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Abstract

The theory of corona domination number was presented by G.Mahadevan et al. [1].

In this work, we carry over the study of corona domination in graphs for the strong

product of graphs. We investigate the strong product involving paths, cycles, complete

graph and complete bipartite graph.
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1 Introduction

All the graphs G = (V (G), E(G) consider here are finte, simple, undirected and without

isolated vertex. The neighbor of a vertex v ∈ V (G) is denoted by N(v), where N(v) = {u ∈

V (G) : d(u, v) = 1} and deg(v) = |N(v)| denotes the degree of the vertex v. If the degree of a

vertex is one then it is called a pendant vertex . Let Pr denote a path of length r, Cr denotes

a cycle of length r and Gc denotes the complement of G. Let G be a graph. An induced

subgraph H is obtained from G by deleting some vertices of G. If G is said to be a bipartite[4]
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then its vertex can be separated in to two nonempty subets Y1 and Y2 such that each edge of

G has one end in Y1 and other in Y2 and is denoted by G(Y1, Y2). A bipartite graph G(Y1, Y2)

is said to be complete bipartite [4] if each vertex of Y1 is adjacent to all the vertices of Y2.

If G(Y1, Y2) is complete with |Y1| = r and |Y2| = s then G(Y1, Y2) is denoted by Kr,s, where

K1,s is a star graph[4]. A wheel graph W1,r, r ≥ 3 is obtained by joining a single vertex to all

the vertices of a cycle Cr. A helm graph Hr, is obtained by joining a pendant edge to every

vertex of the outer cycle of W1,r. L(G) be the line graph of G where V (L(G)) = E(G) and

two vertices in L(G) are adjacent if and only if the corresponding the edges has an endvertex

in common. It is clear that L(Pr) = Pr−1 and L(Cr) = Cr. A dominating set S is a set

of vertices of G with the condition that every v ∈ V − S, d(v, S) = 1. Any dominating

set D of G with minimum cardinality, then the domination number γ(G) = |D|. The strong

product [3] of graphs H1 and H2 is the graph H1 ⊠H2 with vertex set V (H1) × V (H2) and

any two of its vertices (v1, u1) and (v2, u2) are adjacent whenever v1v2 ∈ E(H1) and u1 = u2

or u1u2 ∈ E(H2) and v1 = v2 or v1v2 ∈ E(H1) and u1u2 ∈ E(H2). The corona domination

number(CD number) [1] γCD is a minimum cardinality of the dominating set S, with the

subgraph induced by S having either pendant or support vertex only. Graph domination

and associated concepts have been analyzed for many years; among them, many authors

studied the domination number of the various product graphs, especially for the product

involving paths, cycles, etc. Motivated by the above, we determined the exact values of

γCD(Pr ⊠ Ps), γCD(Pr ⊠ P c
s ), γCD(Pr ⊠Cs), γCD(Pr ⊠Ks), etc. In the future, we will find the

exact value of γCD(Pr ⊠G) for any given graph G. Also, we see the relationship between the

CD(Pr) with γCD(Pr ⊠G) and CD(G)γCD(Pr ⊠G)

Here, we have given the CD-number for some graphs. γCD(P
c
r ) = 2, r ≥ 4, γCD(C

c
4) = 4,

γCD(C
c
5) = 3, γCD(C

c
r) = 2, r ≥ 6, γCD(P2 ⊠Ks) = γCD(P3 ⊠Ks) = 2.
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2 CD-number of strong product for some standard graphs

We begin this section with some observations. The CD-number of the strong product of the

paths P1, P2, and P3 with Pr is same as the CD-number of Pr and the remaining cases are

given below.

Theorem 2.1. If s ≥ 4, then γ(P4 ⊠ Ps) = 2⌈ s
3
⌉.

Proof. Let P4 = (v1, v2, v3, v4) and Ps = (u1, u2, ..., us).

Then V (P4 ⊠ Ps) =
{
(vi, uj) : 1 ≤ i ≤ 4, 1 ≤ j ≤ s

}
and E(P4 ⊠ Ps) = {(vi, uj)(vi, uj+1) :

1 ≤ i ≤ 4, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ 3, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ 3, 2 ≤ j ≤ s}. Let S1 =

{(v1, uj), (v4, uj) : j ≡ 2 (mod 3)}. Then

S =

 S1 if s ≡ 0 or 2 (mod 3),

S1 ∪ {(v1, us), (v4, us)} if s ≡ 1 (mod 3),
is a dominating set of P4 ⊠Ps.

Thus γ(P4 ⊠ Ps) ≤ |S| = 2⌈ s
3
⌉. Assume that D is a dominating set of P4 ⊠ Ps. Since

γ(Ps) = ⌈ s
3
⌉ and any dominating set of ith row of P4 ⊠ Ps dominating all the vertices in

(i− 1)th row and (i + 1)th row, any dominating set of a row dominates at most three rows.

Hence |D| ≥ 2⌈ s
3
⌉. Then γ(P4 ⊠ Ps) ≥ 2⌈ s

3
⌉ and hence the result follows.

Theorem 2.2. If s ≥ 4, then γCD(P4 ⊠ Ps) = 2⌈ s
3
⌉.

Proof. Let P4 = (v1, v2, v3, v4) and Ps = (u1, u2, ..., us).

Then V (P4 ⊠ Ps) =
{
(vi, uj) : 1 ≤ i ≤ 4, 1 ≤ j ≤ s

}
and E(P4 ⊠ Ps) = {(vi, uj)(vi, uj+1) :

1 ≤ i ≤ 4, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ 3, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ 3, 1 ≤ j ≤ s− 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ 3, 2 ≤ j ≤ s}.

Let S1 =
{
(vi, uj) : i ≡ 2 or 3 (mod 4), j ≡ 2 (mod 3)

}
.

Then S =

 S1 if s ≡ 0 or 2 (mod 3),

S1 ∪ {(vi, us) : i ≡ 2 or 3 (mod 4)} if s ≡ 1 (mod 3),

is a CD − set of P4 ⊠ PS. Thus γCD(P4 ⊠ Ps) ≤ |S| = 2⌈ s
3
⌉. Since γ(P4 ⊠ Ps) = 2⌈ s

3
⌉,

the result follows.

Theorem 2.3. If r ≡ 0 or 1 (mod 4), r ≥ 5 and s ≥ r, then γCD(Pr ⊠ Ps) = ⌈ r
2
⌉⌈ s

3
⌉.
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Proof. Let Pr = (v1, v2, ..., vr) and Ps = (u1, u2, ..., us).

Then V (Pr⊠Ps) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr⊠Ps) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s− 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r − 1, 2 ≤ j ≤ s}.

case 1: r ≡ 0 (mod 4)

Let S1 =
{
(vi, uj) : i ≡ 2 or 3 (mod 4), j ≡ 2 (mod 3)

}
.

Then S =

 S1 if s ≡ 0 or 2 (mod 3),

S1 ∪ {(vi, us) : i ≡ 2 or 3 (mod 4)} if s ≡ 1 (mod 3),
is a CD − set

of Pr ⊠ Ps. Thus γCD(Pr ⊠ Ps) ≤ |S| = ⌈ r
2
⌉⌈ s

3
⌉. Suppose there exists a dominating set

D1 ⊆ V of cardinality at most d1 = ⌈ r
2
⌉⌈ s

3
⌉ − 1, then < D1 > contains an isolated vertex.

Hence |D1| ≥ d1 + 1 = ⌈ r
2
⌉⌈ s

3
⌉.

case 2: r ≡ 1 (mod 4)

Let S2 =
{
(vi, uj) : i ≡ 2 or 3 (mod 4), j ≡ 2 (mod 3)

}
∪
{
(vr−1, uj) : j ≡ 2 (mod 3)

}
.

Then S =

 S2 if s ≡ 0 or 2 (mod 3),

S2 ∪ {(vi, us) : i ≡ 2 or 3 (mod 4)} ∪ {(vr−1, us)} if s ≡ 1 (mod 3),

is a CD − set of Pr ⊠ Ps. Thus γCD(Pr ⊠ Ps) ≤ |S| = ⌈ r
2
⌉⌈ s

3
⌉. Suppose there exists a

dominating set D2 ⊆ V of cardinality at most d2 = ⌈ r
2
⌉⌈ s

3
⌉ − 1, then < D2 > contains an

isolated vertex. Thus |D2| ≥ d2 + 1 = ⌈ r
2
⌉⌈ s

3
⌉. Therefore the proof.

Theorem 2.4. If r ≡ 2 (mod 4), r ≥ 10 and s ≥ r, then

γCD(Pr ⊠ Ps) =

 ( r
2
+ 1)⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3)

( r
2
+ 1)⌈ s

3
⌉ − 4 if s ≡ 1 (mod 3).

Proof. Let Pr = (v1, v2, ..., vr) and Ps = (u1, u2, ..., us).

Then V (Pr⊠Ps) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr⊠Ps) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s− 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r − 1, 2 ≤ j ≤ s}.

Let S1 =
{
(vi, uj) : i ≡ 1 or 2 (mod 4), j ≡ 2 (mod 3)

}
, S2 =

{
(vi, uj) : i ≡

2 or 3 (mod 4), j ≡ 2 (mod 3)
}
∪ {(vr−1, uj) : j ≡ 2 (mod 3)} −

{
(vr, us−2), (vr−3, us−2)}

andA = ({(vi, us) : i ≡ 2 or 3 (mod 4)}∪{(vr−1, us−1)(vr−4, us−1)})−{(vr, us), (vr−3, us), (vr−4, us)}.
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Then S =

 S1 if s ≡ 0 or 2 (mod 3),

S2 ∪ A if s ≡ 1 (mod 3),
is a CD − set of Pr ⊠ Ps. Thus

γCD(Pr ⊠ Ps) ≤ |S| =

 ( r
2
+ 1)⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3),

( r
2
+ 1)⌈ s

3
⌉ − 4 if s ≡ 1 (mod 3).

Suppose there exists a dominating set D ⊆ V of cardinality at most

d =

 ( r
2
+ 1)⌈ s

3
⌉ − 1 if s ≡ 0 or 2 (mod 3),

( r
2
+ 1)⌈ s

3
⌉ − 5 if s ≡ 1 (mod 3),

then < D > contains an isolated vertex.

Thus |D| ≥ d+1 =

 ( r
2
+ 1)⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3),

( r
2
+ 1)⌈ s

3
⌉ − 4 if s ≡ 1 (mod 3).

Hence the theorem follows.

Theorem 2.5. If s ≥ 6, then γCD(P6 ⊠ Ps) =


s if s ≡ 0 (mod 4),

s+ 1 if s ≡ 1 or 3 (mod 4),

s+ 2 if s ≡ 2 (mod 4).

Proof. Let P6 = (v1, v2, ..., v6) and Ps = (u1, u2, ..., us).

Then V (P6 ⊠ Ps) =
{
(vi, uj) : 1 ≤ i ≤ 6, 1 ≤ j ≤ s

}
and E(P6 ⊠ Ps) = {(vi, uj)(vi, uj+1) :

1 ≤ i ≤ 6, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ 5, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ 5, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ 5, 2 ≤ j ≤ s}. Let S1 = {(vi, uj) :

i ≡ 2 (mod 3), j ≡ 2 or 3 (mod 4)}.

Then S =

 S1 if s ≡ 0 or 3 (mod 4),

S1 ∪ {(vi, us−1) : i ≡ 2 (mod 3)} if s ≡ 1 or 2 (mod 4),
is a CD − set of

P6⊠Ps. Thus γCD(P6⊠Ps) ≤ |S| =


s if s ≡ 0 (mod 4),

s+ 1 if s ≡ 1 or 3 (mod 4),

s+ 2 if s ≡ 2 (mod 4).

Suppose there exists

a dominating set D ⊆ V of cardinality at most d =


s− 1 if s ≡ 0 (mod 4),

s if s ≡ 1 or 3 (mod 4),

s+ 1 if s ≡ 2 (mod 4),
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then < D > has an isolated vertex. Thus |D| ≥ d+ 1 =


s if s ≡ 0 (mod 4),

s+ 1 if s ≡ 1 or 3 (mod 4),

s+ 2 if s ≡ 2 (mod 4).

Hence the result.

Theorem 2.6. If r ≡ 3 (mod 4), r ≥ 7 and s ≥ r, then

γCD(Pr ⊠ Ps) =

 ⌈ r
2
⌉⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3),

⌈ r
2
⌉⌈ s

3
⌉ − 2 if s ≡ 1 (mod 3).

Proof. Let Pr = (v1, v2, ..., vr) and Ps = (u1, u2, ..., us).

Then V (Pr⊠Ps) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr⊠Ps) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s− 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r − 1, 2 ≤ j ≤ s}.

Let S1 =
{
(vi, uj) : i ≡ 2 or 3 (mod 4), j ≡ 2 (mod 3)

}
and

let A =
(
{(vi, us) : i ≡ 2 or 3 (mod 4)} ∪ {(vr−1, us−1)}

)
− {(vr, us), (vr−1, us)}

Then S =

 S1 if s ≡ 0 or 2 (mod 3),(
S1 ∪ A

)
− {(vr, us−2)} if s ≡ 1 (mod 3),

is a CD − set of Pr ⊠ Ps.

Thus γCD(Pr ⊠ Ps) ≤ |S| =

 ⌈ r
2
⌉⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3),

⌈ r
2
⌉⌈ s

3
⌉ − 2 if s ≡ 1 (mod 3).

Suppose there exists a dominating set D ⊆ V of cardinality at most

d =

 ⌈ r
2
⌉⌈ s

3
⌉ − 1 if s ≡ 0 or 2 (mod 3),

⌈ r
2
⌉⌈ s

3
⌉ − 3 if s ≡ 1 (mod 3),

then < D > contains an isolated vertex in{
(vi, uj) : i ≡ 2 or 3 (mod 4), j ≡ 2 (mod 3)

}
∪
{
(vr−1, uj) : j ≡ 1 (mod 3)

}
.

Thus |D| ≥ d+ 1 =

 ⌈ r
2
⌉⌈ s

3
⌉ if s ≡ 0 or 2 (mod 3),

⌈ r
2
⌉⌈ s

3
⌉ − 2 if s ≡ 1 (mod 3).

Hence, the statement of the

theorem is established.

Theorem 2.7. If r ≥ 3 and 2 ≤ s ≤ 3, then γCD(Pr⊠P c
s ) =

 r + 2 if r ≡ 2 (mod 4),

2⌈ r
2
⌉ otherwise.

Proof. Let Pr = (v1, v2, ..., vr) and Ps = (u1, u2, ..., us).

Then V (Pr ⊠ P c
s ) =

{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr ⊠ P c

s ) =
{
(vi, uj)(vi+1, uj) :
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1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uk) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s − 2, j + 2 ≤ k ≤

s} ∪ {(vi, uj)(vi+1, ul) : 1 ≤ i ≤ r − 1, 3 ≤ j ≤ s, 1 ≤ l ≤ j − 2} ∪ {(vi, uj)(vi, uk) : 1 ≤ i ≤

r, 1 ≤ j ≤ s− 2, j + 2 ≤ k ≤ s}. Let S1 = {(vi, uj) : i ≡ 2 or 3 (mod 4), j = 1, 2}. Then

S =

 S1 ∪ {(vr−1, uj) : j = 1, 2} if r ≡ 1 or 2 (mod 4),

S1 otherwise,
is a CD- set of (Pr ⊠ P c

s ).

Thus γCD(Pr ⊠ P c
s ) ≤ |S| =

 r + 2 if r ≡ 2 (mod 4),

2⌈ r
2
⌉ otherwise.

Suppose there exists a dominating D of cardinality at most

d =

 r + 1 if r ≡ 1 or 2 (mod 4),

2⌈ r
2
⌉ − 1 otherwise,

then < D > has an isolated vertex. Thus

|D| ≥ d+ 1 =

 r + 2 if r ≡ 1 or 2 (mod 4),

2⌈ r
2
⌉ otherwise.

Hence the theorem follows.

Theorem 2.8. If r ≥ 4, s ≥ 4 and s ≥ r, then γCD(Pr ⊠ P c
s ) = 2⌈ r

3
⌉.

Proof. Let Pr = (v1, v2, ..., vr) and Ps = (u1, u2, ..., us).

Then V (Pr ⊠ P c
s ) =

{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr ⊠ P c

s ) =
{
(vi, uj)(vi+1, uj) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uk) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s − 2, j + 2 ≤ k ≤

s}∪ {(vi, uj)(vi+1, ul) : 1 ≤ i ≤ r− 1, 3 ≤ j ≤ s, 1 ≤ lj− 2}∪ {(vi, uj)(vi, uk) : 1 ≤ i ≤ r, 1 ≤

j ≤ s− 2, j + 2 ≤ k ≤ s}. Let S1 =
{
(vi, u1), (vi, us−1) : i ≡ 2 (mod 3)

}
. Then

S =

 S1 if r ≡ 0 or 2 (mod 3).

S1 ∪ {(vr, u1), (vr, us−1)} if r ≡ 1 (mod 3),
is a CD − set of Pr ⊠ P c

s .

Thus γCD(Pr ⊠ P c
s ) ≤ |S| = 2⌈ r

3
⌉.

Suppose there exists a dominating set D ⊆ V of cardinality at most d = 2⌈ r
3
⌉ − 1, then

< D > contains an isolated vertex. Thus |D| ≥ d+1 = 2⌈ r
3
⌉. Hence the theorem follows.

Observation 2.1.

1. If 2 ≤ r ≤ 3 and s ≥ r, then γCD(Pr ⊠ P c
s ) = 4.

2. If s ≥ 3, then γCD(C3 ⊠ P c
s ) = 4.

3. If r, s ≥ 4, then γCD(Cr ⊠ P c
s ) = 2⌈ r

3
⌉.
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4. If 2 ≤ r ≤ 3 and s ≥ 4, then γCD(Pr ⊠ Cc
s) = 4.

5. If r, s ≥ 4, then γCD(Pr ⊠ Cc
s) = 2⌈ r

3
⌉.

6. If s ≥ 3, then γCD(C3 ⊠ Cc
s) = 4.

7. If r, s ≥ 4, then γCD(Cr ⊠ Cc
s) = 2⌈ r

3
⌉.

Theorem 2.9. If r ≥ 4 and s ≥ r, then γCD(Pr ⊠Ks) =


r
2
+ 1 if r ≡ 2 (mod 4),

⌈ r
2
⌉ otherwise.

Proof. Let Pr = (v1, v2, ..., vr) and V (Ks) = {u1, u2, ..., us}.

Then V (Pr ⊠Ks) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr ⊠Ks) = {(vi, uj)(vi, uj+1) :

1 ≤ i ≤ r, 1 ≤ j ≤ j ≤ s − 1} ∪ {(vi, uj)(vi, uk) : 1 ≤ i ≤ r, 1 ≤ j ≤ s − 2, j + 2 ≤ k ≤

s} ∪ {(vi, uj)(vi+1, uk) : 1 ≤ i ≤ r− 1, j +1 ≤ k ≤ s, 1 ≤ j ≤ s− 1} ∪ {(vi, uj)(vi−1, uk) : 2 ≤

i ≤ r, 1 ≤ j ≤ s− 1, j + 1 ≤ k ≤ s} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s}.

Let S1 =
{
(vi, u1) : i ≡ 2 or 3 (mod 4)

}
. Then

S =

 S1 ∪ {(vr−1, u1)} if r ≡ 1 or 2 (mod 4),

S1 otherwise,
is a CD−set of Pr ⊠Ks.

Thus γCD(Pr ⊠Ks) ≤ |S| =


r
2
+ 1 if r ≡ 2 (mod 4),

⌈ r
2
⌉ otherwise.

Suppose there exists a dominating set D ⊆ V of cardinality at most

d =


r
2

if r ≡ 2 (mod 4),

⌈ r
2
⌉ − 1 otherwise.

,

then < D > contains an isolated vertex. Thus |D| ≥ d+1 =


r
2
+ 1 if r ≡ 2 (mod 4),

⌈ r
2
⌉ otherwise.

Therefore the proof.

Theorem 2.10. γCD(Cr ⊠ Cs) = γCD(Pr ⊠ Ps), s ≥ r.

Proof. Let Cr = (v1, v2, ..., vr, v1) and Cs = (u1, u2, ..., us, u1).

Then V (Cr⊠Cs) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Cr⊠Cs) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s−1}∪{(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r−1, 1 ≤ j ≤ s}∪{(vi, uj)(vi+1, uj+1) : 1 ≤

i ≤ r−1, 1 ≤ j ≤ s−1}∪{(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r−1, 2 ≤ j ≤ s}∪{(vi, u1)(vi+1, us) :
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1 ≤ i ≤ r−1}∪{(vi, u1)(vi−1, us) : 2 ≤ i ≤ r}∪{(vi, u1)(vi, us) : 1 ≤ i ≤ r}∪{(v1, ui)(vr, ui) :

1 ≤ i ≤ s} ∪ {(v1, u1)(vr, us)} ∪ {(vr, u1)(v1, us)}.

The proof of this theorem had subdivided into many cases and each case will be explained

in a identical way as in Theorem 2.3, 2.4, 2.5, 2.6.

Observation 2.2.

1. If r ≥ 3 and s ≥ r, then γCD(Cr ⊠Ks) = γCD(Pr ⊠Ks).

2. γCD(P1 ⊠Ks) = γCD(P
c
1 ⊠Ks) = 2.

3. If 2 ≤ r ≤ 3, then γCD(P
c
r ⊠Ks) = 4.

4. γCD(P
c
r ⊠ P c

s ) does not exists if r ≤ 2.

5. γCD(P
c
3 ⊠ P c

3 ) does not exists.

6. If r ≥ 3 and s ≥ 4, then γCD(P
c
r ⊠ P c

s ) = 4.

Theorem 2.11. If r ≤ 3 and s ≥ 3, then γCD(Pr ⊠ Cs) =


s
2
+ 1 if s ≡ 2 (mod 4),

⌈ s
2
⌉ otherwise.

Proof. Let Pr = (v1, v2, ..., vr) and Cs = (u1, u2, ..., us, u1).

Then V (Pr⊠Ps) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr⊠Ps) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r − 1, 2 ≤ j ≤ s} ∪

{(vi, u1)(vi+1, us) : 1 ≤ i ≤ r − 1} ∪ {(vi, u1)(vi−1, us) : 2 ≤ i ≤ r} ∪ {(vi, u1)(vi, us) : 1 ≤ i ≤

r}∪{(v1, ui)(vr, ui) : 1 ≤ i ≤ s}∪{(vi, u1)(vi+1, us) : 1 ≤ i ≤ r− 1}∪{(vi, u1)(vi−1, us) : 2 ≤

i ≤ r} ∪ {(vi, u1)(vi, us) : 1 ≤ i ≤ r}.

Let S1 = (v2, ui) : i ≡ 2 or 3 (mod 4). Then S =

 S1 ∪ {(v2, us−1)} if s ≡ 2 (mod 4),

S1 otherwise,

is a CD−set of Pr ⊠ Cs.

Thus γCD(Pr ⊠ Cs) ≤ |S| =


s
2
+ 1 if s ≡ 2 (mod 4),

⌈ s
2
⌉ otherwise.

Suppose there exists a

9



dominating set D ⊆ V of cardinality at most d =


s
2

if s ≡ 2 (mod 4),

⌈ s
2
⌉ − 1 otherwise.

,

then < D > contains an isolated vertex. Thus |D| ≥ d+1 =


s
2
+ 1 if s ≡ 2 (mod 4),

⌈ s
2
⌉ otherwise.

Therefore the proof.

Theorem 2.12. If r, s ≥ 4, then γCD(Pr ⊠ Cs) = γCD(Pr ⊠ Ps).

Proof. Let Pr = (v1, v2, ..., vr) and Cs = (u1, u2, ..., us, u1).

Then V (Pr⊠Ps) =
{
(vi, uj) : 1 ≤ i ≤ r, 1 ≤ j ≤ s

}
and E(Pr⊠Ps) = {(vi, uj)(vi, uj+1) : 1 ≤

i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, uj−1) : 1 ≤ i ≤ r − 1, 2 ≤ j ≤ s} ∪

{(vi, u1)(vi+1, us) : 1 ≤ i ≤ r − 1} ∪ {(vi, u1)(vi−1, us) : 2 ≤ i ≤ r} ∪ {(vi, u1)(vi, us) : 1 ≤ i ≤

r}∪{(v1, ui)(vr, ui) : 1 ≤ i ≤ s}∪{(vi, u1)(vi+1, us) : 1 ≤ i ≤ r− 1}∪{(vi, u1)(vi−1, us) : 2 ≤

i ≤ r} ∪ {(vi, u1)(vi, us) : 1 ≤ i ≤ r}. The proof of this theorem had subdivided into many

cases and each case will be explained in a identical way as in Theorem 2.3, 2.4, 2.5, 2.6.

Theorem 2.13. For any non trivial path Pr and Kt,s, t ≥ 1, γCD(Pr ⊠Kt,s) = 2⌈ r
3
⌉.

Proof. Let Pr = (v1, v2, v3, ..., vr) and V (Kt,s) = (V1, V2), where V1 = (x1, x2, x3, . . . , xt) and

V2 = (y1, y2, y3, . . . , ys). Then V (Pr ⊠Kt,s) = {(vi, xj), (vi, yk) : 1 ≤ i ≤ r, 1 ≤ j ≤ t, 1 ≤ k ≤

s} and E(Pr ⊠Kt,s) = {(vi, xj)(vi+1, xj) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ t} ∪ {(vi, yj)(vi+1, yj) : 1 ≤

i ≤ r − 1, 1 ≤ j ≤ t} ∪ {(vi, xj)(vi, yk) : 1 ≤ i ≤ r, 1 ≤ j ≤ t, 1 ≤ k ≤ s} ∪ {(vi, xj)(vi+1, yk) :

1 ≤ i ≤ r − 1, 1 ≤ j ≤ t, 1 ≤ k ≤ s} ∪ {(vi, xj)(vi−1, yk) : 2 ≤ i ≤ r, 1 ≤ j ≤ t, 1 ≤ k ≤ s}.

Let S1 =
{
(vi, u1), (vi, us−1) : i ≡ 2 (mod 3)

}
. Then

S =

 S1 if r ≡ 0 or 2 (mod 3).

S2 ∪ {(vr, u1), (vr, us−1)} if r ≡ 1 (mod 3),
is a CD − set of Pr ⊠Kt,s.

Thus γCD(Pr⊠P c
s ) ≤ |S| = 2⌈ r

3
⌉. Suppose there exists a dominating setD ⊆ V of cardinality

at most d = 2⌈ r
3
⌉ − 1, then < D > contains an isolated vertex. Thus |D| ≥ d+ 1 = 2⌈ r

3
⌉.

Hence the theorem follows.

Theorem 2.14. If r ≥ 2 and s ≥ 3, then γCD(Pr⊠Hs) =


(s+1)(r+2)

2
if s ≡ 2 (mod 4),

(s+ 1)⌈ r
2
⌉ otherwise.
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Proof. Let Pr = (v1, v2, v3, . . . , vr) and V (Hs) = {u1, u2, u3, . . . , us, u
′
1, u

′
2, u

′
3, . . . , u

′
s, u},

where ∆(Hs) = deg(u), deg(u′
i) = 1 and the vertices u1, u2, u3, . . . , us form a cycle. Then

V (Pr⊠Hs) = {(vi, uj)(vi, u
′
j)(vi, u) : 1 ≤ i ≤ r, 1 ≤ j ≤ s} and E(Pr⊠Hs) = {(vi, uj)(vi+1, uj),

(vi, u
′
j)(vi+1, u

′
j), (vi, u)(vi+1, u) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi, uj)(vi+1, uj),

(vi, u1)(vi, us) : 1 ≤ i ≤ r, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi, u
′
j), (vi, uj)(vi, u) : 1 ≤ i ≤ r, 1 ≤

j ≤ s} ∪ {(vi, uj)(vi+1, uj+1) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s − 1} ∪ {(vi, uj)(vi+1, u
′
j) : 1 ≤ i ≤

r−1, 1 ≤ j ≤ s}∪{(vi, uj)(vi+1, u) : 1 ≤ i ≤ r−1, 1 ≤ j ≤ s}∪{(vi+1, uj)(vi, uj+1) : 1 ≤ i ≤

r − 1, 2 ≤ j ≤ s− 1} ∪ {(vi+1, uj)(vi, u
′
j) : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s} ∪ {(vi+1, uj)(vi, u) : 1 ≤

i ≤ r − 1, 1 ≤ j ≤ s}. Let S1 = {(vi, u′
j), (vi, u) : i ≡ 2 or 3 (mod 4), 1 ≤ j ≤ s}. Then S = S1 ∪ {(vr−1, u

′
j), (vr−1, u) : 1 ≤ j ≤ s} if r ≡ 1 or 2 (mod 4),

S1 otherwise,
is a CD- set of Pr ⊠Hs.

Thus γCD(Pr ⊠ Hs) ≤ |S| = γCD(Pr ⊠ Hs) =


(s+1)(r+2)

2
if s ≡ 2 (mod 4),

(s+ 1)⌈ r
2
⌉ otherwise.

Suppose

there exists aD dominating of cardinality at most d =


(s+1)(r+2)

2
− 1 if s ≡ 2 (mod 4),

(s+ 1)⌈ r
2
⌉ − 1 otherwise,

then < D > has an isolated vertex. Thus |D ≥ d + 1 =


(s+1)(r+2)

2
if s ≡ 2 (mod 4),

(s+ 1)⌈ r
2
⌉ otherwise.

Hence the theorem.

Observation 2.3.

1. Let G be a totally disconnected graph of order s, then

γCD(Pr ⊠G) =


s(r+2)

2
if s ≡ 2 (mod 4),

s⌈ r
2
⌉ otherwise.

2. γCD(Pr ⊠W1,s) = γCD(Pr) =


r
2
+ 1 if s ≡ 2 (mod 4),

⌈ r
2
⌉ otherwise.

3. γCD(L(Pr)⊠ L(Ps)) = γCD(Pr−1 ⊠ Ps−1).

4. γCD(L(Pr)⊠ Ps) = γCD(Pr−1 ⊠ Ps).
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5. γCD(L(Cr)⊠ L(Cs)) = γCD(Cr ⊠ Cs).

Conclusion

Finding the CD-number for a general graph ia an NP-complete problem. In this

paper we find out the exact value of γCD(Pr ⊠ Ps), γCD(Pr ⊠ P c
s ), γCD(Pr ⊠ Cs), γCD(Pr ⊠

Ks), γCD(Pr ⊠W1,s), γCD(L(Pr)⊠ Ps), etc. Also we have given the minimum CD-set for the

above noticed graph and the comparsion of this parameter with other dominating parameter

will be described in the successive paper.
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