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Abstract— Enzymes are biocatalysts with vital roles in 

biological functions and many industrial applications. Diverse 

enzymes are classified using Enzyme Commission (EC) 

nomenclature, making differentiation challenging. On the other 

hand, another biological information, gene ontology (GO), can 

describe the biological aspects of enzymes, covering related 

biological processes (BP), molecular functions (MF), and their 

locations within cells (CC). This study proposes a novel EC class 

and subclass classification of enzymes within the ontology 

subclass based on their GO semantics using a Bidirectional 

Encoder Representation of Transformer (BERT). The BERT 

model is first fine-tuned using the preprocessed GO term name 

and definition, with the enzymes in each ontology class (BP, MF, 

or CC) are also divided based on how the GO assigned, either 

through manual annotation (NONIEA) or electronically 

inferred (IEA). BERT successfully obtained 0.93, 0.60, 0.99, 

0.90, 0.40, and 0.35 F1 scores during fine-tuning for BP IEA, BP 

NONIEA, MF IEA, MF NONIEA, CC IEA, and CC NONIEA, 

respectively. On the test set, the fine-tuned BERT significantly 

outperformed GOntoSim, a framework to calculate semantic 

similarity based on classical information theory, in EC class 

classification across all metrics with less inference time in all 

ontology subclass. Expanded further to the EC subclass, BERT 

can classify the enzyme on the EC subclass level in BP IEA and 

MF IEA ontology subclass. However, longer epochs are needed 

in fine-tuning. This result shows that the names and definitions 

of GO terms are distinguishable features in classifying enzymes 

as an alternative to the information content approach. 

Keywords—BERT, fine-tuning, enzyme classification, gene 

ontology, GOntoSim 

I. INTRODUCTION 

Enzymes are biological molecules produced in all living 
cells and can speed up or catalyze various biological 
functions. It can be extracted and applied to many industrial 
sectors [1]. For example, trehalose synthase from bacteria can 
produce trehalose, an essential stabilizer in the food and 
cosmetic industries, and D-allulose epimerase for producing 
low-calorie sugar in many food industries [2], [3], [4]. Since 
different enzymes perform different functions, there is a need 
for a system that classifies these biocatalysts to facilitate 
extensive studies regarding specific enzymes. The 
International Union of Biochemistry and Molecular Biology 
(IUB) has established the Enzyme Commission (EC) 
classification and nomenclature system [5]. The system is 
based on its functionals, known as EC numbers. EC numbers 
are composed of four digits, each representing the main class, 
subclass, sub-subclass, and substrate class, respectively [6]. 
Recently, the EC is composed of 7 main classes, 77 
subclasses, 308 sub-subclasses, and 7831 substrate classes [5]. 
The seven main classes are comprised of oxidoreductases (EC 
1), transferases (EC 2), hydrolases (EC 3), lyases (EC 4), 
isomerases (EC 5), ligases (EC 6), and translocases (EC 7), 
with the latter added recently in 2018. Due to the numerous 

functional classes, it becomes challenging to distinguish 
enzyme classes and classify novel enzymes. While various 
machine learning-based methods are proposed to classify 
enzymes using protein structures and sequences, none utilize 
gene ontology. 
 Gene Ontology (GO) is a biological knowledge 
representation of the functions of gene products. GO is 
divided into three main functional aspects: molecular function 
(MF), which describes the specific activity of the gene 
products; cellular component (CC), which indicates the 
cellular location where the products perform their function; 
and biological process (BP), which explains the broader tasks 
they are involved in [7]. Each central aspect comprises a 
directed acyclic graph (DAG), with each node representing a 
GO term containing a semantic description, while each edge 
contains the relationship between GO terms [8]. In functional 
bioinformatics studies, GO terms are used to annotate and 
characterize gene products. Gene products with similar 
functions will have the same GO terms with high semantic 
similarity and vice versa [7]. Proteins with similar 
functionalities can be classified by calculating the semantic 
similarities of gene products. Several classical methods have 
been established to calculate semantic similarities, such as 
Resnik [9], Wang, GOGO [10], and the latest and most 
advanced, GOntoSim [8]. However, with the advancement of 
artificial intelligence (AI), a new approach to classifying the 
gene product can be made using semantic similarity 
measurement from text semantics. 

In the realm of AI, text has been used to solve many 
problems, from text classification to topic modeling [11], [12], 
[13], [14]. The state-of-the-art model for such tasks is 
Bidirectional Encoder Representations from Transformers or 
BERT [15]. Through the novel self-attention mechanism, 
BERT has shown remarkable performance on various tasks. 
In molecular biology and bioinformatics, BERT has been used 
in DNA promoter prediction [16], protein property prediction 
[17], and mRNA design optimization [18]. Previous study has 
shown that fine-tuned BERT embeddings perform well in 
measuring GO terms similarity [7]. Yet, there is minimal 
application of this framework in areas of enzyme 
classification. 

This study proposes a new method to classify enzymes 
based on their functionalities through their EC class, with GO 
terms names and definitions embedded to each enzyme serves 
as the basis for classification. BERT was leveraged to extract 
the semantic similarities from the GOs annotated in the 
enzyme. GOntoSim was also employed to compare the 
extracted semantic quality from the fine-tuned BERT. Section 
II describes the study methodology in detail, while the result 
and discussion are outlined in Section III and IV, respectively. 
The last section concludes the whole study and suggests 
improvement directions for future works based on the 
obtained result. 



II. METHODOLOGY 

The methodology in this study is composed of data 

collection, data preprocessing, BERT finetuning, and 

classification performance analysis. The workflow summary 

is shown in Fig. 1, and the details are described below. 

A. Data Collection 

The study used the preprocessed enzymes dataset from the 
Swiss-Prot database used in [8]. The enzymes were classified 
into three GO aspects and two subclasses based on the 
approach of GO term assignment: manual annotation 
(NONIEA) or with electronically inferred annotation (IEA). 
This classification resulted in six ontology subclasses: BP 
IEA, BP NONIEA, MF IEA, MF NONIEA, CC IEA, and CC 
NONIEA. There were 10517, 3092, 10242, 3377, 7406, and 
2820 enzymes from BP IEA, BP NONIEA, MF IEA, MF 
NONIEA, CC IEA, and CC NONIEA, respectively. The EC 
classes information (1-6) for each enzyme were also gathered, 
which serves as the ground truth in the classification process. 
The enzyme must have at least a GO term associated with it, 
and the relations between them are not a one-to-one 
correspondence. In this study, 2020-01-01 GO graph was 
utilized to extract the unique GO term IDs, names, and 
definitions of each enzyme. 

The resulting dataset for each GO aspect and assignment 

approach pairs consists of unique enzyme code based on 

UniProt ID mapped to the EC class label and GO features: 

GO term names and definitions. For instance, for tyrosinase 

in the CC IEA dataset, it will have a UniProt ID of B8NM74, 

labeled as EC ‘1’, and two GO features from GO:0016021 

with the name “component of membrane” and definition 

“component membrane consisting gene products protein 

complexes least part peptide sequence embedded 

hydrophobic region membrane”; and from GO:0016020 with 

the name “membrane” and definition “lipid bilayer along 

proteins protein complexes embedded attached”. The GO 

features will be further preprocessed for BERT input. 

B. Data Preprocessing 

The unique GO term definition has its punctuation and 

stop words removed, followed by a lemmatization using 

WordNet.  The preprocessed GO term definition was then 

concatenated using the [SEP] token with the GO term 

name.  Since each enzyme can have many GO terms attached, 

the preprocessed GO term texts were concatenated together 

for an enzyme with more than a single GO term. For example, 

in CC IEA, the preprocessed GO term text for enzyme 

tyrosinase with two GO terms attached (GO:0016021 and 

GO:0016020) is "component membrane consisting gene 

products protein complexes least part peptide sequence 

embedded hydrophobic region membrane [SEP] integral 

component of membrane lipid bilayer along proteins protein 

complexes embedded attached [SEP] membrane".  The 

enzyme representation was made from the concatenation of 

two preprocessed GO term text, which is "component 

membrane consisting gene products protein complexes least 

part peptide sequence embedded hydrophobic region 

membrane [SEP] integral component of membrane" from 

GO:0016021 and "lipid bilayer along proteins protein 

complexes embedded attached [SEP] membrane" from 

GO:0016020. The enzymes in each ontology subclass, along 

with its preprocessed GO term text and corresponding 

clusters, were then split into training and testing sets, with 

 

Fig. 1. Research workflow 

70% for the training set and 30% for the testing set. The split 
was stratified, ensuring the EC class proportions were 
identical in the training and testing set. 

C. BERT Fine-Tuning 

The BERT model was fine-tuned for each ontology 
subclass, with the preprocessed GO term text in the training 
set serving as the BERT finetuning input. BERT finetuning 
aimed to classify the enzymes in each ontology subclass into 
their corresponding EC class. The BERT model was fine-
tuned for five epochs for both the BP subclass and MF 
NONIEA, two for MF IEA, and ten for both CC subclass. 
Adam was employed as the optimizer in each finetuning, with 
a learning rate of 0.000003. The enzymes were processed per 
batch, with each batch composed of eight enzymes.  

D. Classification Performance Analysis 

The performance of BERT finetuning was assessed by 
classifying the enzymes in the test set. The GOntoSim method 
was also applied to the test set for comparison. Since 
GOntoSim is a graph rule-based method, no prior training is 
required. The predicted EC classes were validated with the 
ground truth through the F1 score. However, since in [8], the 
cluster is assessed through Adjusted Rand Index (ARI) [19], 
Adjusted Mutual Information (AMI) [20], Fowlkes-Mallows 
score (FM score) [21], homogeneity score, completeness  



TABLE I.  BERT FINE-TUNING RESULT ON EC MAIN CLASS 

Ontology Subclass Epochs Time Elapsed (s) F1 Score ARI AMI FM Score Homogeneity Completeness V-Measure 

BP IEA 5 2035 0.93 0.91 0.85 0.94 0.85 0.85 0.85 

BP NONIEA 5 600 0.60 0.54 0.44 0.71 0.40 0.49 0.44 

MF IEA 2 742 0.99 0.98 0.97 0.99 0.97 0.97 0.97 

MF NONIEA 5 380 0.90 0.88 0.82 0.92 0.80 0.83 0.82 

CC IEA 10 1960 0.40 0.19 0.21 0.51 0.17 0.28 0.21 

CC NONIEA 10 810 0.35 0.21 0.15 0.51 0.13 0.20 0.16 

score, and the V-measure [22] clustering metrics, those 
metrics were also employed as well. 

III. RESULTS 

A. BERT Fine-Tuning 

Table I shows the finetuning result from BERT across 

ontology subclasses. Unlike the other ontology classes, MF 

exhibited the lowest time elapsed in the IEA and NONIEA 

subclass. The finetuning time for the IEA subclass surpassed 

the NONIEA one, with BP IEA as the highest finetuning time 

among all the ontology subclasses. 

Compared by the model performance, MF IEA was able 

to achieve remarkable result on all metrics with only two 

epochs, while MF NONIEA needs five epochs for 

convergence. Even though fine-tuned longer, the MF 

NONIEA finetuning results do not surpass the IEA one. The 

IEA superior performance also occurs in BP, where the IEA 

class needs less time for convergence with more satisfactory 

result than the NONIEA one. However, in the CC class, the 

metrics revealed inadequate results on both IEA and 

NONIEA even though it has been fine-tuned much longer 

than the other class. This suggests that using the text features 

alone, CC clusters are not well-separated.  

B. BERT and GOntoSim Performance Comparison 

Table II shows that the fine-tuned BERT has lesser 

inference latency than GOntoSim in all EC classes. The 

margin is significant, especially in the BP ontology class, 

where the inference can take hours. The total time elapsed for 

BERT finetuning and inference in BP is far less than that of 

GOntoSim methods. However, compared with GOntoSim, 

the other ontology class's total finetuning and inference 

latency is higher. Nevertheless, the latency is tolerable, as the 

accuracy gained by BERT is higher, as shown in all the 

graphics in Fig. 2. 

TABLE II.  COMPARISON OF TIME ELAPSED FROM BERT AND 

GONTOSIM INFERENCE ON EC MAIN CLASS 

Ontology 

Subclass 

 Time Elapsed for 

GOntoSim Inference (s) 

Time Elapsed for 

BERT Inference (s) 

BP IEA 21845 40 

BP NONIEA 9833 11 

MF IEA 283 69 

MF NONIEA 55 22 

CC IEA 98 9 

CC NONIEA 34 10 

 

In BP IEA (Fig. 2a), BERT achieved an outstanding score 

in F1 and other clustering metrics. This indicates that the 

underlying semantic distribution extracted in BP IEA is well-

separated based on the EC main class labels. The predicted 

EC class is well-distributed and correctly labeled, as shown 

by the high clustering metrics and high F1 score. The same 

condition occurred in BP NONIEA (Fig. 2b). Concurrently, 

GOntoSim failed to achieve moderate scores in all the metrics 

except the FM score (Fig. 2a and Fig. 2b). The FM score 

indicates that GOntoSim achieved moderate precision and 

recall but is not sufficient to achieve moderate score on other 

clustering metrics. GOntoSim also displayed abundant 

mislabeling, hence the low F1 score. This shows that the 

semantics extracted from GOntoSim is complex and not well-  

structured. 

BERT achieves even better semantics embeddings in MF 

across both ontology subclasses, as shown by the higher F1 

score and clustering metrics achieved compared with BP. On 

the contrary, in MF IEA, GOntoSim achieved high clustering 

metrics, even approaching the performance of BERT, but still 

has a low F1 score (Fig. 2c). This extracted GOntoSim 

underlying structure is unique since it encompassed the well-

structured property but with poor labeling. In MF NONIEA, 

the GOntoSim performance is also better than in BP 

NONIEA, even though the result is relatively moderate (Fig. 

2d).  
In CC, BERT still outperforms GOntoSim, but the quality 

of extracted semantics needs improvement.  This is shown by 
the lower F1, and other clustering metrics scores compared 
with BP and MF (Fig. 2e and Fig. 2f). Both ontology 
subclasses show similar performance in BERT and 
GOntoSim, suggesting that the extracted semantics from both 
are similar in IEA and NONIEA. Similar to BP, GOntoSim 
achieves a higher FM score than any other clustering metrics, 
indicating the same semantic complexities as in BP. 

C. BERT Performance on Ontology Subclass EC Number 

Subclass Level 

Since BERT drastically surpasses GOntoSim on the main 

class level, the study is extended to classify the EC on the 

subclass level using BERT. BERT was fine-tuned using the 

enzyme GO name and definition on the EC subclass level. 

The number of EC subclasses in each ontology subclass far 

exceeds the number of EC classes. BP has 44 and 43 EC 

subclasses for the IEA and NONIEA ontology subclass, 

respectively. Meanwhile, in both MF and CC ontology 

subclasses, 44 EC subclasses are present. Like in the EC 

class, the dataset was split into 70% training and 30% test 

sets, with a stratification strategy on the EC subclass. The 

training set is used to fine-tune the BERT model, while the  



 

Fig. 2. Inference result comparison in (a) BP IEA, (b) BP NONIEA, (c) MF IEA, (d) MF NONIEA, (e) CC IEA, and (f) CC NONIEA ontology subclass. 

rest is kept to assess the model performance. The inference 

result is shown in Table III.  

On the EC subclass level, BERT required longer 

finetuning time, marked by increased elapsed epochs. In the 

BP class, BERT needs 20 epochs to converge in IEA, with 

outstanding performance on the F1 score and other clustering 

metrics. This shows BERT ability to finally distinguish each 

EC subclass from the text semantics, even though longer 

learning time is needed. However, in the NONIEA ontology 

subclass, BERT only achieves moderate performance. As 

shown in Table III, BP IEA F1 score, and clustering metrics 

achieved higher score with a significant margin compared to 

the NONIEA.  

The same condition also happened in MF. Specifically in 

MF NONIEA, BERT requires many more epochs than the 

MF IEA to achieve only a moderate score. In MF IEA, 

however, BERT successfully learned the semantics from the 

text, shown by the high F1 score that reveal mostly correct 

EC subclass prediction and a high clustering metrics that 

suggests well-separated EC subclass features, with lower 

epochs than MF NONIEA.  

In CC, the performance is much worse, with low 

performance in both ontology subclasses, even though 50 

epochs have elapsed, as exhibited in the two bottom rows of 

Table III. This shows BERT incapability to extract the EC 

subclass semantics from GO names and text. 

IV. DISCUSSIONS 

A. BERT Efficacy in EC Class 

In GO literature, CC refers to a location in the gene 

product where the molecular function occurs [23] (e.g. 

plasma membrane, cytoskeleton, or clathrin complex). While 

eucaryotes may have diverse molecular functions, their 

constituent components are homogeneous on some level. 

Their variations were only adapted to each unique biological 

process. Hence, differently functioning enzymes are able to 

have the same CC, leading to the same GO terms. For 

example, enzymes serine-tRNA ligase (UniProt ID: 

B8DW52), thioredoxin reductase (UniProt ID: P47348), and 

probable glutathione S-transferase (UniProt ID: D2YW48) 

are in EC class 6, 1, and 2, respectively. While those enzymes 

perform distinct functions, they reside in the same cellular 

component, the cytoplasm, which corresponds to the same 

GO annotation, GO:0005737. Another example shows 

enzyme palmitoyltransferase (UniProt ID: Q6BP80) in EC 

class 2 has six GO terms attached, which are GO:0005768, 

GO:0005794, GO:0016020, GO:0016021, GO:0031901, and 

GO:0000139. Meanwhile, in enzyme pheromone-processing 

carboxypeptidase (UniProt ID: E6R6G5) in EC class 3, the 

GO terms attached are GO:0005794, GO:0016020, and 

GO:0016021, which are the subset of GO terms in enzyme 

palmitoyltransferase in EC class 2. This subset proves the 

closely packed nature of the GO terms in CC. 

     Such overlaps rarely occur in BP or MF, which means the 

clusters in those classes can be distinguished by only 

examining their GO names and definitions. An overlap is 

observed occasionally, but with lower frequency. These 

enable BERT and even GOntoSim to have a better 

performance, compared with the one acquired in CC. This 

also happens because BP and MF have more information 

about the functionality of each enzyme class, resulting in a 

better score than CC, which only tells the location of the 

enzymes. 



TABLE III.  BERT INFERENCE RESULT ON EC SUBCLASS 

Ontology Subclass 
Epochs Elapsed  

during Fine-tuning 
F1 Score ARI AMI FM Score Homogeneity Completeness V-Measure 

BP IEA 20 0.81 0.91 0.90 0.92 0.91 0.89 0.90 

BP NONIEA 20 0.34 0.60 0.62 0.65 0.71 0.62 0.66 

MF IEA 20 0.95 0.99 0.99 0.99 0.92 0.98 0.99 

MF NONIEA 50 0.68 0.57 0.69 0.62 0.75 0.71 0.73 

CC IEA 50 0.15 0.04 0.17 0.22 0.30 0.17 0.22 

CC NONIEA 50 0.06 0.05 0.07 0.20 0.18 0.11 0.13 

However, BERT still shows promising results in the CC 

class. As depicted in Fig. 2e and Fig. 2f, BERT outperforms 

GOntoSim in predicting the clusters in CC by a significant 

margin. The testing performance in all metrics aligns with the 

finetuning result, which shows no overfitting. Text semantics 

acquired from the gene product name and definition still have 

worthier capabilities to cluster the enzymes. 

B. BERT Efficacy in EC Subclass 

Due to the increasing number of ground truth clusters in 

the EC subclass, BERT needs longer finetuning time. The 

abundant number of EC subclass makes the semantics harder 

to distinguish. This is because the EC subclass is a subset of 

the EC class. The genes, especially in BP and MF, are well-

separated in the EC class by their contained GO names and 

definitions. Expanded further into the EC subclass, the 

difference between genes in the subclass level that originated 

from the same class is vague. This condition is even worse in 

CC, as the annotated GO terms in genes between each EC 

class in CC are not that different. Thus, more epochs elapsed 

for all ontology subclasses. 

BERT only achieves remarkable classification and 

clustering performance in BP IEA and MF IEA. This shows 

that although the GOs in one EC class have similar functions, 

their functionality variations can be distinguished by the EC 

subclass. For example, in BP IEA, enzyme nitrogenase Mo-

Fe protein beta chain (UniProt ID: P0CW52) in EC subclass 

1.18 have two GO terms attached, which are GO:0009399 

and GO:0055114. Enzyme thioredoxin reductase (UniProt 

ID: O66790), which is classified as EC subclass 1.8, has two 

GO terms attached as well, namely GO:0019430 and 

GO:0055114. These two enzymes that are both involved in 

reduction-oxidation reaction have similar GO terms 

(GO:0055114), which also indicates a reduction-oxidation 

process since both originated from the same EC class. Yet, 

the two still can be differentiated through the EC subclass by 

the other GO terms. However, this condition might not be true 

in the other ontology subclass, especially in CC, where the 

attached GO terms among the genes are alike since the EC 

class level. 

CONCLUSION AND FUTURE WORKS 

This study leveraged BERT to cluster enzymes based on 

the names and descriptions of the GO terms attached. BERT 

has shown excellent performance in differentiating the genes 

on both EC class and subclass level in some ontology subclass 

through the GO terms name and definition. For the EC class, 

the GO terms semantics are easily differentiated in BP IEA, 

MF IEA, and MF NONIEA, shown by the high F1 score on 

the test set, which are around 0.93, 0.99, 0.90, respectively. 

The semantics for the EC subclass are distinguishable at BP 

IEA and MF IEA, shown by 0.81 and 0.95 F1 score, which are 

relatively higher than the other ontology subclass. The other 

clustering metrics positively correlates with the F1 score on 

both EC class and subclass. The EC class and subclass are not 

easily differentiable on ontology subclass like CC since the 

attached GO terms are alike among the genes. Apart from that, 

this study has successfully exhibited the utilization of text for 

enzyme classification.  

In further studies, Low Rank Adapters (LoRA) emerges as 

a promising alternative to BERT finetuning. Alternatives from 

other paradigms can also be utilized, such as Node2Vec or 

Graph Convolutional Network (GCN), to extract the 

semantics from the GO term relationship from the GO graph. 
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