we made use of the real trajectories
data available from Microsoft Research Asia and the real
MMS drive data from KITTI benchmark suite. Experimental
evaluation highlights the drawbacks of traditional frameworks
and proves the effectiveness of the proposed framework.
Furthermore, evaluation of different distance functions for
the distance-based window is also presented. As part of the
future work, we are working on an incremental version of
the proposed distance-based window to reduce its computation
cost.
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