ﬁ EasyChair Preprint

Ne 3489

A Model-Driven Approach for Semantic
Data-as-a-Service Generation

Hela Taktak, Khouloud Boukadi, Michael Mrissa,
Chirine Ghedira-Guégan and Faiez Gargouri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 27, 2020

A Model-Driven Approach for Semantic
Data-as-a-Service Generation

Hela Taktak*T, Khouloud Boukadi*, Michael Mrissa ¥, Chirine Ghedira Guégan t and Faiez Gargouri*
Sfax University, MIRACL Laboratory, FSEG Sfax, Tunisia*
Lyon University, Lyon3 University, LIRIS UMR5205, France'
InnoRenew CoE, University of Primorska, Slovenia i
Email: hela.taktak @univ-lyon3.fr, khouloud.boukadi@gmail.com, michael.mrissa@innorenew.eu,
chirine.ghedira-guegan @univ-lyon3.fr and faiez.gargouri@isims.usf.tn

Abstract—Nowadays, with the increasing number of data
sources, especially in environmental domain, earth observation
programs face major challenges for environmental data ex-
ploitation, mainly due to data sources heterogeneity of different
types such as access techniques, used protocols, languages,
data formats, etc. Although typical solutions abstract from this
heterogeneity with a layer of data services, the development of
such systems remains tedious in this context. In this paper, we
propose an approach based on Model-Driven Engineering (MDE)
combined with semantic annotations, to automate data service
development on top of data sources. Our work contributes to
the development of integrated service-based architectures driven
by automatic service generation, data integration from existing
environmental systems and automatic service annotations. Our
solution, applied to the detection of natural disasters, provides
1) appropriate modelling of data sources and services to apply
model-to-text (M2T) transformations, 2) automatic generation
of Representational State Transfer (REST) data service code
template, 3) automatic generation of semantically annotated
Hypermedia-based descriptors of these services. We have im-
plemented and evaluated our solution with a set of real data
sources provided by the Sahara and Sahel Observatory (OSS),
OpenWeatherMap and CHIRPS.

Index Terms—Semantic RESTful Services, Model-Driven-
Engineering, Hypermedia Driven APIs.

I. INTRODUCTION

Nowadays, climate change and environmental crisis are a
major concern as noted by the United Nations (UN) through
the Sustainable Development Goals (SDGs)!. Several SDGs
relate to environmental monitoring and weather prediction,
such as the efforts to combat desertification, land degradation
and biodiversity loss. Therefore, ICT solutions monitoring the
environmental state and predicting natural disasters are more
than ever required. In fact, in the era of big data, several
environmental and earth observations information systems are
using and providing huge amounts of data offering several
access methods (APIs, database, files, etc.), supporting various
data formats (NetCDF, HDF, GRidded-Binary, etc.) and using

This work was financially supported by the "PHC Utique” program of
the French Ministry of Foreign Affairs and Ministry of Higher Education
and Research and the Tunisian Ministry of Higher Education and Scientific
Research in the CMCU project number 17G1122. Michael Mrissa gratefully
acknowledges the European Commission for funding the InnoRenew CoE
project (Grant Agreement 739574) under the H2020 Widespread-Teaming
program and the Republic of Slovenia.

Thttps://sustainabledevelopment.un.org/

different protocols (ODBC and JDBC for databases, HTTP
for web APIs, etc.). Therefore, aggregating and exploiting
data, for disasters prediction, from various data sources, rises
multiple challenges. Although typical solutions abstract from
data sources heterogeneity with a layer of data services, its
development is usually performed manually and requires a
lot of expertise. Also, semantic descriptions enabling data
integration are missing. Hence, the challenge is to provide
a set of automated steps for services generation and their
semantically-based extensions, to support the composition
processes for alerts detection purpose. Moreover, the semantic
linking of the data access services enables the combination
of pieces of knowledge ensured by inferences. These latter
help producing warnings and real-time decisions to effectively
prevent natural disasters. We, therefore, propose a generic
solution for automating the deployment and use of Web
services through an MDE-based approach [13], and flexible to
the change of the domain knowledge and the used semantics.

Our proposal automatically generates the source code
templates and the semantically annotated descriptions of
RESTful [2] services from heterogeneous environmental data
sources. These services will be the potential participants in
further composition process for alerts detection. The remainder
of this paper is structured as follows: Section II provides
a scenario highlighting the need to automatically generate
RESTful services source code, accessing the data sources.
Section III overviews related works dealing with the integra-
tion and querying of heterogeneous data sources. Section IV
describes the global architecture, before proposing a data
source model and a semantic model for RESTful services, in
Section V. Section VI shows how to generate semantically
annotated RESTful services using the M2T transformation
technique. Section VII demonstrates the applicability of our
approach. Finally, we conclude and present our future work in
Section VIIIL.

II. MOTIVATING SCENARIO

Figure 1 depicts the scenario studied in the context of
the PHC PREDICAT project, illustrating environmental data
sources heterogeneity and their related data formats. It involves
three different types and access mechanisms of data sources.
The first data source CHIRPS is proposed by the Sahara

and Sahel Observatory (OSS) and offers precipitation data, in
different format files such as, .BIL, .TIF or NETCDF. The sec-
ond data source OpenWeatherMap observes the temperature
and meteorological features. OpenWeatherMap offers access
through HTTP using its dedicated URL. Harmonized World
Soil Database (HWSD) is the third data source, made available
by the OSS and renders information about soils textures’. Let
us consider a user request for temperature, precipitation and
soil texture in the Tunisia desert, in January 2020. In order to
retrieve the results, the user should access and manipulate each
data source individually, be aware of the necessary protocols
and access techniques for each of the data sources. Indeed,

Data Sources Types

Precipitation Output cu@vs CRELS FTP access to Data
(.BIL, .TIF, .NetCDF |«—RY — ource (URL)
Files) Ftp files
Temperature < Qutput @ - | = Access API Data €
(JSON) = Source (URL) {iﬂ
OpenWeather ~ API /
Map
Soil Text Output 1 /
(Mglaccegs:l:B) R - | = Database access to
"HWSD Database Data Source (URL)

Fig. 1. Data source heterogeneity: access mechanisms and protocols.

to collect precipitation data, she should manually browse
through the CHIRPS FTP server and read the relevant files.
Moreover, to retrieve temperature, the user should interrogate
OpenWeatherMap data source using an HTTP client (e.g:
browser) and an API Key. For soil textures, data should
be downloaded and browsed locally. Hence, accessing these
heterogeneous data sources involves manual and tedious error-
prone tasks for users. Therefore, there is a need to alleviate the
burden of service development, by providing an abstraction
layer based on a set of automatically generated RESTful
services offering data sources uniform access (e.g: a RESTful
service accessing an API or a database, etc.).

III. RELATED WORK

Most approaches enabling interoperability, in the data in-
tegration process, use mediators and wrappers [20], [19]
which are based on a unified view of the heterogeneous
data. Wrappers allow accessing data sources using a common
data model, whereas mediators provide an integrated view
of the data provided by the data sources through wrappers.
Mediators perform requests transformation into requests to
the data sources. Nevertheless, these solutions need additional
efforts to code them manually. Other existing approaches are
Data Warehouses oriented [21] that replicate and integrate
data from heterogeneous data sources maintained by on-
line transaction processing systems. Several other solutions
rely on the use of ontologies [24], [23] as a data access
mechanism representing the domain of data stored in a data
source. However, ontologies query answering require costly

computational run-time inferences. In [16], authors presented
a novel database physical operator for in-situ processing over
raw data files. This solution is based on a parallel super-
scalar pipeline implementation, providing instant access to the
heterogeneous data and integrating data, seamlessly.

Although these solutions have been proposed to cope with
large-scale data heterogeneity, to our best knowledge, they do
not support simultaneously modeling, linking and integrating
heterogeneous data in a generic, efficient and inexpensive
integration process. We, therefore, present in the following
section, our proposed system architecture.

IV. AUTOMATIC SERVICE GENERATOR SYSTEM
ARCHITECTURE

Our proposed system serves as an interface for the end-
user to access, query the heterogeneous environmental data
sources and retrieve results. The main challenge is to support
a software stack able at the same time, to model heterogeneous
data sources, generate automatically RESTful data access
services templates, semantically annotate, link, and enhance
services descriptors’ with environmental domain knowledge.
Our system adopts MDE to ensure data/service integration and
automated service generation and annotation. Moreover, our
proposed system envisions an intelligent creation of composed
services participating in the deduction of new facts, such as
the detection of environmental alerts, in further processes. Our
system architecture, depicted in Figure 2, includes four layers:
end-user, data service, semantic and data source layers. The

User Layer

€ N

= AE
Request

Semantic Layer Data Service Layer | I I

Semantic Data
Services Registry

Semantic
Module

Data Service Generator
Module

uJ
Wrappers Marketplace

{3}

Json-Id

Data Source Layer I I
&R

| Data Sources Description
Marketplace

Hydra

Hydra Vocabulary

Data Sources

Fig. 2. Main layers of the system architecture.

end-user layer features a rich user interface that exposes data
access services to the end-user. Generated services by the
data service layer are presented in a lightweight portal built
using Spring MVC Framework. The semantic layer includes
the Modular Environmental Monitoring Ontology (MEMOn)
proposed in [8]. The MEMOn ontology consists of a set of
ontological modules covering sub-domains of environmental
monitoring. In addition, this layer includes the JSON-LD
serialization format and the Hypermedia-Driven APIs (Hydra)
vocabulary, which are detailed in further sections. The data

service layer manages the registry of semantic data services.
The automated service generation and semantic annotations
are based on two modules: the Data Service Generator module
is detailed in Section V and the Semantic Annotation module
which is detailed in Section VI. The Data Service Generator
is invoked when a new data source joins the system and
its RESTful service is not yet implemented. This module
relies on a marketplace of wrappers to handle the automatic
generation of RESTful service based on an MDE approach.
Wrappers are pieces of code that implement a protocol for
a data source connection. The Semantic Annotation module
aims at associating and tagging service descriptors using the
MEMOn ontology. This module also describes and documents
RESTH(ul services through Hydra vocabulary. The data source
layer encompasses several environmental data sources whose
descriptions are defined in a dedicated marketplace.

V. DATA SERVICE GENERATOR MODULE

The Data Service Generator Module relies on MDE princi-
ples to handle automatic model transformations. Meta-model-
based transformations use only the elements of the meta-
models, which are expressed in terms of the source and target
meta-models [7]. In our proposed approach a source meta-
model allows modelling data sources, while a target meta-
model enables modelling RESTful services. The proposed
meta-models and transformation rules to generate the RESTful
service template are described below.

e Data Source Meta-model

The proposed meta-model aims to resolve the heterogeneity of
data source types and properties by proposing an abstracted
and unified structure for any data source and promotes the
automatic generation of RESTful services. It is built upon
the meta-model proposed in [15] and extends it with relevant
concepts and relations related to data source request, response
and their possible types (i.e: complex, simple), depicted in
Figure 3. Since we operate with data sources on the Web,
a DataSource is identified by an URI and has a Name
attribute. The data source is queried by a Request and returns
a Response. A Response is characterized by a Type, whether
it could be Simple or Complex. Both Request and Response
are identified and accessed by an URI on the Web. Each
data source has a DataModel which represents the schema
of the data. Each data source has Characteristic such that the
Protocol and the Port attributes. These latter give information
about how to access the data.

o RESTful Service Meta-model

The proposed service meta-model is built upon the MOF
(Meta-Object Facility) RESTful meta-model [11]. The ratio-
nale behind using this meta-model is that it enumerates almost
all the necessary concepts related to RESTful services. The
RESTService is defined as a set of Resources, each identified
by an URI and accessed by an URIService attribute, has a
Description attribute and is composed of a set of Parameters.
Each Resource uses a set of Methods. A Method is identified
by its Path and has its HTTPMethod. The Method includes a

DataSource
DataModel 0.1 _ 0.1 Request
T :R' ;::r!”g ®— >R :Sting
- Name - String - Name : String
+ QOperation ()
. g 0'1 0 *
Characteristic 0.+ 0.1 . 0.1
- Protocol : String X t”
- Port “int 0.1 0. Response \<retum Type
+ Method () - URI :String {1 1.7 > Name : String

Simple %

Complex

Fig. 3. Environmental data sources meta-model.

Request and produces a Response. Each Request is composed
of a set of InputParams which are the specialization of the
Parameters. A Response is composed of a set of OutputParams
which are the specialization of the Parameter class. The Pa-
rameter has a Type which can be either a SimpleType or a
ComplexType. Each ComplexType has several Representations
(e.g: TextReprensentation, JSONRepresentation or XMLRepre-
sentation). Besides the original classes, we extend this meta-
model with a generic class named Wrapper, which is identified
by its Name and is consumed by the Methods of the RESTful
service. The Wrapper connects to any given environmental
data source, given its type (i.e: API, Database, etc.) and its
data-model structure. Wrappers uniformly integrate into the
REST service. Figure 4 depicts a description of our extended
MOF RESTful Service meta-model.

—= Parameter
‘ - isRequired : EString
- dataType :EString
RESTSenvice - inQueryString : EBoolean = fal 0.1
- URISenvice : EString questRep
- Description : EString -
p
- MmediaType
0. i 1 1 RepresentationType * json
requestQueryParameters responseRepresenta
1
\ Request | | Response TextRepresentation

Resource - GET - TextRepresentationURI : int

- URI -EString | |- POST |

- PUT
- DELETE J\
{ 1 0. R

XmiRepresentation
- XmiSchemaURI : EString

methodRequest - MethodResponse Type

- JSON SR o
Method - Tert IsonRepresentation

- XM \—- JavaScriptObject : EString

1
Methods,

- path EString
- HtfpMethod : HttpMethod = GET

Wrapper

04— 01] Name EStin
method wrapper

Fig. 4. MOF RESTful service meta-model.

¢ Transformation Rules

Transformation rules are semantic mappings between source
meta-model elements to the target meta-model elements. When

executed, a new template is created, which represents the
different components of a REST service generated from the
data source model. These components among other, include
the service name, the service path and the needed methods.
For instance, each DataSource Name in the data source meta-
model is transformed into a RESTService in the target meta-
model. Each Data Source Operation in the data source meta-
model is transformed into a Method class in the target meta-
model and into a path attribute in the Method class in the
target meta-model. Each Request of the data source meta-
model is converted to a Request class in the target meta-model.
Each Response of the data source meta-model is converted to
the Response class of the target meta-model. Each Request
URI in the source meta-model is converted to a Wrapper
class in the target meta-model. For further example details
see Section VII-A.

VI. SEMANTIC ANNOTATION MODULE

This module focuses on how to automatically generate and
semantically enhance descriptors of the RESTful services with
Hydra annotations. Although other alternatives to Hydra exist
as cited in [25], to add descriptions to RESTful services
(i.e: RESTdoc, RESTdesc, hRESTS, etc.), its advantage is
that RESTful APIs state transitions are exchanged at run-
time, making the client decoupled from the server. Moreover,
Hydra annotations aim to facilitate services discovery and their
composition for further disasters prediction processes. Indeed,
these latter need relevant semantic services relationships based
on schema compositions’ which are driven by inferences
specified by domain experts. This module follows two pro-
cesses: on the one hand, the Hydra template generation process
based on M2T transformation and on the other hand, the
Semantic Annotation Process (SAP) of the Hydra descriptor,
which is based on domain concepts matching. First, the first
process mainly relies on MDE principles and automatic M2T
transformations. The source meta-model represents the Web
Application Description Language (WADL) [3] descriptor of
the generated RESTful service and the target meta-model
complies with Hydra descriptors. This transformation aims
to turn a WADL descriptor into a machine-processible Hydra
descriptor. Hydra descriptors based-vocabulary aim to describe
the service functionalities in a Hypermedia-driven API, where
all the resources are navigable and linked through URLs. Thus
thanks to Hydra, the RESTful service is seen as a documented
Web-API and Hydra operations describe the functionalities
provided by this Web-API. Second, SAP consists in linking
the output parameters of the service with ontology concepts
describing the information that the service provides. In our
approach, the MEMOn ontology [8] is used as the main source
of environmental background knowledge. Figure 5 depicts the
processes to automatically generate the Hydra template and
enhance it with semantic annotations.

A. M2T Hydra Template Generation

In what follows, we detail M2T transformation rules to
generate the Hydra annotated service descriptor for a RESTful

Semantic Layer Semantic Annotation Module

o= ————— e m

Hydra Template Generation
WADL Hydra
Meta-Model Meta-Model

|
| |
| |
| |
| |
| |
| |
| |
: Transformation Rules :H
| |
| |
! |
! |
! |
| |
| |

Domain
Ontology
MEMOn

=2}

Json-Id Schema

'

L]

Template of the
Hydra Annotated
Service Descriptor

Concepts Matching

[

Hydra |

e —— 2

Fig. 5. Semantic Annotation Module.

service.
o Service Descriptor Meta-model (WADL Meta-model)

The WADL document defines a contract specifying how to use
the different set of resources of the service. It encompasses an
application which contains a set of resources. Each resource
class contains a set of resources. Each resource includes the
method issued by the service request using the HTTP method.
Each method produces a response which has a representation.
The representation of the output of the RESTful service could
be either in JSON or in XML format.

o Hydra Meta-model

The target meta-model is designed for the generation of a
Hypermedia-driven API that describes and documents the
REST(ul service resources and operations through the Hydra
vocabulary. This meta-model contains the apiDocumentation
class, which represents the Hypermedia API documentation
related in our case to a RESTful service. The apiDocumenta-
tion is seen as a resource and supports a set of operations. The
context attribute is seen as a reference to the JSON-LD which
is a semantically annotated document integrating the shared
environment of terms from MEMOn. The id attribute desig-
nates the name of the service which is associated to the API
documentation. The entrypoint is the URL to access the API
Documentation. The fype attribute refers to the type of an API
documentation, which is either (e.g: Hydra:class, Hydra:link,
Hydra:property) defined in the Hydra Core Vocabulary. An
apiDocumentation is composed of dereferenceable resources
named as links. A link is composed of supportedOperations.
Each supportedOperation is composed of a set of operations,
each of which is associated to a Property having an id attribute
which consists of one of the HTTP methods (e.g: GET, POST,
DELETE, PUT). An operation is identified by the id attribute
which references the method name of the RESTful service.
The type of the operation is hydra:link.

¢ Transformation Rules

Transformation rules are mapping relations between meta-
model elements of the WADL source meta-model to the Hydra
target meta-model. For instance, each resource class which is
the basic class of the WADL meta-model is transformed into
a resource class in the Hydra meta-model. Each resource in
the WADL meta-model is transformed into a link class in the

Hydra meta-model. Each method in the WADL meta-model is
transformed into an operation class in the Hydra meta-model.

B. Semantic Annotation Process

In order to semantically enhance Hydra service descriptor,
the semantic annotation process (SAP) is proposed. SAP
mainly relies on two inputs: the JSON document consisting of
the Representation class corresponding to the Response class
of the executed RESTful service and the MEMOn [8] domain
ontology. The JSON document contains the pairs (key/value)
of the service output concepts, which are named entities. We
implemented SAP through a dedicated Python script which
uses the Owlready2? library to access and manipulate OWL
ontologies. This script retrieves associated results in a linked-
data perspective from MEMOn. This association is called
the matching process parsing entities of the JSON document,
performing string similarity measures to find concepts from
MEMOn and associating each matched entity with its linked
IRIs in MEMOn modules. There are several similarity mea-
sures proposed in the literature, such as Cosine similarity [18],
Jaccard similarity measure [18] and Levenshtein similarity
measure [4]. The matching in SAP is performed when the
maximum score is computed among the three denoted similar-
ity measures. Hence, once the named entity is matched, its type
(i.e: “@type” : “owl:Class”) is mentioned in the JSON-LD file
of the current RESTful service. Moreover, we enhanced the
JSON-LD by matched concepts with their corresponding IRIs
from the MEMOn ontology. Thereafter, the last step of SAP
consists in integrating the JSON-LD path to the Hydra de-
scriptor. Thus, the Hydra annotated descriptor is semantically-
enhanced with concepts from the MEMOn ontology. For in-
stance, consider the “temperature” concept extracted from the
JSON document. When the Temperature concept is matched
with its equivalent in MEMOn, it is explicitly annotated by the
concept “MeasurementUnitof Temperature” as an “Owl:Class”
type and identified by its URI specified in MEMOn. This latter
has a value as a “DegreeCelsiusMeasure”. Finally the concept
“temperature” is assigned the same numerical value returned
by the RESTful service.

VII. IMPLEMENTATION AND EVALUATION

In this Section, we present the feasibility of our MDE-based
approach by an implementation example of a RESTful service
generation accessing an API data source. In particular, we
demonstrate the effectiveness of the Data Service Generator
module. First, we provide an implementation example of a
RESTful service generation accessing an API data source.
Second, we focus on the evaluation of the semantic matching
process using a Benchmarking annotation tool GERBIL [14],
which is a general framework for benchmarking semantic
entity annotation systems. More information about GERBIL
are on the project webpage® and code repository*.

Zhttps://pypi.org/project/Owlready?2/
3http://gerbil.aksw.org
“https://github.com/AKSW/gerbil

A. RESTful Service Generation

To demonstrate the effectiveness of the Data Service Gen-
erator module, we chose to implement the case of an API
data source “OpenWeatherMap”. It searches and returns the
temperature in a given city or by geographical coordinates. To
generate the RESTful service, in a first step, developers need
to use a software modeler to design the OpenWeatherMap data
source model which conforms to the data source meta-model.
In a second step, Acceleo [5] tool applies the M2T transfor-
mation rules previously defined to generate the the RESTful
service source code which conforms to the RESTful service
meta-model. The “API” class in the data source model is
transformed into the class of the RESTful service which is the
concatenation of the API name class in the data source model
with the term “service”. Moreover, the service is annotated
with its path (@Path="APIname”), which is the concatenation
of the name of the API class in the data source model
with the term “name”. The class “API” contains the method
“getTemperature” in the data source model. It is mapped in
the generated code of the RESTful service to its method name,
which is identical to the name of the method in the data source
model “getTemperatureByCity” and its path is annotated with
the name of the method (@Path="getTemperatureByCity”).
The “methodType” in the API model is mapped into the
“outputParam” in the generated code of the RESTful service to
produce the output in the “MediaType. APPLICATION_JSON”
representation form. The method in the service is named
“getTemperatureByCity”, which calls the “getToken” method
contained in the Wrapper module which retrieves a generated
token (i.e: session ID) for the user using the APIL. This method
generates the temperature by a city name. The second method
in the RESTful service is “getTemperatureByCoord” which
generates the temperature by the geographical coordinates.
Figure 6 depicts the automatically generated RESTful service

= import javax.ws.rs.Produces;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

4 import javax.ws.rs.client.*;
inport javax.ws.rs.core.MediaType;
inport javax.ws.rs.WebTarget;
path("APIname")

Eublic class APIService

= fGet
Path("getTemperatureByCity")
p (MediaType.APPLICATION_JSON)
public String getTemperatureByCity(String city)
r
!
APTWrapper WAPI=new APIWrapper();
Client c= ClientBuilder.newClient();
String Buffer sbenew StringBuffer();
sb.append(url);
String token = WAPI.getToken();
String url = "https://api.openweathermap.org/data/2.5/weather?q="+city+"&appid="+token;
WebTarget target= c.target(sb.toString());
return target.request().get(String.class);
3

1
= {iGet
Path("getTemperatureByCoord")
gProduces(MediaType.APPLICATION_JSON)
public String getTemperatureByCoord(int Lat,int Long)
r

APIwrapper WAPI=new APIurapper();
Client c= ClientBuilder.newClient();
String Buffer sb=new StringBuffer();
sb.append(url);

= I.getToken();
= "https://api.openweathermap.org/data/2.5/weather?1at="+Lat+"lon="Long+"8appid="+token;
WebTarget target= c.target(sb.toString());
return target.request().get(String.class);
)
7

}

Fig. 6. Excerpt of the generated RESTful service for an API data source.

for an API data source.

B. Evaluation of the Semantic Annotation Module

To assess the evaluation of the Semantic Annotation mod-
ule, we used a dedicated benchmarking framework called
GERBIL which allows evaluating an annotation tool against
other annotation systems. It provides an enhanced entity
matching which comprises the following steps: (1) URI set
retrieval, (2) URI checking, (3) URI set classification and (4)
URI set matching. Moreover, it uses traditional information
retrieval measures, namely precision, recall and F-measure.
We tested two types of environmental data sources available
on the Web: the OpenWeatherMap API, and CHIRPS FTP
which accesses large volumes (i.e: NETCDF file, 477MB).
The OpenWeatherMap API° gives access to current weather
data for any location including over 200,000 cities from the
OpenWeatherMap dataset. Data comes from more than 40,000
weather stations and is available in JSON, XML, or HTML
formats through parameters in the URL. We performed the
generation of their accessing RESTful services and retrieving
the requested concepts by the user. We, then, performed
a preliminary evaluation of the effectiveness of SAP. We
compared the performance of our annotator with that of some
of the GERBIL annotations systems’. Table I depicts the

TABLE I
SYSTEM PERFORMANCE MEASURES
Strategy Precision | Recall | F-Measure
SAP 0.467 0.244 0.320
DBpedia Spotlight | 0.489 0.249 0.329
Babelfy 0.134 0.096 0.111
AIDA 0.324 0.112 0.166

different system annotators performance measures: the DB-
pedia Spotlight [9] relies on a vector-space representation of
entities and using the cosine similarity measure. The Babelfy
[10] relies on terms disambiguation in-link graph algorithm
to tackle the word sense disambiguation and entity linking
tasks. The AIDA approach [17] relies on graph building and
dense graph algorithm. We observed that measures related to
our system are almost close to that of the DBpedia Spotlight
since they both use the same similarity method. We noticed
that both Babelfy and AIDA are different approaches with
different measurements compared to SAP. The results of our
experiments showed that SAP module performs better than the
other methods relying on graph-building and graph algorithms.

VIII. CONCLUSION

In this paper, we showed through our proposed approach
how appropriate modelling according to MDE and combined
with M2T transformations can automate the generation of
RESTful services. Moreover, we showed how to automat-
ically generate Hydra descriptors and to add semantics in
a linked-data perspective describing RESTful services as a

Shttps://openweathermap.org/api

Hypermedia-Driven APIs, in order to facilitate services dis-
covery and their composition for eventual disasters prediction
processes. In addition, our proposal provides a user-friendly
environment for non-expert end-users, acting as a black-
box gumming the stringent difficulties connecting to multiple
environmental data sources, on the Web. Future work includes
exploring how data services can be composed following a
REST services composition driven by Hypermedia.

REFERENCES

[1] R.Alarcén and E.Wilde. Restler:crawling restful services. In Proc. 19th
Int.Conf on WWW, pp., 1051-1052, ACM, 2010.

[2] R.T.Fielding, Architectural Styles and the Design of Network-based
Software Architectures.PhD thesis, UNIV. OF CALIFORNIA, 2000.

[3] M.Hadley. Web application description language. “https://www.w3.org/
Submission/wadl/”’, 2009.

[4] P.A.V.Hall and Geoff.R.Dowling. Approximate string matching. In ACM
Comput. Surv., pp.,381-402, December 1980.

[5] N.Kahani, M.Bagherzadeh, J. R.Cordy, J.Dingel, and D.Varré. Survey
and classification of model transformation tools. (SoSyM), 2018.

[6] M.Lanthaler. Hypermedia driven-api. ‘ ‘https://www.hydra-cg.com/spec/
latest/core/”, 2019.

[71 T.Levendovszky, G.Karsai, M.Maroti, A.Ledeczi, and H.Charaf. Model
reuse with metamodel-based transformations. Software Reuse: Methods,
Techniques and Tools, Springer, pp.,166-178, Berlin, Heidelberg, 2002.

[8] M.Masmoudi, S.BA.Ben Lamine, H.Baazaoui-Zghal, MH.Karray, and
B.Archimede. An ontology-based monitoring system for multi-source
environmental observations.Procedia Computer Science, pp.,1865-1874,
KES, 2018.

[9] P.N.Mendes, M.Jakob, A.G.Silva, and C.Bizer.Dbpedia spotlight: Shed-

ding light on the web of documents. In Proc. of the 7th Int.Conf on

Semantic Systems (I-Semantics), 2011.

A.Moro, A.Raganato, and R.Navigli. Entity linking meets word sense

disambiguation: a unified approach. Trans. of the Association for Com-

putational Linguistics, pp.231-244, 2014.

A.Navarro and A.da Silva. A metamodel-based definition of a conversion

mechanism between soap and restful web services. Comput.Stand.

Interfaces, 48(C), pp.49-70, 2016.

Acceleo m2t transformation tool. “http://www.eclipse.org/acceleo/”,

2006.

OMG. About the object management group, 2000.

R.Usbeck, M.Roder, A-C.Ngonga Ngomo, C.Neto, et al. Gerbil-general

entity annotator benchmarking framework, 2015.

P.De Vettor, M.Mrissa, and D.Benslimane. Models and adaptive archi-

tecture for smart data management. In Sumitra Reddy, WETICE 2015,

Cyprus, pp.164-169, 2015.

Y.Cheng and FRusu. Parallel in-situ data processing with speculative

loading. Proc. ACM SIGMOD Int.Conf on Management of data,

pp.1287-1298, 2014.

J.Hoffart, M A.Yosef, I.Bordino, et al., Robust disambiguation of named

entities in text. In Proc. of EMNLP’11, pp.782-792, USA, 2011.

M.Yu, G.Li, D.Deng, and J.Feng. String similarity search and join: a

survey. Frontiers of Computer Science, pp.399-417, Jun 2016.

G. Wiederhold. Mediators in the architecture of future information

systems.pp.38-49, March 1992.

H.Garcia-Molina, Y.Papakonstantinou, D.Quass, et al., The tsimmis

approach to mediation: Data models and languages. J. of intelligent

information systems, pp.117-132, 1997.

G.Zhou and R.Hull. A framework for supporting data integration using

the materialized and virtual approaches. In ACM SIGMOD Int. Conf.

on Management of Data, pp.481-492, 1996.

B.Hiisemann, J.Lechtenborger, and G.Vossen. Conceptual data ware-

house design.Univ.Miinster.Mathematik und Informatik, 2000.

R.Ghawi and N.Cullot. Database-to-ontology mapping generation for

semantic interoperability. In 3rd InterDB, 2007.

D.Dou, PLePendu, S.Kim, and P.Qi. Integrating databases into the

semantic web through an ontology-based framework. In22nd Int.Conf

ICDEW’06, pp.54-54. IEEE, 2006.

C.Pautasso, E.Wilde, and R.Alarcon. REST: advanced research topics

and practical applications, Springer, 2013.

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

