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ABSTRACT 

Scalar waves hold the potential to revolutionize computing and 

communications by offering advantages like instantaneous data 

transmission and immunity to electromagnetic interference. In this paper, 

we will explore the world of scalar waves and also their potential to 

reshape the future of computing, and robotics. In our work, we used 

scalar fields as a global level of guidance for the robots in operation. A 

scalar field associates a value with every point in the working region. 

Here we show how scalar fields can be used to guide swarm of robots to 

execute a specific task. We present an example of tasks using the scalar 

field, such as constructing shapes from ambient objects, which involves 

finding and collecting ambient objects to the collection area and 

aggregating to desired shapes. First, we show the scalar field mapping 

with scalar function using SLAM algorithm to guide the robots in their 

movements. Second, the development of AR model of a sensor data by 

integration to achieve detailed object sensing of robots. Here, each robot 

to find an estimate of material location and an estimate of the value of 

the scaler field is iteratively updated during the movement of the robot 

and a central control command is also updated regarding the mobile 

robots to form a network and cover the field. Also, entire scalar field is  

used it as a pathway network among the swarm of robots to perform the 

aggregation task. Experiments have been conducted to demonstrate the 

workability of the proposed algorithms. 

 

INTRODUCTION 

Scalar waves are often described as standing waves, meaning they do 
not move through space but exist as stationary patterns of energy. 
Unlike conventional EM waves, scalar waves are believed to be non-



Hertzian, meaning they do not travel through space in the same way as 
traditional electromagnetic waves. Scalar waves are thought to exist 
beyond the limitations of Hertzian waves, which have a specific 
frequency and wavelength. Scalar waves are believed to have zero 
frequency, meaning they do not oscillate in the traditional sense. This 
property allows them to transcend the constraints of space and time. 
 

Scalar waves are hypothetical waves, which differ from the conventional 
electromagnetic transverse waves by one oscillation level parallel to the 
direction of propagation, they thus have characteristics of longitudinal 
waves. Scalar waves are superluminal, which means they move faster 
than the speed of light, because they are unbounded by the limitations of 
3D space. Also, since they don't exist in the third dimension in the same 
way that matter does, they move through the empty space between all 
matter. 
 
A scalar quantity is defined as the physical quantity that has only 
magnitude. On the other hand, a vector quantity is defined as the 
physical quantity that has both magnitude as well as direction. Scalar, a 
physical quantity that is completely described by its magnitude. 
Temperature is a scalar quantity as it is independent of direction at a 
point. Wavelength is a scalar quantity. It has magnitude but not direction. 
Examples of scalars are volume, density, speed, energy, mass, and 
time. Other quantities, such as force and velocity, have both magnitude 
and direction and are called vectors. 
 
Mechanical are those which propagate through a physical matter such 
as sound wave, ocean wave or earthquake wave while electromagnetic 
wave do not require a medium and they can even travel through vacuum 
such as light wave. As electromagnetic wave does not need a medium, it 
travels faster than mechanical wave. 
 

METHODOLOGY 

Scalar Field 

A scalar field is a name we give to a function defined in some sort of 
space. Thus, in ordinary three dimensional space the following are 
examples of scalar fields: sin xyz, cos z, x2 + y2 + z2. A linear field is one 
of the form ax + by + cz + d for some constants a, b, c and d. 
The difference between a scalar field and a scalar function: 
For example, given a fixed point A, f(P)= Distance of P from A, is an 
example of a scalar field, because distances between points do not 



change under rotation of axes or shifting of the origin. On the other 
hand, f(x,y,z)=(x+y) is a scalar function, which is not a scalar field. 
Therefore, the unit of scalar field: Under this convention the units of the 
scalar field physical quantities are [ϕ] = (energy/length)1/2 and 
[˜ma]=length−1 [ m ~ a ] = length - 1 . 
 
 

Scalar Field Function 

In our work, we used scalar fields as a global level of guidance for the 
robots. A scalar field associates a value with every point in the working 
region. We show how scalar fields can be used to guide a low-cost and 
limited-capability swarm of robots to execute a specific task. We present  
examples of tasks using the scalar field, such as constructing shapes 
from ambient objects, finding the connected network among the robots, 
aggregating to a predefined area and foraging by finding and collecting 
ambient objects to the collection area and finally, aggregating to a 
predefined work area. This work is divided into two parts; first, we show 
how the scalar field can help divide labour among the robots and guide 
them in their movements. Second, we investigate combining a scalar 
field with augmented reality to overlay real-life objects that enhances the 
real world with computer-generated perceptual information. Finally, we 
design scalar field mapping and use it as a road network for the swarm 
to reduce spatial interference among the robots. We practically build our 
robots based on the practical examples to perform the aggregation task. 

Robotics 

Scalar Field and their gradients, which are vector fields, can be used in 
robotics for motion planning. Consider a robot which needs to move in 
an area to a desired point avoiding some obstacles. The so-called 
navigation function is constructed for this purpose which is a 
continuously differentiable scalar field defined on the obstacle free inside 
of the area, has a unique minimum at the goal point and attain its 
maximum value at the boundary of the operational area and the 
obstacles. A robot moving in the direction of the gradient of the 
navigation function can avoid obstacles and reach to the goal without 
hitting.  

Navigation function usually refers to a function of position, velocity, 

acceleration and time which is used to plan robot trajectories through the 

environment. Generally, the goal of a navigation function is to create 



feasible, safe paths that avoid obstacles while allowing a robot to move 

from its starting configuration to its goal configuration. 

For robots, like drones or self-driving cars, Euclidean distance helps 
calculate the simplest route from one point to another. This helps robots 
and other automated systems move efficiently and safely, avoiding 
obstacles and calculating the easiest paths to their destinations. 

Let us consider an operational area of spherical shape centered at the 

target point q0 = ( x0 , y0)r with radius r0, with three obstacles located at 

the spherical level with radii r1, r2and r3 and centres q1= ( x1 , y1)r, q2 = ( x2 

, y2 )r, q3= ( x3, y3)r. In mathematics, the Euclidean distance is defined as 

the distance between two points. In other words, the Euclidean 

distance between two points in the Euclidean space is defined as the 

length of the line segment between two points. Let d(𝑞𝑎,     𝑞𝑏) denote the 

Euclidean distance between qa = (xa, ya)r and qb = (xb, yb)r, namely,  

𝑑(𝑞𝑎 ,   𝑞𝑏) =  √ (𝑥𝑎 − 𝑥𝑏)2 + ( 𝑦𝑎 − 𝑦𝑏)2 

The navigation function can then be constructed as 

𝜑(𝑞) =  
𝑑(𝑞,   𝑞0)2

[ 𝑑( 𝑞, 𝑞0)
2𝑘

+ 𝛽(𝑞)]
1

𝑘⁄
                 where k is the large enough positive 

number 

And 𝛽𝑖 = 𝑑(𝑞, 𝑞𝑖)2 − 𝑟𝑖
2     for i = 1,2,3.  The number 𝛽𝑖 should be the 

same as number of objects. 

 

SLAM algorithm with Augmented Reality 

SLAM is a technology used in vision technologies to get the visual data 
from the physical environment in the form of points and dots to feed the 
data into machines. SLAM provides an optical input for devices and 
computers, making them understand what is going on in the physical 
world. This data also helps AR ( Augmented Reality ) developers to 
create interactive and realistic experiences for the audience or the 
central command. The technology can be used in different scenarios like 
self-driving cars, games, robotics, artificial intelligence, and virtual reality. 

The simplest form of SLAM technology is understanding the floor, 
barriers, and walls. Currently, most AR SLAM technologies use floor 
recognition and position tracking to place AR friendly objects around the 



working area. Advanced SLAM technologies like Google Tango create a 
web of the real-time environment and notify us about the floor, walls, and 
objects in the environment allowing everything around us to act as an 
intractable element. 

Visual simultaneous localization and mapping (vSLAM) algorithms 
use device camera to estimate agent's position and reconstruct 
structures in an unknown environment. As an essential part of 
augmented reality (AR) experience, vSLAM enhances the real-world 
environment through the addition of virtual objects, based on localization 
(location) and environment structure (mapping). From technical 
perspectives, visual SLAM algorithm proposed in this paper cater to its 
applications in augmented reality, mapping, navigation, and localization. 

SLAM algorithms to track the robot’s position and overlay ambient 
objects onto the real world. Augmented reality is an interactive 
experience that enhances the real world with computer-generated 
perceptual information. Augmented reality works by overlaying digital 
objects, information, or other sensory elements on top of the physical 
world to provide users with a beneficial, or informative experience and 
using software, augmented reality overlays digital content onto real-life 
environments and objects. SLAM is the foundation of augmented reality 
(AR.) It allows AR devices to perceive the world in three dimensions. AR 
software can then identify objects or images in the real-world 
environment and project virtual content on the AR displays so it appears 
in the real world. 
 

 

Simultaneous localization and mapping (SLAM) algorithms come 
from robotics research and provide a geometric position for the AR 
system. SLAM algorithms can build 3D maps of an environment while 
tracking the location and position of the robot camera in that 
environment. 
 
Most modern AR devices, come with built-in cameras that can be used 
for AR applications. Some AR devices may have specialized cameras 
that provide more advanced tracking and sensing capabilities, such as 
depth sensing or infrared sensors. AR devices are less restrictive and 
typically include devices like phones, glasses, projections and HUDs.  
 

 

 



SLAM algorithm and its application for AR, mapping, 

localization and wayfinding 

Simultaneous localization and mapping (SLAM) algorithms come 
from robotics research and provide a geometric position for the AR 
system. SLAM algorithms can build 3D maps of an environment while 
tracking the location and position of the camera in that environment 

SLAM is the estimation of the pose of a robot and the map of the 
environment simultaneously. SLAM is hard because a map is needed for 
localization and a good pose estimate is needed for mapping 

 Localization: inferring location given a map. 
 Mapping: inferring a map given locations. 
 SLAM: learning a map and locating the robot simultaneously. 

SLAM has multiple parts and each part can be executed in many 
different ways: 

 Landmark detection 
 Data association 
 State Estimation 
 State Update 
 Landmark Update 

SLAM process consists of the following steps:  

 In the first step, it uses the environment to update the 
position of the robot. We can use Odometry  or laser scans 
of the environment to correct the position of the robot.  

 Thus, the position of the robot can be better identified by 
extracting features from the environment. 

Extended Kalman Filter 

The Extended Kalman Filter (EKF) is the core of the SLAM process. It is 
an estimation of non-linear processes or measurement relationships. It is 
responsible for updating where the robot thinks it is based on the 
Landmarks. 

Laser and Odometry data 

Laser data is the reading obtained from the scan whereas, the goal of 
the odometry data is to provide an approximate position of the robot.  



Landmarks  

 Landmarks are the features that can easily be re-observed and 
distinguished from the environment. These are used to localize the 
robot. Landmark should be easily available, distinguishable from each 
other, should be abundant in the environment and stationary 

Landmark Extraction 

After selecting and deciding on the landmarks, we need to extract 
landmarks from inputs of robot sensors. The basic landmark extraction 
used by randomly sampling the  readings and then using the using a 
least-squares approximation to find the best fit  that runs through these 
readings. 

Data Association 

Data association or data matching is that of matching observed 
landmarks from different (laser) scans with each other.  

There are few approaches to perform data association, we will be using 
the nearest neighbour algorithm: 

 First, when we get the data from the laser scan use landmark 
extraction to extract all visible landmarks. 

 After that, we associate all the extracted landmarks to the closest 
landmark that can be observed >N times. 

 Now, we input the list of extracted landmarks and list of previously 
detected landmarks that are in the database, if the landmark is 
already in the database then, we increase  their count by N, and if 
they are not present then set their count to 1. 

After the above step, we need to perform the following update steps: 

 State Estimation: In this step, we use the odometer data to get 
the current state estimate. 

 State update: In this stage, we update our new estimated state by 
re-observing landmarks. 

 Landmarks update:  In this step, we add new landmarks that are 
detected in current stage. 

 Scalar Field Function Update: In this step, we update scalar field 
value 

 Landmarks augmentation: In this step, we add augmented reality 
visualizations to landmarks that are detected 



ARCHITECTURE 

IMPLEMENTATION OF SLAM 

There are many ways to implement a solution for SLAM (Simultaneous 
Localization and Mapping), but the algorithm choosen to implement 
SLAM is based on Graph theory.. 

SLAM is a technique used in robotics to simultaneously estimate a 
robot’s trajectory over time and estimate the positions of landmarks or 
objects in the environment by representing them as nodes and edges as 
a graph network. The graph consists of nodes representing robot poses 
at different time steps and landmark positions, and edges representing 
the constraints between them, such as initial location, relative motion, 
and relative measurement constraints. By optimizing the network, SLAM 
aims to find the most likely trajectory and object(s) positions that best 
explain the sensor measurements. 

 Graph Model Representation 

In SLAM, the environment and the robot’s trajectory are depicted using a 
graph structure. The graph consists of nodes and edges, where nodes 
represent the robot’s poses (positions and orientations) at different 
points in time, and edges represent the constraints or measurements 
between these poses. 

In addition to representing the robot’s poses, the network also includes 
nodes that represent the landmarks in the environment. These 
landmarks can be objects, points of interest, or any other distinctive 
features that the robot can perceive and use for mapping. 

The graph representation connects the robot’s poses and landmarks 
through edges, which represent the measurements obtained from 
sensors. These measurements can include range measurements, or any 
other type of sensor data that provides information about the relative 
positions and orientations of the robot and the landmarks. 

By incorporating these measurements into the graph network, the SLAM 
algorithm can estimate the most likely trajectory of the robot and the 
map of the environment that best satisfies the constraints imposed by 
the measurements. The graph optimization process involves adjusting 
the poses and landmark positions in the graph network to minimize the 
errors between the predicted measurements and the actual 
measurements obtained from the sensors. 



 Matrix and Vector Depiction 

In SLAM, we use matrix and vector representations to model the 
relationships between robot poses and landmarks in a map. These 
representations help us solve the SLAM problem. 

In Graph SLAM, we create a matrix called the information matrix. This 
matrix represents the relationships between different variables in the 
SLAM problem. Each variable corresponds to a robot pose or a 
landmark in the map. The information matrix is a square matrix, and its 
size depends on the number of variables in the SLAM problem. The 
elements of this matrix encode the information about the relationships 
between variables.  

Now, let’s move on to the vector representation.  In Graph SLAM, we 
also create a vector called the information vector. This vector represents 
the measurements or observations we have made in the SLAM problem. 
Each element of the vector corresponds to a specific measurement or 
observation. The information vector contains the information about the 
measurements and their relationships with the variables in the SLAM 
problem. It helps us incorporate the measurements into the SLAM 
problem and update our estimates of the robot poses and landmarks. 

 SLAM System in Graph Mode 
 

Once we declared our information matrix and vector, then we need to 
apply the initial location constraint to the matrix and vector. For example, 
to update the information matrix with an initial location, we would create 
a simple linear equation: Then we take  simple linear equation and its 
coefficients  and add it the row corresponding to location constraint. 

 
 Graph Optimization 

Once we have have the initial matrix and vector representations of the 
graph, we need to perform graph optimization. Graph optimization in 
Graph SLAM is the process of refining the estimates of robot poses and 
landmark positions by iteratively updating the graph based on sensor 
measurements. It involves two main steps: the measurement update and 
the state update. In the measurement update step, we iterate over the 
edges of the graph and add constraints into the information matrix. 
These constraints represent the measurements obtained from sensors, 
such as range measurements or bearing measurements. In the state 
update step, we solve a system to estimate the optimal robot poses and 
landmark positions that minimize the error in the graph. This is done by 



taking the inverse of the information matrix and multiplying it by the 
information vector. 

Measurement Update: In the Measurement Update, it uses the Graph data 
to define the information matrix and vector data and the information 
matrix that represents the coefficients of the linear equations, whereas  
the information vector that represents the constant terms in those 
equations, and  the graph that contains the edge weights representing 
the measurements (e.g., distance). 

State Update: In the state update, we need to performs the state update 
by multiplying the inverse of the covariance matrix  with the 
measurement vector. The result, therefore, represents the state estimate 
of the robot’s pose and landmark positions. It is a vector that contains 
the values of all the variables that define the state of the system. 

 Scalar Field Update 

 

In the scalar field update step, we solve a system to estimate the 
operational field based on the landmarks that minimize the movement 
and interference in the connected network. 
 

 Landmarks Visualizations 

 

In this step, we use visualization tools to augment the landmarks and to 
create porotypes for easily rearranging them into desired shapes. 

RESULTS 

The Graph SLAM algorithm has not given exactly the correct answer for 
the simulated experiments, but it was within range  to predicted 
outcomes. Therefore, the result of the SLAM algorithm depends on the 
quality of measurements that we feed the algorithm for achieving right fit. 

Also the results were based on just a simple one-dimensional 
reproduction system however, this can be easily extended into 3-
dimensional space to explain exactly which directional path the robot is 
moving in. 

CONCLUSION 

Scalar waves hold the potential to revolutionize computing and robotics 

by offering numerous advantages besides immunity from 

electromagnetic interference. In this paper, we used scalar fields as a 



global level of guidance for the robots in operation as  scalar field 

associates a value with every point in the working region and we have 

shown how scalar fields can be used to guide swarm of robots to 

execute a specific task. This paper proposed a  scalar field with scalar 

function using SLAM algorithm that drives a team of robots to explore 

ambient objects and learn to move in scalar field to guide them in their 

movements and the development of AR model of a sensor data by 

integration to achieve detailed object sensing of robots. The algorithm is 

based on a graph-inspired SLAM approach for distributed ambient 

objects seeking problems. And Our algorithm leverages a Central 

Command Process model to predict scalar field values as robots 

explore. By  measuring the field values, agents move along the gradient 

of the field model while simultaneously improving the SLAM process 

model. The experimental results in simulation using vector robots 

movement and  updating of scalar field values demonstrate our 

approach. 
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