
EasyChair Preprint
№ 8997

Computer-Vision Applied to Embedded Real
Time Traffic Control System

Hazzem Abdelhalim, Ziet Lahcene, Mouaz Mohamed Amine and
Radjah Fayçal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 5, 2022

1st International Conference on Innovative Academic

Studies

https://www.icias.net/ September 10 - 13, 2022, Konya, Turkey

Computer Vision Applied to Embedded Real Time Traffic Control System

Hazzem Abelhalim*1,Ziet Lahcene1, Mouaz Mohamed Amine 1, and Radjah Fayça11

1Electronics department/technology faculty,Ferhat Abbas Setif1 University, Algeria

*(abdelhalim.hazzem@univ-setif.dz) Email of the corresponding author

Abstract – In this work, the capabilities offered by the Pynq Z2 development board are used for designing

computer vision applications. The FPGA part of the system with its basic overlay IPs were performed by

Python language in addition to the Open-CV library to firstly process the video road traffic (detection and

vehicles counting) and then show how the mixed design for an embedded real complex system is proceeded

in a System On Chip (SoC). Some other components such as grayscale conversion edge detection by Sobel

filter have been developed using Xilinx-Vivado Heigh Level Synthesis HLS and inserted into the base

overlay of the Logic Part of the Zynq-7000 processor to increase the video processing speed approach used,

the principal results and major conclusions.

Keywords – FPGA, ZYNQ, HLS, SOC, Embedded computer vision

I. INTRODUCTION

This Applications such as streaming video, recognition,

image processing and highly interactive services place new

demands on the computing units that implement these

applications.

Hardware accelerated operations are the most

appropriate way to increase performance using dedicated

hardware architectures performing parallel processing. With

the advent of Field Programmable Gate Array (FPGA)

technology, hardware architectures can be implemented at

lower cost. In fact, FPGAs are the basis of Reconfigurable

Computing [37], a technology that offers great flexibility as

well as unprecedented levels of performance. Indeed,

performance can be significantly increased through the use of

custom computing units running in parallel. These units are

mapped onto a reconfigurable structure to achieve the benefits

of an application-specific approach at the cost of a general-

purpose product. Costs and time-to-market are also reduced as

the manufacturing phase is replaced by field programming.

Finally, energy consumption can be reduced as the circuits are

optimized for the application.

 Experimentation platform:

 In this work we have used the PYNQ-Z2

which is a very good card, equipped with a Zynq

7020 processor, that can be used in several fields

and applications such as image processing or sound

processing thanks to its various input and output

ports like HDMI-IN an HDMI-out that we used in

our application.

Fig. 1 The prototype board

 PL-PS Interface:

The PS-PL interface contains all the signals

available to the PL designer to integrate PL and PS

based functions. There are two types of interfaces

between the two:

1. Functional interfaces that include AXI (Advanced

eXtensible Interface) interconnect, MIO Extended

EMIO (Extended Multiplexed Input/Output)

interfaces for most I/O devices, interrupts, DMA

(Direct Memory Access) flow control, clocks, and

debug interfaces. These signals are available for

connection to user-designed IP blocks in the PL.

2. Configuration signals that include Processor

Configuration Access Point (PCAP), configuration

status, Single Event Upset (SEU), and

schedule/delete/reset signals [26].

 Working environment:

The environment PYNQ is a project from Xilinx-

AMD® that makes the use of Xilinx platforms

easier and by using the libraries of python and the

libraries provided by Xilinx, the designer can

benefit both de advantages of programmable logic

(PL) and programming software (PS), so by using

this environment we managed to build some

computer vision applications.

 Overlay notion:

 Overlays are reconfigurable architectures that

can be implemented on FPGAs. They are regular

designs described using the structural HDL

language, but with reconfiguration capabilities.

They can be considered as "softcore FPGA IPs".

Thus, an overlay can be seen from two sides:

 Firstly, it can be seen as the functional

architecture or functional view is the top layer, it is

the set of reconfigurable elements available for the

applications targeting the overlay.

 Secondly, the implementation is the view from

below, which is how the functional architecture is

implemented and synthesized (like an ordinary IP)

on the host FPGA.

 PYNQ libraries:

 Hardware IP libraries are included in Vivado

and can be used to connect to a wide range of

interface standards and protocols. PYNQ provides

a Python API for a number of common devices

including video (HDMI input and output), GPIO

devices (buttons, switches, LEDs), sensors and

actuators. The PYNQ API can also be extended to

support additional IPs.

 PYNQ also supports low-level control of an

overlay, including reading/writing memory-

mapped I/O, memory allocation (e.g., for use by a

master implemented in the PL part), control and

management of an overlay (downloading an

overlay, reading IP from an overlay), and low-level

control of the PL via the "bitstream"

 Since the video library is the subject of the

example implementation that will be presented

later, we will present the hardware subsystem.

The Video sub-package contains a collection of

drivers for reading from the HDMI-In port, writing

to the HDMI-Out port, data transfer, interrupt

configuration and video image manipulation.

 The video hardware subsystem consists of an

HDMI-In block, an HDMI-Out block and a video

DMA. The HDMI-In and HDMI-Out blocks also

support color space conversions and changing the

number of channels in each pixel.

Video data can be captured from the HDMI-In and

passed to the DRAM using the video DMA, or

passed from the PS DRAM to the HDMI-Out,

diagram in Figure 2.

Fig. 2 HDMI bloc Diagram

II. SURVEILLANCE SYSTEM :

 In this section we will describe in detail the

different steps and operations used in a traffic

monitoring system. The following figure represents

the system used for the application:

It is a prototyping board with a ZYNQ processor

embedding a mixed hard-soft application. The video

signal of the road traffic captured by the HDMI

source or webcam will undergo various operations

of filtering, extraction and overlay to display the

information concerning the traffic.

To achieve this application, we first considered

necessary to master the video capture. This

operation can be done in two different ways. The

first one uses the Fswebcam function, the second

one uses functions of the computer vision library

''Open-CV''.

B. Fswebcam:

The fswebcam function is very useful for an

introduction to image capture. It offers different

arguments (options) that help us to better capture

and manipulate images for the rest of the work.

The Structure of the function is as follows:

 ``fswebcam [<options>] <filename>

[[<options>] <filename> ...]``

Capture acquisition options can be:

-d Sets the source or device to be used. The source

module is selected automatically unless specified in

the prefix.

-f, --frequency <frequency>: Sets the frequency of

the selected input or tuner. The value can be read as

KHz or MHz depending on the input or tuner.

-p, --palette <name>: specifies the color palette exp:

RGB32, RGB24, BGR32, BGR24, GRAY

-r, --resolution <dimensions>: Sets the resolution of

the source or device image. The actual resolution

used may differ if the source or device cannot

capture at the specified resolution, The default is

"384x288".

--fps <frames per second>: Sets the frame rate of the

capture device.

-F, --frames <number>: Sets the number of frames

to capture. More frames means less noise in the final

image.

-D, --delay <delay>: Inserts a delay after the source

or device has been opened and initialized, and

before the capture begins. Some devices require

this delay to allow the image to stabilize after a

parameter has been changed. The delay is

specified in seconds.

C. Capturing a video by using the OpenCV library:

 In this section we will show how to capture and

display the image and then the video using computer

vision functions.

Reading and displaying the image:

To use the OpenCV library in python, we need to

install and import the following libraries as

prerequisites:

* NumPy library (Necessary, because OpenCV uses

it in the background).

* OpenCV python

To read the images, the method

cv2.imread(argument) is used with the steps below.

This method loads an image from the file specified

in the argument. It returns an empty array in case of

errors.

Steps to follow:

- Import the 3 libraries NumPy, cv2 and Matplotlib

- Load the image using cv2.imread

- Use plt.imshow () to display the image.

D. Implementation of a Road Traffic Flow Control

Application:

 Once the video stream is retrieved, different

processing steps are required:

a) Conversion to grayscale is done by the

function: cv2.cvtColor(). This reduces the

amount of data to be processed. The original 3

channel frame (RGB) becomes a single

channel gray level matrix, see the following

figure

 Fig3. Color space conversion

b) Define regions of interest in order to choose

only one part of the frame to process, which

reduces the calculations made by the CPU (one

part of the frame versus a complete frame). In

the following example, two areas of interest

(ROI) of 300 pixels length and 100 pixels

width, represented by rectangles, will be used

to detect the passage of objects (vehicles in our

case). This task will be performed by the

commands: cv2.rectangle and cv2.putext

(figure 4)

Fig4. Region of interest.

c) The detection of the cars is done in two phases:

the first one subtracts the first frame from the

next ones, the second one binarizes (in black

and white) the image with a certain

configurable threshold, used to adjust the

sensitivity of the capture. The white color in the

image, indicates the existence of motion. These

two are provided by the function

cv2.BackgroundSubstractor

Fig5. The result of the subtraction and the binarization of the

images.

The inhomogeneity of the surface of the objects

pushes to use morphological transformations of

dilation and erosion by a Kernel whose parameters

were determined by several experimental trials.

These tests led to the use of a 15x15 filter (see

method cv2.Blur paragraph 1.6.1).

The following figure represents (a) the original

image (b) the noisy binarized image, (c) the erosion

filtered image and (d) the image with the dilated

useful areas.

Fig6. The preprocessing operation for detection

Figure 6 The preprocessing operation for detection

d) After binarization and noise filtering, the edge

detection step will be performed by the function

cv2.FindContours () : It defines all the points

along the image boundary. These points are

mainly useful for the analysis of the shape of

the image provided, for the detection of the size

and dimension of the object to be detected, and

for the detection of specific objects in our case

is the cars.

e) After drawing the contours, a condition on the

radius by the function

cv2.minenclousringCircle is imposed in order

to decide on the interpretation on the object.

This function returns the center and the minimal

radius of the circle to consider. Figure 7 shows

the experimental values (the values are between

80 pixels and 130 pixels in most cases).

Fig7. Drawing the contours around cars.

The value (80 pixels) was chosen as the minimum

radius to decide the presence or not of a vehicle.

Fig8. Radius of different cars.

All these treatments are applied only on the

areas of interest (way 1 and way 2) in order to reduce

the excess of calculations on the processor the result

is shown in this figure 9 is way 1 and figure 10 is

way 2:

Fig9. Region of interset 1.

Fig10. Region of interset 2.

The display of the information recovered by

the detection and the number of frames processed

per second in the video will be embedded in the

video itself, using respectively the state of two

counters incremented at each vehicle detection pass,

and the inverse of the difference in time between the

two successive frames processed.

Note: Other information such as date and time may

be included in the display, if necessary. Results in

figure 11

Fig11. The final result of the Road Traffic Flow Control

Application.

E. Comparison of soft application and accelerated

application:

The second application suggested in this project

consists in highlighting the improvement of the real

time performances in the processing systems

particularly those related to the video by the use of

the task parallelism approach by introducing

hardware gas pedals in the calculation parts.

For that, we exploited the example of edge detection

in a video where the filtering by the SOBEL method

was attributed to an IP implemented in the FPGA

part of the Zynq 7020 processor.

To show the effect of the acceleration, the

application will first be run on the system without

IP (i.e. the filtering is executed by a Python program

using CV2), then on the same system but this time

if the filtering is done by a circuit.

The first case is by using OpenCV built-in function

And in the second case we used a hardware

accelerated function for the same Sobel filter

Fig12. Sobel filter using OpenCV.

Fig13. Sobel filter using hardware acceleration

We notice that in the second case, the Sobel

hardware filter has significantly improved 10 to 30

frames per second (FPS) the speed of the video.

F. Conclusion and perspectives:

The field of video surveillance in general remains

one of the most complex problems, in spite of

current active research. Indeed, many real

conditions, difficult to model and to predict, limit

the evolution in the different treatments. In

addition to all this, the EDA tools delivered by the

major equipment and component manufacturers

have bugs in their operation.

In spite of all these problems we have managed,

using a Pynq Z2 card, to design and realize a

prototype of a video surveillance system intended

for the control of the traffic flow of a highway. The

realization was successfully tested on the dual

carriageway El Bez-Setif , Algeria. A video

capture of a few minutes will represent the video

signal at the input of the system emulating the real

flow that must be presented either at the HDMI-in.

or via a USB webcam. The first attempt revealed a

failure in the number of FPS frames better than the

current

REFERENCES

[1] OpenCV Face Detection HDMI

url:https://github.com/Xilinx/PYNQ/blob/v2.0/boards/P

ynqZ1/base/notebooks/video/opencv_face_detect_hdmi.

ipynb

[2] T. Wu, Y. Wang, W. Shi and J. Lu, "HydraMini: An

FPGA-based Affordable Research and Education

Platform for Autonomous Driving," 2020 International

Conference on Connected and Autonomous Driving

(MetroCAD), Detroit, MI, USA, 2020, pp. 45-52, doi:

10.1109/MetroCAD48866.2020.00016.

[3] . Xilinx Inc., “Zynq-7000 SoC product.” 2020,

[4] V. Y. Çambay, A. Uçar and M. A. Arserim, "Object

Detection on FPGAs and GPUs by Using Accelerated

Deep Learning," 2019 International Artificial

Intelligence and Data Processing Symposium (IDAP),

Malatya, Turkey, 2019, pp. 1-5, doi:

10.1109/IDAP.2019.8875870.M.

[5] BNN-PYNQ PIP INSTALL Package. url:

https://github.com/Xilinx/BNN-PYNQ/

[6] . QNN-MO-PYNQ PIP INSTALL Package.

url:https://github.com/Xilinx/QNN-MOPYNQ

[7] OpenCV Face Detection HDMI

url:https://github.com/Xilinx/PYNQ/blob/v2.0/boards/P

ynqZ1/base/notebooks/video/opencv_face_detect_hdmi.

ipynb

[8] OpenCV Filters Webcam. Url:

https://github.com/Xilinx/PYNQ/blob/v1.4/Pynq

https://github.com/Xilinx/PYNQ/blob/v2.0/boards/PynqZ1/base/notebooks/video/opencv_face_detect_hdmi.ipynb
https://github.com/Xilinx/PYNQ/blob/v2.0/boards/PynqZ1/base/notebooks/video/opencv_face_detect_hdmi.ipynb
https://github.com/Xilinx/PYNQ/blob/v2.0/boards/PynqZ1/base/notebooks/video/opencv_face_detect_hdmi.ipynb

