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Abstract. Quality inspection has become crucial in any large-scale 

manufacturing industry recently. In order to reduce human error, it has 

become imperative to use efficient and low computational AI algorithms to 

identify such defective products. In this paper, we have compared and 

contrasted various pre-trained and custom-built architectures using model 

size, performance and CPU latency in the detection of defective casting 

products. Our results show that custom architectures are efficient than pre-

trained mobile architectures. Moreover, custom models perform 6 to 9 times 

faster than lightweight models such as MobileNetV2 and NasNet. The 

number of training parameters and the model size of the custom architectures 

is significantly lower (~386 times & ~119 times respectively) than the best 

performing models such as MobileNetV2 and NasNet. Augmentation 

experimentations have also been carried out on the custom architectures to 

make the models more robust and generalizable. Our work sheds light on the 

efficiency of these custom-built architectures for deployment on Edge and 

IoT devices and that transfer learning models may not always be ideal. 

Instead, they should be specific to the kind of dataset and the classification 

problem at hand. 
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1 Introduction 

Quality control is vital in many industries, especially those that use casting or 

welding. Product quality affects customer satisfaction and loyalty. Inspection and 

testing are vital parts of the manufacturing process because they help control 

quality, reduce costs, prevent the loss, and locate defects. While most of these flaws 

are detectable with the naked eye, human inspection is time consuming, error prone, 

costly, and unreliable. Automated visual inspection solutions are helping companies 

overcome these obstacles. Most of the manufacturing sectors have relied on various 

non-destructive methodologies such as ultrasonic testing, magnetic particulate 

control and real time. X-ray image analysis started to gain popularity before deep 

learning methods like Convolution Neural Networks. Technological advancements 

in high-resolution X-rays have increased the detection capacity through 3D-

characterization [1]. Gabor filters are another popular defect detection method. The 

image can be decomposed into distinct components based on scale and orientation. 

They are widely used in defect detection because they provide the most precise 

spatial localization [2].   

Despite their efficiency and robustness, deep learning-based models are difficult to 

deploy on devices with limited memory, such as smartphones, tablets, and IoT 

devices. In the industrial setting, hosting deep learning models in the cloud is 

impractical due to latency and maintenance costs. The paper aims to evaluate both 

custom models and transfer learning architectures to identify the best performing 

model in evaluation metrics such as Accuracy, Recall, F1 scores, and model size. 

Inference time on different sizes of datasets will also be calculated to identify faster 

performing models suitable for deployment on IoT and Edge devices. Further, 

augmentation techniques will be evaluated on the hypothesized best performing 

custom model to establish their robustness and generalizability on augmented 

datasets. 

2 Literature Review 

Computer vision is used to check for defects in different manufacturing products 

made from steel, aluminuim, glass, fabric and polycrystalline materials [3]. Vision-

based defect detection detects internal flaws in aluminum alloy castings in addition 

to external flaws. The defects can be seen in X-ray images of the affected 

components, such as brake drums, gears, and the engine body. Combination of Deep 

learning and X-ray images can be used to detect internal flaws in aluminum casting 

parts [4].  
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With deep learning-based image tasks outperforming the average human inspection, 

automated vision inspection systems for inspecting surface defects in casting 

products [5] are becoming more common. AlexNet to MobileNet, Deep Neural 

Networks have improved accuracy, decreased model parameters, the total number 

of operations (flops), memory footprint, and computation time over the years 

significantly. Accuracy as a function of parameter count, also known as information 

density, is a performance metric that emphasizes a particular architecture's breadth 

to maximize its parametric space utilization. This accuracy  function revealed that 

basic models like VGG and AlexNet are larger because they have not fully exploited 

their learning capability. In contrast, more efficient models like ResNet, 

GoogLeNet, and ENet have higher accuracy per parameter by training all neurons 

on the given task [6].  

Convolution Neural Networks are known for their ability to extract features. The 

image's representation is learned by the convolutional layers, which can then be 

used for classification, object detection, and recognition. Due to the difficulty of 

obtaining a large enough dataset to make the model robust enough to be reused in 

any type of image classification problem, we also train an entire CNN from scratch 

on a very rare occasion [7]. The concept of transfer learning entails the use of 

weighted pre-trained networks. Deep neural networks tend to overfit the training 

dataset because they are complex networks with a large number of parameters.  

To make a more compact representation, CNN uses the pooling layer. Pooling 

reduces feature map height and width and reduces the parameter count [8]. The most 

common pooling methods are max, average, and global average. The Max Pooling 

layer reduces the output from the previous layer by selecting the maximum value in 

each feature map. Thus, trying to extract the image's dominant feature. The pooling 

layer considers a feature detected if any of the patches strongly believe it exists [9]. 

The Average pooling layer, on the other hand, takes the mean of all the weighted 

values extracted, to determine the most prominent feature. Max pooling is more 

popular than average pooling because it performs better as it ignores minor changes 

by taking away the location flaws in the features [10]. Global average pooling is an 

alternative to fully connected layers for pooling. Global average pooling can be 

applied to feature maps to avoid overfiting and to make the model generic. It allows 

the output layer to get the average vector from each feature map in the final 

convolution layer, making the process more network-centric and aligned with the 

output classification categories [11].  

Data augmentation can be used to strengthen the model and compensate for class 

imbalances. Techniques for enhancing data include flipping, rotating, and zooming. 
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Affine transformation shears the image while keeping the other vector constant. 

This creates synthetic data and improves model robustness during training [12].  

Most deep convolutional models have large parameters and are designed to improve 

accuracy. However, these aren't readily suitable for edge or mobile devices. A new 

class of efficient models have evolved for mobile and embedded vision applications 

which are known as MobileNets [13]. These networks are mobile based models 

which focuses on reducing the number of operations and the latency of the model. 

MobileNets use depthwise separable convolutions to build light weight deep neural 

networks. Another compressed network called NASNet is a mobile network built 

with depth-dependent and grouped convolutions. Grouped convolution uses parallel 

processing by splitting the filters into two groups, one for each input depth [14]. 

ResNet50 is another network which has proved that the complexity of the network 

can be decreased even when more layers are added to it by training the model on 

residuals. Other than mobile networks, ResNet50 is also a popular network that is 

widely used producing the best compact model with high accuracy [15]. 

3 Research Methodology 

3.1 Dataset description 

The dataset consists of images depicting the front view of an impeller casting from 

a castings manufacturing company. These images are RGB images consisting of 

three channels and are divided into two folders consisting of train and test images 

of two classes (Normal and Defective). The number of train and test images are 

6633 and 715 respectively of size 300x300x3 pixels. Usig Image generators, all the 

images are split into train, validation, and test containing 5307, 1326, and 715 

images respectively.  

3.2 Data Preprocessing - Reducing training parameters 

The image data consists of three channels. The number of training parameters is 

reduced by converting the image from RGB to grayscale (3 to 1 channel). This 

conversion is done only with custom architectures as transfer learning architectures 

such as Resnet, MobileNetV2, and NasNet require the input image to contain three 

channels. The images are scaled using appropriate scaling techniques to ensure no 

over representation of a particular set of pixels during model training.   
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3.3 Creation of train and customized test generators 

The train generator and test generators are created using Tensorflow’s 

ImageDataGenerator. Two different sets of train and test generators are created, one 

each for with and without augmentation. Five additional test generators are created 

with augmented and non-augmented datasets, each with different batch sizes 

(1,10,50,100,715). This is done to calculate the inference time of the model in 

predicting the different number of images. 

3.4 Data  Augmentation 

Data augmentation techniques such as ZCA Whitening, Flipping (Horizontal and 

Vertical), Rotating, and Zooming have been used to enhance the model's robustness. 

Both standard and augmented test datasets were used to evaluate the effects of these 

techniques on the model's overall performance. 

3.5 Calculation of Inference Timings 

Inference time for a specified number of images is calculated using the customized 

test dataset with different batch sizes mentioned in Equation-1.  

 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒  =  
𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Equation 1. Inference Time Calculation 

3.6 Model Size Reduction: Channel Pruning, GAP, Parameter Tuning 

Three transfer learning models as MobileNetV2, NasNet, and Resnet50 and custom 

model using augmentation and without augmentations, have been built to evaluate 

the effect of these models on the inference time. 

Paramater Tuning. The custom model was built to reduce the number of training 

parameters. The input image is converted to a monochrome grayscale image, 

thereby resulting in the reduction of training parameters in the first convalution 

layer of the deep network.  
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Channel Pruning. The concept of channel pruning was used to achieve model 

compression by sequentially reducing the number of output channels over 

successive convolution layers without compromising on the model performance. 

Further, the output of the last convolutional layer is a single neuron sigmoid 

function layer, as opposed to a two neuron output in other models.  

Global Average Pooling(GAP). GAP is added before the soft max layer to reduce 

the number of neurons. Fig. 1 depicts the above mentioned methodologies. 

 

 

Figure 1. Custom model flow diagram 

3.7 Pre-Trained Architectures - ResNet50, MobileNetV2 & NasNet 

The transfer learning architectures used here are trained using their original weights 

used in the ImageNet Classification. The network's top layer is replaced with a two-

neuron custom softmax layer with binary Cross Entropy as the loss function. The 

input image to the architecture is an RGB image with a three-channel dimension, 

unlike the custom architecture, as these networks are pre-trained only on three-

channel images. The architectures are shown in Fig 2, Fig3, and Fig 4. 
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Figure 2. Transfer Learning Flow 

 

3.8 Loss Function 

 The loss function used here is the binary cross entropy loss with sigmoid output.  

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝐸 𝑙𝑜𝑠𝑠  =  
1

𝑁
∑ −(𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑁

𝑖=1
 

Equation 2. Binary Cross Entropy loss function 

 

3.9 Model Evaluation 

We did model evaluation using model size and metrics such as Accuracy, Recall, 

and F1 scores. Inference times on five different test datasets have been calculated 

using different batch sizes using CPU as inference engine as images are processed 

sequentially on a CPU.    
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4 Analysis 

4.1 Dataset description 

There are 5307, 1326, and 715 images in the train, validation, and test dataset. The 

distribution of the classes is as follows. There is no significant class imbalance 

present in the dataset, as seen in Figure 3 

 

Figure 2. Data distribution 

The visualization of the normal and the defective impellers in the RGB channel 

and grey scale images are shown in Figure 4 and Figure 5. 

 
Figure 3. RGB Images of the Impeller 

 

 
Figure 4. Normal  and Defective Impellers 
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4.2 Compression of Models 

The custom model has been built to reduce the number of training parameters. 

Channel pruning has been done in custom architectures. In contrast, the original 

network has been used in the case of transfer learning architectures as it is 

impossible to change these pre-trained networks' architecture. The models are saved 

using keras’s models.save  functionality which saves the model in ‘.h5’ format, 

which is more compressed than the original ‘.hdf5’ format. The network 

architectures are summarized in the table below.  

 

Models Total params Trainable 

params 

Non 

trainable 

Model 

Size 

MB 

Custom model – Normal 5,865 5,801 64 0.08 

MobileNetV2 2,260,546 2,226,434 34,112 9.52 

NasNet 4,271,830 4,235,092 36,738 18.35 

Resnet50 23,591,810 23,538,690 53,120 94.89 

Table 1. Comparison of Model Sizes and Paramaters 

On analysis of the model architecture, it is found that custom models have the least 

file size (0.08MB) compared to the original architectures. The custom architectures 

have the least number of training parameters (5865) due to the shallow network. 

4.3 Data Augmentation 

As mentioned in the research methodology sections, different augmentation 

techniques have been tried out at model training and evaluated on the augmented 

test dataset. Some of the augmentation techniques tried are shown in Figure 6  

 
Figure 5. Augmentations showing rotation and zooming 
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4.4 Model architecture 

 

 

Figure 6. Custom Architecture showing sequential pruning of number of channels 

Custom Architecture. The model architectures for the custom and the transfer 

learning models are explained in the succeeding paragraphs. Early stopping and 

ReducedLRonPlateau have been used at the time of model training to ensure no 

oscillation of the learning at the end of every epoch. The custom architecture 

consists of a sequential reduction in the number of channels from 16 to 8 and 

terminates at a global average pooling layer. The detailed architecture is shown in 

Figure 7. 

Transfer learning architectures. The topmost layer of the transfer learning models 

is replaced with a custom softmax layer. The architectures of different pre-trained 

architectures like MobileNet, NasNet etc. are shown in Figures 8, 9, and 10. 



11 

 

Figure 7. NasNet Architzecture Figure 8. MobileNet Architecture 

 

 

Figure 9. Resnet50 Architecture 

5 Results 

The results of the experiments have been explained in three sections; model 

evaluation, inference time analysis, and effect of augmentation on the best 

performing model (Custom Model). 

5.1 Model Evaluation 

Performance of various model architectures including custom model and 

transfer learning models are summarized in Table 2  
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Models 

Accu-

racy 

Re-

call 

F1 

Score 

Preci-

sion 

Total 

params Size (MB) 

Custom 

Model 99.44 99.44 99.44 99.45 5,865 0.08 

MobileNetV2 98.04 98.04 98.05 98.14 2,260,546 9.52 

NasNet 99.3 99.05 99.3 99.31 4,271,830 18.35 

Resnet50 99.16 99.16 99.16 99.16 23,591,810 94.89 

 

Table 2. Model evaluation Metrics 

Custom models achieve the highest evaluation metrics in terms of accuracy, recall, 

and F1 score. The number of parameters is also the least in the custom model, with 

a model size of just 0.08 MB. The inter-model performance ratios better represent 

the performance gains of the custom model on the total parameters and the model 

size in Table 3.  

Models Parameter ratio Model size ratio 

Custom model  1x 1x 

MobileNetV2 386x 119x 

NasNet 728x 229x 

Resnet50 4022x 1186x 
 

Table 3. The ratio of parameters and model size 

5.2 Inference Time Analysis 

The model trained on the standard test data set with batch size 32 has been evaluated 

on five different test datasets, as shown in table 2. From the below findings we can 

deduce that better the inference time lower the latency. 

 

Models 

Test 

batch 

1 

Test 

batch 

10 

Test 

batch 

50 

Test 

batch 

100 

Test 

Batch 

700 

Custom model  0.0176 0.1344 0.3936 1.1853 12.6198 

MobileNetV2 0.0456 0.3151 1.2970 2.6959 21.7204 

NasNet 0.0572 1.1835 3.5687 3.5167 26.6517 

Resnet50 0.1596 1.3304 3.5780 9.5807 76.7329 
 

Table 4. Inference Timing of various models 



13 

Lightweight faster custom architecture. Custom models have the least inference 

times on a CPU compared to other transfer learning models when evaluated on all 

the different images (1,10,50,100,700), as shown in Table 2. Also, as seen in the 

trend curves, the order of inference times from the least to the maximum is  

“Custom model < MobileNetV2 < NasNet < Resnet50” 

The reduced inference time is attributed to the factors such as Channel pruning 

(Sequential reduction in the number of output channels), Single Class Output, and 

Decreased Kernel dimension due to grayscale input. The model size is also the least 

among all model architectures (0.08MB). 

 

Figure 10. CPU Inference Time for Models on a varying number of images 

The model's speed in terms of inference time is summarized in Table 5.  

Model vs inference times 

Single 

Image 

10 

images 

50 

images 

100 

images 

700 

images 

Custom model - Normal 1x 1x 1x 1x 1x 

MobileNetV2 2.58x 2.34x 3.30x 2.27x 1.72x 

NasNet 3.23x 8.81x 9.07x 2.97x 2.11x 

Resnet50 9.02x 9.90x 9.09x 8.08x 6.08x 

 

Table 5. Model inference Speeds 

 

Custom Models perform 6 to 9 times faster than the conventional Resnet 

architectures. Even among the lightweight architectures such as MobileNetV2 and 
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NasNet, the Custom model performs anywhere between 2 to 8 times faster, 

indicating they are better suited for deploying this model on edge devices.  

5.3 Augmentation on Custom model  

The performance of the models is evaluated using F1 scores of models trained on 

both augmented and non-augmented datasets and by evaluating them on both the 

augmented/non augmented test datasets.   

Models Acc Re F1 score Pre 

Custom model – Normal 99.44 99.44 99.44 99.45 

Custom model – Augmented 98.04 98.04 98.04 98.05 

Custom model (Aug) - Normal test 99.16 99.16 99.16 99.17 

Custom model (Aug) - Augmented test 98.18 98.18 98.17 98.2 

 

Table 6. Custom Model Evaluation Metrics 

 

 

Figure 11. Effect of augmentation on F1 scores of augmented/ non augmented models 

The F1 score of the custom model on the standard dataset is 99.44% and against the 

Augmented test dataset is 98.04%. Though the models trained on the augmented 

dataset show a slightly lower F1 score on the standard dataset (99.16% vs. 99.44%), 

they show higher performance on the augmented test dataset (98.17% vs. 98.04%). 

Hence, augmentation techniques, though they do not significantly improve 

accuracy, may still be chosen over non-augmented models as they are more robust 

and not susceptible to changes in the training dataset.  
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6 Conclusion 

The architectures of transfer learning models that use pre-trained weights are 

typically larger. Even if they have a high level of accuracy across a large number of 

datasets, they may not be ideal for use on computationally less powerful devices. 

Compared to transfer learning models, custom models with a model size of just 

0.08MB could perform better in terms of F1 scores on the given dataset. Inference 

times on various images showed that the models performed much faster than 

transfer learning models. The performance of augmented models was comparable 

to that of non-augmented models; however, these models may be preferred because 

they are more robust and may perform well on other test datasets. In terms of 

implementation or deployment on smaller devices, the study establishes the 

superiority of custom architectures over large scale or pre-trained models.  
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