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Abstract

The Riemann hypothesis is the assertion that all non-trivial zeros have real

part 1
2
. It is considered by many to be the most important unsolved problem

in pure mathematics. There are several statements equivalent to the famous

Riemann hypothesis. In 2011, Solé and Planat stated that the Riemann

hypothesis is true if and only if the inequality ζ(2)·
∏

q≤qn
(1+ 1

q
) > eγ ·log θ(qn)

holds for all prime numbers qn > 3, where θ(x) is the Chebyshev function,

γ ≈ 0.57721 is the Euler-Mascheroni constant, ζ(x) is the Riemann zeta

function and log is the natural logarithm. In this note, using Solé and Planat

criterion, we prove that the Riemann hypothesis is true.
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann

zeta function has its zeros only at the negative even integers and complex
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numbers with real part 1
2
. It was proposed by Bernhard Riemann (1859).

The Riemann hypothesis belongs to the Hilbert’s eighth problem on David

Hilbert’s list of twenty-three unsolved problems. This is one of the Clay

Mathematics Institute’s Millennium Prize Problems.

In number theory, the Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal

to x, where log is the natural logarithm.

Proposition 1.1. We have [1, pp. 1]:

x ∼ θ(x) when (x→ ∞).

Leonhard Euler studied the following value of the Riemann zeta function

(1734).

Proposition 1.2. It is known that[2, (1) pp. 1070]:

ζ(2) =
∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number (We also use the notation qn to denote the

nth prime number).

Franz Mertens obtained some important results about the constants B

and H (1874). We define H = γ − B such that B ≈ 0.2614972128 is

the Meissel-Mertens constant and γ ≈ 0.57721 is the Euler-Mascheroni con-

stant [3, (17.) pp. 54].
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Proposition 1.3. We have [4, Lemma 2.1 (1) pp. 359]:

∞∑
k=1

(
log

(
qk

qk − 1

)
− 1

qk

)
= γ −B = H.

On the sum of the reciprocals of all prime numbers not exceeding x, we

have

Proposition 1.4. There are infinitely many natural numbers x such that [5]:

B + log log(x) >
∑
q≤x

1

q
.

In mathematics, Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ func-

tion, where q | n means the prime q divides n. We say that Dedekind(qn)

holds provided that ∏
q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
· log θ(qn).

Next, we have Solé and Planat Theorem:

Proposition 1.5. Dedekind(qn) holds for all prime numbers qn > 3 if and

only if the Riemann hypothesis is true [6, Theorem 4.2 pp. 5].

A natural number Nk is called a primorial number of order k precisely

when,

Nk =
k∏

i=1

qi.

We define R(n) = Ψ(n)
n·log logn for n ≥ 3. Dedekind(qn) holds if and only if

R(Nn) >
eγ

ζ(2)
is satisfied. There are several statements out from the Riemann

hypothesis assumption:
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Proposition 1.6. We have [6, Proposition 3. pp. 3]:

lim
k→∞

R(Nk) =
eγ

ζ(2)
.

Putting all together yields a proof for the Riemann hypothesis using the

Chebyshev function.

2. Central Lemma

This is a key Lemma.

Lemma 2.1.
∞∑
k=1

(
1

qk
− log

(
1 +

1

qk

))
= log(ζ(2))−H.

Proof. We obtain that

log(ζ(2))−H = log(
∞∏
k=1

q2k
q2k − 1

)−H

=
∞∑
k=1

(
log

(
q2k

(q2k − 1)

))
−H

=
∞∑
k=1

(
log

(
q2k

(qk − 1) · (qk + 1)

))
−H

=
∞∑
k=1

(
log

(
qk

qk − 1

)
+ log

(
qk

qk + 1

))
−H

=
∞∑
k=1

(
log

(
qk

qk − 1

)
− log

(
qk + 1

qk

))
−H

=
∞∑
k=1

(
log

(
qk

qk − 1

)
− log

(
1 +

1

qk

))
−

∞∑
k=1

(
log

(
qk

qk − 1

)
− 1

qk

)
=

∞∑
k=1

(
log

(
qk

qk − 1

)
− log

(
1 +

1

qk

)
− log

(
qk

qk − 1

)
+

1

qk

)
=

∞∑
k=1

(
1

qk
− log

(
1 +

1

qk

))
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by Propositions 1.2 and 1.3.

3. What if the Riemann hypothesis were false?

Several analogues of the Riemann hypothesis have already been proved.

Many authors expect (or at least hope) that it is true. However, there are

some implications in case of the Riemann hypothesis might be false.

Lemma 3.1. If the Riemann hypothesis is false, then there are infinitely

many prime numbers qn for which Dedekind(qn) fails (i.e. Dedekind(qn) does

not hold).

Proof. The Riemann hypothesis is false, if there exists some natural number

x0 ≥ 5 such that g(x0) > 1 or equivalent log g(x0) > 0:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
q≤x

(
1 +

1

q

)−1

.

We know the bound [6, Theorem 4.2 pp. 5]:

log g(x) ≥ log f(x)− 2

x

where f was introduced in the Nicolas paper [7, Theorem 3 pp. 376]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

When the Riemann hypothesis is false, then there exists a real number b <

1
2
for which there are infinitely many natural numbers x such that log f(x) =

Ω+(x
−b) [7, Theorem 3 (c) pp. 376]. According to the Hardy and Littlewood

definition, this would mean that

∃k > 0,∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.
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That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y
, but we note

that

lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible positive value of k when b < 1
2
. In this way, this implies

that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ 1
√
y
.

Hence, if the Riemann hypothesis is false, then there are infinitely many

natural numbers x such that log f(x) ≥ 1√
x
. Since 2

x
= o( 1√

x
), then it would

be infinitely many natural numbers x0 such that log g(x0) > 0. In addition,

if log g(x0) > 0 for some natural number x0 ≥ 5, then log g(x0) = log g(qn)

where qn is the greatest prime number such that qn ≤ x0. Actually,∏
q≤x0

(
1 +

1

q

)−1

=
∏
q≤qn

(
1 +

1

q

)−1

and

θ(x0) = θ(qn)

according to the definition of the Chebyshev function.

4. Main Insight

This is the main insight.

Theorem 4.1. The Riemann hypothesis is true when for every large enough

prime number qn > 3, there exists another prime qn′ > qn such that

R(Nn′) ≤ R(Nn).
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Proof. If the Riemann hypothesis is false and the inequality

R(Nn′) ≤ R(Nn)

is satisfied for every large enough prime number qn > 3, then there is an

infinite subsequence of natural numbers ni such that

R(Nni+1
) ≤ R(Nni

),

qni+1
> qni

and Dedekind(qni
) fails by Lemma 3.1.

This is a contradiction with the fact that

lim inf
k→∞

R(Nk) = lim
k→∞

R(Nk) =
eγ

ζ(2)

by Proposition 1.6. By definition of the limit inferior for any positive real

number ε, only a finite number of elements of the sequence R(Nk) are less

than eγ

ζ(2)
− ε. This is a contradiction with the previous infinite subsequence

and thus, the Riemann hypothesis must be true.

5. Main Theorem

This is the main theorem.

Theorem 5.1. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

R(Nn′) ≤ R(Nn)

is satisfied for large enough prime numbers qn′ > qn because of the Theorem

4.1. That is the same as∏
q≤qn′

(
1 + 1

q

)
log θ(qn′)

≤

∏
q≤qn

(
1 + 1

q

)
log θ(qn)
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which is

log log θ(qn′)− log log θ(qn) ≥
∑

qn<q≤qn′

log

(
1 +

1

q

)
after making a simple distribution in the inequality.

For every large enough prime number qn > 3, there exists another prime

qn′ > qn such that

log log θ(qn′)− log log θ(qn)

= log log θ(x)− log log θ(qn)

≈ log log(x)− log log θ(qn)

= B + log log(x)−B − log log θ(qn)

>

∑
q≤qn′

1

q

−B − log log θ(qn)

=
∑

qn<q≤qn′

log

(
1 +

1

q

)
+ α +

(∑
q≤qn

log

(
1 +

1

q

))
− log log θ(qn)−B

≈
∑

qn<q≤qn′

log

(
1 +

1

q

)
where

θ(x) ≈ x

could be true by Proposition 1.1,

B + log log(x) >
∑
q≤x

1

q
=
∑
q≤qn′

1

q

could hold by Proposition 1.4,

α =

∑
q≤qn′

1

q
− log

(
1 +

1

q

) ⪅ log(ζ(2))−H
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and so,

α +

(∑
q≤qn

log

(
1 +

1

q

))
− log log θ(qn)−B

⪅ log(ζ(2)) +

(∑
q≤qn

log

(
1 +

1

q

))
− log log θ(qn)− γ

= log

(
R(Nn) ·

ζ(2)

eγ

)
≈ 0

for large enough pair of prime numbers (qn, qn′) and qn′ > qn by Lemma 2.1

and Proposition 1.6. Consequently, the inequality

R(Nn′) ≤ R(Nn)

holds for sufficiently large prime numbers qn′ > qn and therefore, the Riemann

hypothesis is true.

6. Conclusions

Practical uses of the Riemann hypothesis include many propositions that

are known to be true under the Riemann hypothesis and some that can

be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann

hypothesis is closely related to various mathematical topics such as the distri-

bution of primes, the growth of arithmetic functions, the Lindelöf hypothesis,

the Large Prime Gap Conjecture, etc. In general, a proof of the Riemann

hypothesis could spur considerable advances in many mathematical areas,

such as number theory and pure mathematics.
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Progress in Mathematics 38 (1983) 233–244.
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