

Computing the CD-Number of Strong Product of Graphs

Loganathan Praveenkumar, G Mahadevan, Chockalingam Sivagnanam, S Anuthiya and Selvam Kaviya

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

July 5, 2022

Computing the CD-number of Strong product of graphs

L.Praveenkumar¹, G.Mahadevan², C.Sivagnanam³, S.Anuthiya⁴, S.Kaviya⁵

^{1,2,4,5}Department of Mathematics, Gandhigram Rural Institute - Deemed to be University, Gandhigram, Tamilnadu, India.

³Department of General Requirments, University of Technology and Applied Sciences- Sur, Sultanate of Oman

E-mail: prawinlog@gmail.com¹, drgmaha2014@gmail.com²,

choshi71@gmail.com³,anuthiya96@gmai.com⁴, kaviyaselvam3001@gmail.com⁵

Abstract

The theory of corona domination number was presented by G.Mahadevan et al. [1]. In this work, we carry over the study of corona domination in graphs for the strong product of graphs. We investigate the strong product involving paths, cycles, complete graph and complete bipartite graph.

Keywords: Domination number, corona domination number, strong product, pendent vertex, support vertex.

AMS classification number: 05C69

1 Introduction

All the graphs $G = (V(G), E(G) \text{ consider here are finte, simple, undirected and without isolated vertex. The neighbor of a vertex <math>v \in V(G)$ is denoted by N(v), where $N(v) = \{u \in V(G) : d(u, v) = 1\}$ and deg(v) = |N(v)| denotes the degree of the vertex v. If the degree of a vertex is one then it is called a *pendant vertex*. Let P_r denote a path of length r, C_r denotes a cycle of length r and G^c denotes the complement of G. Let G be a graph. An *induced subgraph* H is obtained from G by deleting some vertices of G. If G is said to be a *bipartite*[4]

then its vertex can be separated in to two nonempty substs Y_1 and Y_2 such that each edge of G has one end in Y_1 and other in Y_2 and is denoted by $G(Y_1, Y_2)$. A bipartite graph $G(Y_1, Y_2)$ is said to be *complete bipartite* [4] if each vertex of Y_1 is adjacent to all the vertices of Y_2 . If $G(Y_1, Y_2)$ is complete with $|Y_1| = r$ and $|Y_2| = s$ then $G(Y_1, Y_2)$ is denoted by $K_{r,s}$, where $K_{1,s}$ is a star graph[4]. A wheel graph $W_{1,r}, r \geq 3$ is obtained by joining a single vertex to all the vertices of a cycle C_r . A helm graph H_r , is obtained by joining a pendant edge to every vertex of the outer cycle of $W_{1,r}$. L(G) be the line graph of G where V(L(G)) = E(G) and two vertices in L(G) are adjacent if and only if the corresponding the edges has an endvertex in common. It is clear that $L(P_r) = P_{r-1}$ and $L(C_r) = C_r$. A dominating set S is a set of vertices of G with the condition that every $v \in V - S$, d(v, S) = 1. Any dominating set D of G with minimum cardinality, then the domination number $\gamma(G) = |D|$. The strong product [3] of graphs H_1 and H_2 is the graph $H_1 \boxtimes H_2$ with vertex set $V(H_1) \times V(H_2)$ and any two of its vertices (v_1, u_1) and (v_2, u_2) are adjacent whenever $v_1v_2 \in E(H_1)$ and $u_1 = u_2$ or $u_1u_2 \in E(H_2)$ and $v_1 = v_2$ or $v_1v_2 \in E(H_1)$ and $u_1u_2 \in E(H_2)$. The corona domination number(CD number) [1] γ_{CD} is a minimum cardinality of the dominating set S, with the subgraph induced by S having either pendant or support vertex only. Graph domination and associated concepts have been analyzed for many years; among them, many authors studied the domination number of the various product graphs, especially for the product involving paths, cycles, etc. Motivated by the above, we determined the exact values of $\gamma_{CD}(P_r \boxtimes P_s), \gamma_{CD}(P_r \boxtimes P_s^c), \gamma_{CD}(P_r \boxtimes C_s), \gamma_{CD}(P_r \boxtimes K_s), etc.$ In the future, we will find the exact value of $\gamma_{CD}(P_r \boxtimes G)$ for any given graph G. Also, we see the relationship between the $CD(P_r)$ with $\gamma_{CD}(P_r \boxtimes G)$ and $CD(G)\gamma_{CD}(P_r \boxtimes G)$

Here, we have given the *CD*-number for some graphs. $\gamma_{CD}(P_r^c) = 2, r \ge 4, \gamma_{CD}(C_4^c) = 4,$ $\gamma_{CD}(C_5^c) = 3, \gamma_{CD}(C_r^c) = 2, r \ge 6, \gamma_{CD}(P_2 \boxtimes K_s) = \gamma_{CD}(P_3 \boxtimes K_s) = 2.$

2 CD-number of strong product for some standard graphs

We begin this section with some observations. The CD-number of the strong product of the paths P_1 , P_2 , and P_3 with P_r is same as the CD-number of P_r and the remaining cases are given below.

Theorem 2.1. If $s \ge 4$, then $\gamma(P_4 \boxtimes P_s) = 2\lceil \frac{s}{3} \rceil$.

Proof. Let $P_4 = (v_1, v_2, v_3, v_4)$ and $P_s = (u_1, u_2, ..., u_s)$. Then $V(P_4 \boxtimes P_s) = \{(v_i, u_j) : 1 \le i \le 4, 1 \le j \le s\}$ and $E(P_4 \boxtimes P_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le 4, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le 3, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le 3, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le 3, 1 \le j \le s\}$. Let $S_1 = \{(v_1, u_j), (v_4, u_j) : j \equiv 2 \pmod{3}\}$. Then $S = \begin{cases} S_1 & \text{if } s \equiv 0 \text{ or } 2 \pmod{3}, \\ S_1 \cup \{(v_1, u_s), (v_4, u_s)\} & \text{if } s \equiv 1 \pmod{3}, \end{cases}$ is a dominating set of $P_4 \boxtimes P_s$.

Thus $\gamma(P_4 \boxtimes P_s) \leq |S| = 2\lceil \frac{s}{3} \rceil$. Assume that D is a dominating set of $P_4 \boxtimes P_s$. Since $\gamma(P_s) = \lceil \frac{s}{3} \rceil$ and any dominating set of i^{th} row of $P_4 \boxtimes P_s$ dominating all the vertices in $(i-1)^{th}$ row and $(i+1)^{th}$ row, any dominating set of a row dominates at most three rows. Hence $|D| \geq 2\lceil \frac{s}{3} \rceil$. Then $\gamma(P_4 \boxtimes P_s) \geq 2\lceil \frac{s}{3} \rceil$ and hence the result follows.

Theorem 2.2. If $s \ge 4$, then $\gamma_{CD}(P_4 \boxtimes P_s) = 2\lceil \frac{s}{3} \rceil$.

Proof. Let $P_4 = (v_1, v_2, v_3, v_4)$ and $P_s = (u_1, u_2, ..., u_s)$. Then $V(P_4 \boxtimes P_s) = \{(v_i, u_j) : 1 \le i \le 4, 1 \le j \le s\}$ and $E(P_4 \boxtimes P_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le 4, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le 3, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le 3, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le 3, 2 \le j \le s\}.$ Let $S_1 = \{(v_i, u_j) : i \equiv 2 \text{ or } 3 \pmod{4}, j \equiv 2 \pmod{3}\}.$ Then $S = \begin{cases} S_1 & \text{if } s \equiv 0 \text{ or } 2 \pmod{3}, \\ S_1 \cup \{(v_i, u_s) : i \equiv 2 \text{ or } 3 \pmod{4}\} & \text{if } s \equiv 1 \pmod{3}, \end{cases}$ is a CD - set of $P_4 \boxtimes P_S$. Thus $\gamma_{CD}(P_4 \boxtimes P_s) \le |S| = 2\lceil \frac{s}{3} \rceil$. Since $\gamma(P_4 \boxtimes P_s) = 2\lceil \frac{s}{3} \rceil$, the result follows.

Theorem 2.3. If $r \equiv 0$ or $1 \pmod{4}$, $r \geq 5$ and $s \geq r$, then $\gamma_{CD}(P_r \boxtimes P_s) = \lceil \frac{r}{2} \rceil \lceil \frac{s}{3} \rceil$.

 $\begin{array}{l} Proof. \ \text{Let } P_r \ = \ (v_1, v_2, ..., v_r) \ \text{and } P_s \ = \ (u_1, u_2, ..., u_s). \\ \text{Then } V(P_r \boxtimes P_s) = \left\{ (v_i, u_j) : 1 \le i \le r, 1 \le j \le s \right\} \ \text{and } E(P_r \boxtimes P_s) = \left\{ (v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le r, 1 \le j \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r, 1 \le j \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r, 1 \le j \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r, 1 \le j \le s \right\}. \\ \text{case } 1: \ r \ \equiv \ 0 \ (mod \ 4) \\ \text{Let } S_1 \ = \ \left\{ (v_i, u_j) : \ i \ \equiv \ 2 \ or \ 3 \ (mod \ 4), j \ \equiv \ 2 \ (mod \ 3) \right\}. \\ \text{Then } S \ = \left\{ \begin{array}{c} S_1 \ & \text{if } s \ \equiv \ 0 \ or \ 2 \ (mod \ 3), \\ S_1 \cup \left\{ (v_i, u_s) : i \ \equiv \ 2 \ or \ 3 \ (mod \ 4) \right\} \ \text{if } s \ \equiv \ 1 \ (mod \ 3), \\ \text{of } P_r \boxtimes P_s. \ \text{Thus } \gamma_{CD}(P_r \boxtimes P_s) \ \le \ |S| \ = \ \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil. \\ \text{Suppose there exists a dominating set } \\ D_1 \subseteq V \ \text{of cardinality at most } d_1 \ = \ \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 1, \ \text{then } < D_1 > \text{contains an isolated vertex.} \\ \text{Hence } |D_1| \ \ge d_1 + 1 \ = \ \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil. \\ \text{case } 2: \ r \ \equiv \ 1 \ (mod \ 4) \\ \text{Let } S_2 \ = \ \left\{ (v_i, u_j) : \ i \ \equiv \ 2 \ or \ 3 \ (mod \ 4), j \ \equiv \ 2 \ (mod \ 3) \right\} \cup \ \left\{ (v_{r-1}, u_j) : \ j \ \equiv \ 2 \ (mod \ 3) \right\}. \\ \text{Then } S = \left\{ \begin{array}{c} S_2 \ & \text{if } s \ \equiv \ 0 \ or \ 2 \ (mod \ 3) \right\} \cup \left\{ (v_{r-1}, u_j) : \ j \ \equiv \ 2 \ (mod \ 3) \right\}. \\ \text{Then } S = \left\{ \begin{array}{c} S_2 \ & \text{if } s \ \equiv \ 0 \ or \ 2 \ (mod \ 3) \right\} \cup \left\{ v_{r-1}, u_j \right\} : \ j \ \equiv \ 2 \ (mod \ 3) \right\}. \\ \text{Then } S = \left\{ \begin{array}{c} S_2 \ & \text{if } s \ \equiv \ 0 \ or \ 2 \ (mod \ 3) \right\} \cup \left\{ (v_{r-1}, u_s) \right\} \text{if } s \ \equiv \ 1 \ (mod \ 3), \\ S_2 \cup \left\{ (v_i, u_s) : i \ \equiv \ 2 \ or \ 3 \ (mod \ 4) \right\} \cup \left\{ (v_{r-1}, u_s) \right\} \text{if } s \ \equiv \ 1 \ (mod \ 3), \\ \text{is } a \ CD - set \ of \ P_r \ \boxtimes P_s. \ Thus \ \gamma_{CD}(P_r \ \boxtimes P_s) \ \le \ |S| \ = \ \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil. \ \text{Suppose there exists a a \\ \text{dominating set } D_2 \ \subseteq V \ \text{of cardinality at most } d_2 \ = \ \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 1, \text{ then } < D_2 > \text{ contains an } \\ \text{isolated vertex. \ Thus } |D_2| \ \ge d_$

Theorem 2.4. If $r \equiv 2 \pmod{4}$, $r \geq 10$ and $s \geq r$, then

$$\gamma_{CD}(P_r \boxtimes P_s) = \begin{cases} (\frac{r}{2} + 1) \lceil \frac{s}{3} \rceil & \text{if } s \equiv 0 \text{ or } 2 \pmod{3} \\ (\frac{r}{2} + 1) \lceil \frac{s}{3} \rceil - 4 & \text{if } s \equiv 1 \pmod{3}. \end{cases}$$

Proof. Let $P_r = (v_1, v_2, ..., v_r)$ and $P_s = (u_1, u_2, ..., u_s)$.

Then $V(P_r \boxtimes P_s) = \{(v_i, u_j) : 1 \le i \le r, 1 \le j \le s\}$ and $E(P_r \boxtimes P_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le r, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r - 1, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r - 1, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le r - 1, 2 \le j \le s\}.$ Let $S_1 = \{(v_i, u_j) : i \equiv 1 \text{ or } 2 \pmod{4}, j \equiv 2 \pmod{3}\}, S_2 = \{(v_i, u_j) : i \equiv 2 \text{ or } 3 \pmod{4}, j \equiv 2 \pmod{3}\} \cup \{(v_{r-1}, u_j) : j \equiv 2 \pmod{3}\} - \{(v_r, u_{s-2}), (v_{r-3}, u_{s-2})\}$ and $A = (\{(v_i, u_s) : i \equiv 2 \text{ or } 3 \pmod{4}\} \cup \{(v_{r-1}, u_{s-1})(v_{r-4}, u_{s-1})\}) - \{(v_r, u_s), (v_{r-3}, u_s), (v_{r-4}, u_s)\}.$ $\text{Then } S = \begin{cases} S_1 & \text{if } s \equiv 0 \text{ or } 2 \pmod{3}, \\ S_2 \cup A & \text{if } s \equiv 1 \pmod{3}, \end{cases} \text{ is a } CD - set \text{ of } P_r \boxtimes P_s. \text{ Thus } \\ S_2 \cup A & \text{if } s \equiv 1 \pmod{3}, \end{cases}$

Theorem 2.5. If $s \ge 6$, then $\gamma_{CD}(P_6 \boxtimes P_s) = \begin{cases} s & \text{if } s \equiv 0 \pmod{4}, \\ s+1 & \text{if } s \equiv 1 \text{ or } 3 \pmod{4}, \\ s+2 & \text{if } s \equiv 2 \pmod{4}. \end{cases}$

Proof. Let $P_6 = (v_1, v_2, ..., v_6)$ and $P_s = (u_1, u_2, ..., u_s)$. Then $V(P_6 \boxtimes P_s) = \{(v_i, u_j) : 1 \le i \le 6, 1 \le j \le s\}$ and $E(P_6 \boxtimes P_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le 6, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le 5, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le 5, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le 5, 2 \le j \le s\}$. Let $S_1 = \{(v_i, u_j) : i \ge 2 \pmod{3}, j \ge 2 \text{ or } 3 \pmod{4}\}$.

Then
$$S = \begin{cases} S_1 & \text{if } s \equiv 0 \text{ or } 3 \pmod{4}, \\ S_1 \cup \{(v_i, u_{s-1}) : i \equiv 2 \pmod{3}\} & \text{if } s \equiv 1 \text{ or } 2 \pmod{4}, \end{cases}$$
 is a $CD - set$ of $S_1 \cup \{(v_i, u_{s-1}) : i \equiv 2 \pmod{3}\} & \text{if } s \equiv 1 \text{ or } 2 \pmod{4}, \end{cases}$
 $P_6 \boxtimes P_s$. Thus $\gamma_{CD}(P_6 \boxtimes P_s) \le |S| = \begin{cases} s & \text{if } s \equiv 0 \pmod{4}, \\ s + 1 & \text{if } s \equiv 1 \text{ or } 3 \pmod{4}, \end{cases}$ Suppose there exists $s + 2 & \text{if } s \equiv 2 \pmod{4}. \end{cases}$
a dominating set $D \subseteq V$ of cardinality at most $d = \begin{cases} s - 1 & \text{if } s \equiv 0 \pmod{4}, \\ s & \text{if } s \equiv 1 \text{ or } 3 \pmod{4}, \\ s & \text{if } s \equiv 1 \text{ or } 3 \pmod{4}, \\ s + 1 & \text{if } s \equiv 2 \pmod{4}, \end{cases}$

then $\langle D \rangle$ has an isolated vertex. Thus $|D| \ge d + 1 = \begin{cases} s & \text{if } s \equiv 0 \pmod{4}, \\ s + 1 & \text{if } s \equiv 1 \text{ or } 3 \pmod{4}, \\ s + 2 & \text{if } s \equiv 2 \pmod{4}. \end{cases}$ Hence the result.

Theorem 2.6. If $r \equiv 3 \pmod{4}$, $r \geq 7$ and $s \geq r$, then

$$\gamma_{CD}(P_r \boxtimes P_s) = \begin{cases} & \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil & \text{if } s \equiv 0 \text{ or } 2 \pmod{3} \\ & \left\lceil \frac{r}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 2 & \text{if } s \equiv 1 \pmod{3}. \end{cases}$$

$$\begin{array}{l} Proof. \ \text{Let } P_r \ = \ (v_1, v_2, ..., v_r) \ \text{and } P_s \ = \ (u_1, u_2, ..., u_s). \\ \text{Then } V(P_r \boxtimes P_s) = \left\{ (v_i, u_j) : 1 \le i \le r, 1 \le j \le s \right\} \ \text{and } E(P_r \boxtimes P_s) = \left\{ (v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le r, 1 \le j \le s - 1 \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le r - 1, 1 \le j \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r - 1, 2 \le j \le s \right\}. \\ \text{Let } S_1 = \left\{ (v_i, u_j) : i \equiv 2 \text{ or } 3 \ (mod \ 4), j \equiv 2 \ (mod \ 3) \right\} \ \text{and} \\ \text{let } A = \left(\left\{ (v_i, u_s) : i \equiv 2 \text{ or } 3 \ (mod \ 4) \right\} \cup \left\{ (v_{r-1}, u_{s-1}) \right\} \right) - \left\{ (v_r, u_s), (v_{r-1}, u_s) \right\} \\ \text{Then } S = \begin{cases} S_1 & \text{if } s \equiv 0 \text{ or } 2 \ (mod \ 3), \\ (S_1 \cup A) - \left\{ (v_r, u_{s-2}) \right\} & \text{if } s \equiv 1 \ (mod \ 3), \end{cases} \\ \text{Suppose there exists a dominating set } D \subseteq V \text{ of cardinality at most} \\ d = \begin{cases} \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 1 & \text{if } s \equiv 0 \text{ or } 2 \ (mod \ 3), \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 2 & \text{if } s \equiv 1 \ (mod \ 3). \end{cases} \\ \text{Suppose there exists a dominating set } D \subseteq V \text{ of cardinality at most} \\ d = \begin{cases} \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 1 & \text{if } s \equiv 0 \text{ or } 2 \ (mod \ 3), \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 3 & \text{if } s \equiv 1 \ (mod \ 3), \end{cases} \\ \text{Thus } |D| \ge d + 1 = \begin{cases} \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil & \text{if } s \equiv 0 \text{ or } 2 \ (mod \ 3), \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil & \text{if } s \equiv 0 \text{ or } 2 \ (mod \ 3), \end{cases} \\ \text{Hence, the statement of the} \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 2 & \text{if } s \equiv 1 \ (mod \ 3). \end{cases} \\ \text{Thus } |D| \ge d + 1 = \begin{cases} \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil & \text{if } s \equiv 1 \ (mod \ 3). \end{cases} \\ \text{Hence, the statement of the} \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 2 & \text{if } s \equiv 1 \ (mod \ 3). \end{cases} \\ \text{Hence, the statement of the} \\ \left\lceil \frac{r_2}{2} \right\rceil \left\lceil \frac{s}{3} \right\rceil - 2 & \text{if } s \equiv 1 \ (mod \ 3). \end{cases} \end{aligned}$$

Theorem 2.7. If $r \ge 3$ and $2 \le s \le 3$, then $\gamma_{CD}(P_r \boxtimes P_s^c) = \begin{cases} r+2 & \text{if } r \equiv 2 \pmod{4}, \\ 2\lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$

Proof. Let $P_r = (v_1, v_2, ..., v_r)$ and $P_s = (u_1, u_2, ..., u_s)$. Then $V(P_r \boxtimes P_s^c) = \{(v_i, u_j) : 1 \le i \le r, 1 \le j \le s\}$ and $E(P_r \boxtimes P_s^c) = \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r, 1 \le j \le s\}$

$$\begin{split} 1 &\leq i \leq r-1, 1 \leq j \leq s \} \cup \{(v_i, u_j)(v_{i+1}, u_k) : 1 \leq i \leq r-1, 1 \leq j \leq s-2, j+2 \leq k \leq s \} \\ &\leq s \} \cup \{(v_i, u_j)(v_{i+1}, u_l) : 1 \leq i \leq r-1, 3 \leq j \leq s, 1 \leq l \leq j-2\} \cup \{(v_i, u_j)(v_i, u_k) : 1 \leq i \leq r, 1 \leq j \leq s-2, j+2 \leq k \leq s \}. \text{ Let } S_1 = \{(v_i, u_j) : i \equiv 2 \text{ or } 3 \pmod{4}, j = 1, 2\}. \text{ Then } \\ S &= \begin{cases} S_1 \cup \{(v_{r-1}, u_j) : j = 1, 2\} & \text{if } r \equiv 1 \text{ or } 2 \pmod{4}, \\ S_1 & \text{otherwise,} \end{cases} \text{ is a CD- set of $(P_r \boxtimes P_s^c)$. \\ S_1 & \text{otherwise,} \end{cases} \\ \text{Thus } \gamma_{CD}(P_r \boxtimes P_s^c) \leq |S| = \begin{cases} r+2 & \text{if } r \equiv 2 \pmod{4}, \\ 2\lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases} \text{ Suppose there exists a dominating D of cardinality at most \\ d &= \begin{cases} r+1 & \text{if } r \equiv 1 \text{ or } 2 \pmod{4}, \\ 2\lceil \frac{r}{2} \rceil - 1 & \text{otherwise,} \end{cases} \end{split}$$

$$|D| \ge d+1 = \begin{cases} r+2 & \text{if } r \equiv 1 \text{ or } 2 \pmod{4}, \\ 2\lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$$
 Hence the theorem follows. \Box

Theorem 2.8. If $r \ge 4, s \ge 4$ and $s \ge r$, then $\gamma_{CD}(P_r \boxtimes P_s^c) = 2\lceil \frac{r}{3} \rceil$.

$$\begin{array}{l} Proof. \text{ Let } P_r \ = \ (v_1, v_2, ..., v_r) \text{ and } P_s \ = \ (u_1, u_2, ..., u_s).\\ \text{Then } V(P_r \boxtimes P_s^c) = \left\{ (v_i, u_j) : 1 \le i \le r, 1 \le j \le s \right\} \text{ and } E(P_r \boxtimes P_s^c) = \left\{ (v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r-1, 1 \le j \le s-2, j+2 \le k \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_l) : 1 \le i \le r-1, 3 \le j \le s, 1 \le lj-2 \right\} \cup \left\{ (v_i, u_j)(v_i, u_k) : 1 \le i \le r, 1 \le j \le s-2, j+2 \le k \le s \right\}. \text{ Let } S_1 \ = \ \left\{ (v_i, u_1), (v_i, u_{s-1}) : i \equiv 2 \pmod{3} \right\}. \text{ Then }\\ S = \left\{ \begin{array}{c} S_1 \ \text{if } r \equiv 0 \text{ or } 2 \pmod{3}.\\ S_1 \cup \left\{ (v_r, u_1), (v_r, u_{s-1}) \right\} \ \text{if } r \equiv 1 \pmod{3}, \end{array} \right. \text{ is a } CD - set \text{ of } P_r \boxtimes P_s^c. \end{array}$$

Suppose there exists a dominating set $D \subseteq V$ of cardinality at most $d = 2\lceil \frac{r}{3} \rceil - 1$, then < D > contains an isolated vertex. Thus $|D| \ge d+1 = 2\lceil \frac{r}{3} \rceil$. Hence the theorem follows. \Box

Observation 2.1.

- 1. If $2 \le r \le 3$ and $s \ge r$, then $\gamma_{CD}(P_r \boxtimes P_s^c) = 4$.
- 2. If $s \geq 3$, then $\gamma_{CD}(C_3 \boxtimes P_s^c) = 4$.
- 3. If $r, s \ge 4$, then $\gamma_{CD}(C_r \boxtimes P_s^c) = 2\lceil \frac{r}{3} \rceil$.

- 4. If $2 \leq r \leq 3$ and $s \geq 4$, then $\gamma_{CD}(P_r \boxtimes C_s^c) = 4$.
- 5. If $r, s \geq 4$, then $\gamma_{CD}(P_r \boxtimes C_s^c) = 2\lceil \frac{r}{2} \rceil$.
- 6. If s > 3, then $\gamma_{CD}(C_3 \boxtimes C_s^c) = 4$.
- 7. If $r, s \geq 4$, then $\gamma_{CD}(C_r \boxtimes C_s^c) = 2 \lceil \frac{r}{2} \rceil$.

Theorem 2.9. If $r \ge 4$ and $s \ge r$, then $\gamma_{CD}(P_r \boxtimes K_s) = \begin{cases} \frac{r}{2} + 1 & \text{if } r \equiv 2 \pmod{4}, \\ \frac{r}{2} & \text{otherwise.} \end{cases}$

Proof. Let $P_r = (v_1, v_2, ..., v_r)$ and $V(K_s) = \{u_1, u_2, ..., u_s\}$. Then $V(P_r \boxtimes K_s) = \{(v_i, u_j) : 1 \le i \le r, 1 \le j \le s\}$ and $E(P_r \boxtimes K_s) = \{(v_i, u_j)(v_i, u_{j+1}) : i \le j \le s\}$ $s \} \cup \{(v_i, u_j)(v_{i+1}, u_k) : 1 \le i \le r - 1, j + 1 \le k \le s, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i-1}, u_k) : 2 \le s - 1\} \cup \{(v_i, u_j)(v_{i-1}, u_k) : 1 \le i \le r - 1, j + 1 \le k \le s, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i-1}, u_k) : 1 \le i \le r - 1, j + 1 \le k \le s, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i-1}, u_k) : 1 \le s \le s - 1\}$ $i \le r, 1 \le j \le s - 1, j + 1 \le k \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r - 1, 1 \le j \le s\}.$ Let $S_1 = \{(v_i, u_1) : i \equiv 2 \text{ or } 3 \pmod{4} \}$. Then $S = \begin{cases} S_1 \cup \{(v_{r-1}, u_1)\} & \text{if } r \equiv 1 \text{ or } 2 \pmod{4}, \\ S_1 & \text{otherwise,} \end{cases} \text{ is a } CD-\text{set of } P_r \boxtimes K_s.$

Thus
$$\gamma_{CD}(P_r \boxtimes K_s) \leq |S| = \begin{cases} \frac{r}{2} + 1 & \text{if } r \equiv 2 \pmod{4}, \\ \lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$$

Suppose there exists a dominating set $D \subset V$ of cardinality at most

then $\langle D \rangle$ contains an isolated vertex. Thus $|D| \ge d+1 = \begin{cases} 2^{-1} & \frac{2}{2} \\ & \frac{r}{2} \end{cases}$ otherwise. Therefore the proof.

Theorem 2.10. $\gamma_{CD}(C_r \boxtimes C_s) = \gamma_{CD}(P_r \boxtimes P_s), s \ge r.$

Proof. Let $C_r = (v_1, v_2, ..., v_r, v_1)$ and $C_s = (u_1, u_2, ..., u_s, u_1)$. Then $V(C_r \boxtimes C_s) = \{(v_i, u_j) : 1 \le i \le r, 1 \le j \le s\}$ and $E(C_r \boxtimes C_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le j \le s\}$ $i \leq r-1, 1 \leq j \leq s-1 \} \cup \{(v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \leq i \leq r-1, 2 \leq j \leq s\} \cup \{(v_i, u_1)(v_i, u_1)(v_i$

$$1 \le i \le r-1 \} \cup \{(v_i, u_1)(v_{i-1}, u_s) : 2 \le i \le r \} \cup \{(v_i, u_1)(v_i, u_s) : 1 \le i \le r \} \cup \{(v_1, u_i)(v_r, u_i) : 1 \le i \le s \} \cup \{(v_1, u_1)(v_r, u_s) \} \cup \{(v_r, u_1)(v_1, u_s) \}.$$

The proof of this theorem had subdivided into many cases and each case will be explained in a identical way as in Theorem 2.3, 2.4, 2.5, 2.6. \Box

Observation 2.2.

- 1. If $r \geq 3$ and $s \geq r$, then $\gamma_{CD}(C_r \boxtimes K_s) = \gamma_{CD}(P_r \boxtimes K_s)$.
- 2. $\gamma_{CD}(P_1 \boxtimes K_s) = \gamma_{CD}(P_1^c \boxtimes K_s) = 2.$
- 3. If $2 \leq r \leq 3$, then $\gamma_{CD}(P_r^c \boxtimes K_s) = 4$.
- 4. $\gamma_{CD}(P_r^c \boxtimes P_s^c)$ does not exists if $r \leq 2$.
- 5. $\gamma_{CD}(P_3^c \boxtimes P_3^c)$ does not exists.
- 6. If $r \geq 3$ and $s \geq 4$, then $\gamma_{CD}(P_r^c \boxtimes P_s^c) = 4$.

Theorem 2.11. If $r \leq 3$ and $s \geq 3$, then $\gamma_{CD}(P_r \boxtimes C_s) = \begin{cases} \frac{s}{2} + 1 & \text{if } s \equiv 2 \pmod{4}, \\ \lceil \frac{s}{2} \rceil & \text{otherwise.} \end{cases}$

 $\begin{array}{l} Proof. \ \text{Let} \ P_r \ = \ (v_1, v_2, ..., v_r) \ \text{and} \ C_s \ = \ (u_1, u_2, ..., u_s, u_1).\\ \\ \text{Then} \ V(P_r \boxtimes P_s) = \left\{ (v_i, u_j) : 1 \le i \le r, 1 \le j \le s \right\} \ \text{and} \ E(P_r \boxtimes P_s) = \left\{ (v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le r, 1 \le j \le s - 1 \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r - 1, 1 \le j \le s \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r - 1, 1 \le j \le s - 1 \right\} \cup \left\{ (v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le r - 1, 2 \le j \le s \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i-1}, u_s) : 2 \le i \le r \right\} \cup \left\{ (v_i, u_1)(v_i, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1 \right\} \cup \left\{ (v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r \right\}$

Let
$$S_1 = (v_2, u_i) : i \equiv 2 \text{ or } 3 \pmod{4}$$
. Then $S = \begin{cases} S_1 \cup \{(v_2, u_{s-1})\} & \text{if } s \equiv 2 \pmod{4}, \\ S_1 & \text{otherwise,} \end{cases}$

Thus $\gamma_{CD}(P_r \boxtimes C_s) \le |S| = \begin{cases} \frac{s}{2} + 1 & \text{if } s \equiv 2 \pmod{4}, \\ \lceil \frac{s}{2} \rceil & \text{otherwise.} \end{cases}$ Suppose there exists a

dominating set $D \subseteq V$ of cardinality at most $d = \begin{cases} \frac{s}{2} & \text{if } s \equiv 2 \pmod{4}, \\ \lceil \frac{s}{2} \rceil - 1 & \text{otherwise.} \end{cases}$, then < D > contains an isolated vertex. Thus $|D| \ge d+1 = \begin{cases} \frac{s}{2} + 1 & \text{if } s \equiv 2 \pmod{4}, \\ \lceil \frac{s}{2} \rceil & \text{otherwise.} \end{cases}$ Therefore the proof.

Theorem 2.12. If $r, s \ge 4$, then $\gamma_{CD}(P_r \boxtimes C_s) = \gamma_{CD}(P_r \boxtimes P_s)$.

Proof. Let $P_r = (v_1, v_2, ..., v_r)$ and $C_s = (u_1, u_2, ..., u_s, u_1)$. Then $V(P_r \boxtimes P_s) = \{(v_i, u_j) : 1 \le i \le r, 1 \le j \le s\}$ and $E(P_r \boxtimes P_s) = \{(v_i, u_j)(v_i, u_{j+1}) : 1 \le i \le r, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_j) : 1 \le i \le r - 1, 1 \le j \le s\} \cup \{(v_i, u_j)(v_{i+1}, u_{j+1}) : 1 \le i \le r - 1, 1 \le j \le s - 1\} \cup \{(v_i, u_j)(v_{i+1}, u_{j-1}) : 1 \le i \le r - 1, 2 \le j \le s\} \cup \{(v_i, u_1)(v_{i+1}, u_s) : 1 \le i \le r - 1\} \cup \{(v_i, u_1)(v_{i-1}, u_s) : 2 \le i \le r\} \cup \{(v_i, u_1)(v_i, u_s) : 1 \le i \le r\} \cup \{(v_i, u_1)(v_i, u_i) : 1 \le i \le r\} \cup \{(v_i, u_1)(v_i, u_s) : 1 \le i \le r\} \cup \{(v_i, u_1)(v_i, u_s) : 1 \le i \le r\}$. The proof of this theorem had subdivided into many cases and each case will be explained in a identical way as in Theorem 2.3, 2.4, 2.5, 2.6. □

Theorem 2.13. For any non trivial path P_r and $K_{t,s}, t \ge 1$, $\gamma_{CD}(P_r \boxtimes K_{t,s}) = 2\lceil \frac{r}{3} \rceil$.

 $\begin{array}{l} Proof. \ \text{Let} \ P_r = (v_1, v_2, v_3, \dots, v_r) \ \text{and} \ V(K_{t,s}) = (V_1, V_2), where \ V_1 = (x_1, x_2, x_3, \dots, x_t) \ and \\ V_2 = (y_1, y_2, y_3, \dots, y_s). \ \text{Then} \ V(P_r \boxtimes K_{t,s}) = \{(v_i, x_j), (v_i, y_k) : 1 \leq i \leq r, 1 \leq j \leq t, 1 \leq k \leq s\} \\ s \} \ \text{and} \ E(P_r \boxtimes K_{t,s}) = \{(v_i, x_j)(v_{i+1}, x_j) : 1 \leq i \leq r-1, 1 \leq j \leq t\} \cup \{(v_i, y_j)(v_{i+1}, y_j) : 1 \leq i \leq r-1, 1 \leq j \leq t\} \cup \{(v_i, x_j)(v_{i+1}, y_k) : 1 \leq i \leq r, 1 \leq j \leq t, 1 \leq k \leq s\} \cup \{(v_i, x_j)(v_{i+1}, y_k) : 1 \leq i \leq r-1, 1 \leq j \leq t, 1 \leq j \leq t, 1 \leq k \leq s\} \cup \{(v_i, x_j)(v_{i-1}, y_k) : 2 \leq i \leq r, 1 \leq j \leq t, 1 \leq k \leq s\}. \\ \text{Let} \ S_1 = \{(v_i, u_1), (v_i, u_{s-1}) : i \equiv 2 \pmod{3}\}. \ \text{Then} \\ S = \begin{cases} S_1 & \text{if} \ r \equiv 0 \ or \ 2 \pmod{3}, \\ S_2 \cup \{(v_r, u_1), (v_r, u_{s-1})\} & \text{if} \ r \equiv 1 \pmod{3}, \end{cases} \\ \text{is a} \ CD - set \ of \ P_r \boxtimes K_{t,s}. \end{cases}$

Thus $\gamma_{CD}(P_r \boxtimes P_s^c) \leq |S| = 2\lceil \frac{r}{3} \rceil$. Suppose there exists a dominating set $D \subseteq V$ of cardinality at most $d = 2\lceil \frac{r}{3} \rceil - 1$, then $\langle D \rangle$ contains an isolated vertex. Thus $|D| \geq d + 1 = 2\lceil \frac{r}{3} \rceil$. Hence the theorem follows.

Theorem 2.14. If
$$r \ge 2$$
 and $s \ge 3$, then $\gamma_{CD}(P_r \boxtimes H_s) = \begin{cases} \frac{(s+1)(r+2)}{2} & \text{if } s \equiv 2 \pmod{4}, \\ (s+1)\lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$

Thus
$$\gamma_{CD}(P_r \boxtimes H_s) \leq |S| = \gamma_{CD}(P_r \boxtimes H_s) = \begin{cases} \frac{(s+1)(r+2)}{2} & \text{if } s \equiv 2 \pmod{4}, \\ (s+1)\lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$$
 Suppose

there exists a *D* dominating of cardinality at most $d = \begin{cases} \frac{1}{2} & 1 & 0 & 0 \\ (s+1)\lceil \frac{r}{2} \rceil - 1 & 0 & \text{therwise}, \end{cases}$ then < D > has an isolated vertex. Thus $|D \ge d+1 = \begin{cases} \frac{(s+1)(r+2)}{2} & \text{if } s \equiv 2 \pmod{4}, \\ (s+1)\lceil \frac{r}{2} \rceil & 0 & \text{therwise}. \end{cases}$ Hence the theorem.

Observation 2.3.

1. Let G be a totally disconnected graph of order s, then $\gamma_{CD}(P_r \boxtimes G) = \begin{cases} \frac{s(r+2)}{2} & \text{if } s \equiv 2 \pmod{4}, \\ s \lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$

2.
$$\gamma_{CD}(P_r \boxtimes W_{1,s}) = \gamma_{CD}(P_r) = \begin{cases} \frac{r}{2} + 1 & \text{if } s \equiv 2 \pmod{4} \\ \lceil \frac{r}{2} \rceil & \text{otherwise.} \end{cases}$$

3.
$$\gamma_{CD}(L(P_r) \boxtimes L(P_s)) = \gamma_{CD}(P_{r-1} \boxtimes P_{s-1}).$$

4. $\gamma_{CD}(L(P_r) \boxtimes P_s) = \gamma_{CD}(P_{r-1} \boxtimes P_s).$

5. $\gamma_{CD}(L(C_r) \boxtimes L(C_s)) = \gamma_{CD}(C_r \boxtimes C_s).$

Conclusion

Finding the *CD*-number for a general graph ia an NP-complete problem. In this paper we find out the exact value of $\gamma_{CD}(P_r \boxtimes P_s), \gamma_{CD}(P_r \boxtimes P_s^c), \gamma_{CD}(P_r \boxtimes C_s), \gamma_{CD}(P_r \boxtimes K_s), \gamma_{CD}(P_r \boxtimes W_{1,s}), \gamma_{CD}(L(P_r) \boxtimes P_s), etc.$ Also we have given the minimum *CD*-set for the above noticed graph and the comparison of this parameter with other dominating parameter will be described in the successive paper.

References

- G.MAHADEVAN, M.VIMALA SUGANTHI AND C.SIVAGNANAM: Corona domination of graphs, Mathematical Modelling and Computational Intelligence Techniques, Spinger proceedings in Mathematics and Statistic, 376 (2021) 255-265.
- [2] GRAVIER, S, AND KHELLADI, A : On the domination number of cross products of graphs, Discrete mathematics, 145(1-3), 273-277 (1995).
- [3] HAMMACK, R. H., IMRICH, W., KLAVŽAR, S., IMRICH, W., AND KLAVŽAR, S. (2011): *Handbook of product graphs*. (Vol. 2). Boca Raton: CRC press.
- [4] HARARY F: Graph Theory, Addison Wesley Reading Mass, (1972).
- [5] HAYNES T.W, S.T.HEDETNIEMI AND P.J.SLATER: Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).