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Abstract. Driven by advancements in model capabilities and ease of
access, machine learning (ML) and artificial intelligence (AI) are increas-
ingly applied across industry and government sectors. Traditionally, ML
training and serving either relies on big external service providers such
as AWS or MS Azure, or requires data to be transferred from databases
or data lakes to local or cloud environments. Apart from dependencies
on external ML frameworks, these type transfers not only introduce sig-
nificant overhead but also pose risks to data security and data integrity.
Integrating these technologies directly within database systems promises
significant advantages, particularly for production environments. How-
ever, the performance and capability of database systems for various
ML scenarios remain unclear. To address these uncertainties, this paper
proposes transferring the TPCx-AI benchmark toolkit into PostgreSQL
using the MADlib extension. This enables the entire ML pipeline—from
data loading and preprocessing to training, scoring, and serving—to be
executed within the database system. We present the implementation
details and compare its performance with the traditional Python-based
approach from the toolkit. The implementation focuses on traditional ML
algorithms and does not include Deep Learning techniques. Our evalua-
tion, leveraging the synthetic data generator PDGF and use cases pro-
vided by TPCx-AI, offers a comprehensive analysis of the benefits and
shortcomings of in-database ML training with PostgreSQL and MADlib.
On an aggregated level, it shows a comparable performance between both
system for most use cases. While the Python approach excels at model
training, PostgreSQL with Apache MADlib demonstrates superior per-
formance in data processing and inference tasks.

Keywords: Database Management Systems · Performance Evaluation
· Machine Learning · TPCx-AI · Benchmarking · PostgreSQL · Apache
MADlib
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1 Introduction

The rapid growth of big data over the past few decades has transformed the land-
scape of machine learning (ML). Affordable storage, simplified data collection,
and ubiquitous sensors have made vast amounts of raw data readily available,
enabling the training of highly accurate ML models. However, the preprocess-
ing and transformation of this data into a format suitable for ML algorithms
remains a significant challenge, often consuming the majority of the workload
for ML engineers and data scientists.

Traditional end-to-end ML pipelines in production environments involve mul-
tiple teams and complex hardware integration, driven by the need for retrain-
ing due to concept and feature drift. This complexity has motivated the explo-
ration of alternative approaches, such as integrating ML capabilities directly into
database systems. Relational databases, with their structured data format, are
well-suited for many ML algorithms where features are represented as columns.

PostgreSQL, a widely-used open-source relational database, possess numer-
ous extensions supported by an extensive community of developers. One such
extension is Apache MADlib, which provides data-parallel implementations of
mathematical, statistical, graph and machine learning methods for structured
and unstructured data [11]. To evaluate the effectiveness of in-database ML us-
ing PostgreSQL and MADlib, we turn to TPCx-AI, a modern end-to-end bench-
mark that applies ten widely-used ML algorithms to industry-relevant problems
[6]. It leverages the Parallel Data Generator Framework (PDGF) for scalable
synthetic data generation, and provides a toolkit for two implementations: one
using Python frameworks for datasets with smaller scale factors (SF) and an-
other leveraging Apache Spark for large-scale deployment.

In this paper, we replicate the end-to-end Python benchmark of the TPCx-AI
toolkit within the database. This approach eliminates the need for data transfers
between systems, reducing overhead and improving data security and integrity.

2 Contribution

This paper demonstrates the successful porting of seven out of ten use cases
from the TPCx-AI benchmark onto a PostgreSQL 15 database, leveraging the
Apache MADlib library for in-database machine learning. Two out three re-
maining use cases utilize audio and video. These were not ported due to the
unconventional practice to store such formats directly in a database. The final
unported use case involves deep learning for regression tasks. Although MADlib
supports deep learning through the Python frameworks TensorFlow and Keras,
its current capacity is limited to classification problems.

The seven successfully ported use cases encompass a diverse range of algo-
rithms, including clustering, classification, time-series forecasting, singular value
decomposition and more. Implementation involves the use of several SQL deriva-
tives and extensions: data preprocessing and manipulation tasks were primarily
handled using ANSI SQL, with some PostgreSQL-specific syntax required for
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certain operations. The MADlib extension was instrumental in facilitating ML
training and inference tasks.

For K-means clustering problem (use case 1), we propose the Silhouette score
as a qualitative metric. Additionally, we implemented reusable scoring functions,
such as the Matthews Correlation Coefficient and Mean Squared Logarithmic
Error, to enhance the evaluation capabilities of PostgreSQL and Apache MADlib.

We conducted a comparative analysis between the Python implementation
of TPCx-AI and our PostgreSQL implementation. As with the Python imple-
mentation, our benchmark runs on a single host. The complete code is available
on GitHub1. The repository includes Data Definition Language (DDL) scripts
for all implementations, a SQL file for executing all steps, and a configuration
file for DBMSBenchmarker [10,9]. Additionally, the repository provides scripts
for generating Docker images of all components (data generator, driver, loader,
and PostgreSQL/MADLib with all libraries installed) to ensure seamless repro-
duction of the benchmark environment and results.

3 Related work

In-Database Machine Learning (ML) encompasses a wide range of methodolo-
gies [14,5]. MADLib exemplifies a system that leverages user-defined (aggregate)
functions to incorporate ML functions, particularly for training purposes. In ref-
erence [8], the authors describe techniques and experiences of database engine
developers, data scientists, IT architects and academics with data-parallel im-
plementations of analytics in a Greenplum cluster of 42 nodes. Based on these
experiences, the authors of [11] introduced MADLib in 2012 as an open-source
extension for PostgreSQL and Greenplum. MADLib has been utilized in both
academic projects and industrial applications. Since its promotion to a top-level
project of the Apache Software Foundation in 2017, MADLib has undergone
several updates. Recently, MADLib has been evaluated in a setup involving dis-
tributed deep learning for classification [19].

TPCx-AI is a relatively new benchmark. Despite this, there are already sev-
eral studies on it. An introduction to the benchmark and its underlying concepts
is provided in [6]. The authors also present results for various scaling factors.
TPCx-AI is comparable to MLPerf, as there are some similarities. Both concern
the performance of machine learning-related implementations. However, there
are also differences, which are closely examined in [15]. This includes aspects
such as result review types, licenses, costs, and metrics. The most prominent
difference, in our opinion, is that TPCx-AI is an end-to-end benchmark, bring-
ing it closer to production environments. In addition, we are interested in in-
cluding processes and steps that are not primarily focused on ML training, but
take an end-to-end point of view. On the other hand, MLPerf aims to include
the latest ML algorithms. In [17], the authors examine the scaling behavior of
the benchmark and the toolkit. They provide an introduction to the toolkit and

1 https://github.com/perdelt/TPCx-AI_in_DB

https://github.com/perdelt/TPCx-AI_in_DB
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its configuration parameters. They also analyze a single-node and a multi-node
experiment, observing resource consumption for use case 3. In [13], the authors
report their first adopter’s experiences with a scaling factor of 1,000 in a Spark
environment of three nodes. All these studies pertain to settings directly covered
by the provided toolkit. However, there is also a result for non-default environ-
ments: In [4], the authors perform a translation to NVIDIA Jetson, noting that
memory is a crucial aspect. The authors report some necessary changes that had
to be made, although it remains a Python-based implementation.

To the best of our knowledge, the only other benchmark for data science
applications that compares Anaconda (and Dask, PySpark, and R) with Post-
greSQL is Sanzu [18]. It consists of six micro-benchmarks (basic file I/O, data
wrangling, descriptive statistics, distribution and inferential statistics, time se-
ries, machine learning) and two macro-benchmarks (full use cases, containing
linear regression and grouping). The methodology of cataloging and analyz-
ing standard workflow components appears promising. Nevertheless, we selected
TPCx-AI due to its incorporation of more complex and versatile end-to-end use
cases.

4 Methodology

4.1 Research Questions

The primary goal of this research is to investigate the capabilities of PostgreSQL
with Apache MADlib for in-database machine learning, using TPCx-AI. Specif-
ically, we seek to answer the following questions:

1. How does the performance of PostgreSQL with MADlib compare to tradi-
tional Python-based ML implementations?

2. What are the strengths and limitations of using PostgreSQL with MADlib
for end-to-end ML tasks?

3. Can in-database ML reduce the overhead associated with data transfer?
4. Does TPCx-AI offer a promising guideline for evaluating in-database ML

tasks?

4.2 Experimental Design

The core components of our setup are the open-source database PostgreSQL
version 15 and Apache MADlib 2.1.0, running on a single machine with the
following configuration: Architecture: x86_64, OS: Ubuntu 22.04.4 LTS, CPU:
13th Gen Intel i9-13900K, RAM: 125 GiB.

PDGF was used to generate synthetic data with scale factors 1, 5, 10, and
15 (SF1, SF5, SF10, and SF15). Data loading is handled with Python Psycopg li-
brary, preprocessing via PostgreSQL, training, and inference via Apache MADlib.
Scoring functions are defined in SQL, utilizing ML metrics suggested by TPCx-
AI. Key performance metrics such as runtime and output table size, were auto-
matically saved after each benchmark run for further analysis. For evaluation,
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we use the runtime results of the Power Training Test and the Power Serving
Test from TPCx-AI benchmark as baseline for comparison. All Experiments at
different scale factors were repeated multiple times and on the same hardware
configuration to ensure consistency and comparability.

5 Implementation

5.1 Implementation overview

Hyperparameters from the training functions of the Python implementation were
closely matched in each of the MADlib implementations. When certain algo-
rithms were unavailable in MADlib, we substituted them with similar ones. For
use case 4, Naive Bayes was implemented purely using SQL. Although Python
code can be integrated via the plpythonu extension, we opted against it to ac-
curately assess the native capabilities of PostgreSQL and Apache MADlib. Our
end-to-end pipeline includes the following steps:

1. Data generation via PDGF: The user specifies the size of the dataset
with the scale_factor parameter.

2. Data loading and indexing: An import script loads PDGF-generated
CSV and PSV files into the three schemas: train, score, and serve. It also
creates indexes to enhance retrieval speed.

3. Benchmark execution: This step involves data preprocessing, model train-
ing, metric scoring, and model serving for each use case. Figure 1 shows the
workflow and interdependencies.

One key difference between our implementation and the one of TPCx-AI
lies in the runtime calculation. In TPCx-AI, load test represents the movement
of existing raw data generated by PDGF to persistent storage. The reading of
the CSV or PSV files in Python, and the preprocessing of the loaded files is an
integral part of the Power Training or Power Serving test. Our implementation,
on the other hand, offers a more fine-grained analysis of each step in the end-
to-end benchmark. We record the preprocessing time for training and serving
separately to provide a detailed understanding of the time costs associated with
either phase in the pipeline. An end-to-end pipeline on one use case has a code
structure as provided below:

call uc07_preprocess(’train’, ’uc07_train_preprocessed’);
call uc07_train(’uc07_train_preprocessed’, ’uc07_model’, adjust_params);
call uc07_predict(’score’,’uc07_score_predictions’, ’uc07_model’);
call uc07_score(’uc07_score_predictions’, ’uc07_score_results’);
call uc07_serve(’uc07_serve_results’);

Each use case utilizes the five standard procedures Preprocess, Train, Predict,
Score, and Serve. Their functionalities are:

1. Preprocess: Selects and joins the appropriate table(s) based on the specified
schema; prepares the data for training or inference.
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Fig. 1: Benchmark workflow is carried out by the five procedures preprocessing,
training, predicting, scoring, and serving.

2. Train: Conducts model training using the preprocessed data and saves the
model as a table in the database.

3. Predict: Uses the trained model and the preprocessed data from either score
or serve schema to conduct inference.

4. Score: Evaluates the prediction results against true labels to ensure the
model meets the minimum threshold; implementation via SQL.

5. Serve: Conducts serving of test data from serve schema by leveraging the
Preprocess and Predict procedures.

All procedures are constructed using the procedural language PL/pgSQL, which
offers powerful input and output control by utilizing arguments similar to those
in function calls. Additionally, it supports loops and other typical functionalities
found in procedural languages. We chose PL/pgSQL for its fine-grained control
over the entire workflow, its reusability, and its potential for future extensibility.
However, the core functionalities of the preprocessing and scoring steps in most
use cases can be achieved with ANSI SQL.2 An overview of the specific languages
and extensions used at each step and for each use case is provided in Table 1.
Note that PL/pgSQL is abreviated with PL, and instances where PL/pgSQL is
used solely used to forward input arguments are considered as SQL.

2 ANSI SQL conformity does not guarantee explicit portability, as the extent of the
implementation of ANSI SQL syntax is platform-dependent.
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Table 1: Minimum Requirement of Languages and Extensions at each step; serv-
ing is a combination of preprocessing and predicting, thus left out
Use Case Preprocessing Training Predicting Scoring

01 SQL MADlib MADlib MADlib
03 PL, SQL MADlib MADlib, PL SQL
04 SQL SQL SQL SQL
06 SQL MADlib, PL MADlib, PL SQL
07 SQL MADlib, PL MADlib, PL SQL
08 MADlib, SQL MADlib MADlib SQL
10 SQL MADlib MADlib SQL

5.2 Implementation details for each Use Case

Use Case 01 - Clustering with K-Means++ The first use case represents
a customer segmentation problem solved with the K-Means++ algorithm. The
preprocess procedure uses common table expressions (CTEs) to aggregate the
four tables customer, order, lineitem, and order_returns. It sums and filters out
the relevant data for the training step. Following the TPCx-AI implementation,
the training step utilizes two features, ReturnRatio and Frequency, to assign
each vector to one of four clusters. For evaluation, we propose utilizing the
silhouette function to evaluate the fitness of the clusters. It assesses how similar
a vector is to its own cluster compared to other clusters by calculating the
separation distance between the resulting clusters. The serve procedure then uses
the pre-trained model to assign new vectors from a test set to the predefined
clusters. Unlike the Python implementation of TPCx-AI, min-max scaling is now
an integrated part of the processing procedure. It fits a custom implementation
of a min-max function on the training dataset and uses the fitted function to
transform the scoring and serving datasets into the fitted range.

Use Case 03 - Time Series Forecasting with ARIMA In use case 3,
the tables orders, product, lineitem, and store_department are aggregated to
compute the weekly sales figures. These aggregated sales data represent the
training features. They are grouped by each store and each department within
each store. The objective is to predict future weekly sales up to one year based
on past two years’ sales data. The Python implementation uses Holt-Winters’
exponential smoothing, which is not available within the MADlib extension.
Consequently, we opted for the ARIMA time series model, which is available in
MADlib. Since the goal is to predict next year’s sales figures for each store and
department combination, a unique model is generated for each. Due to the large
number of models required, we did not fine-tune the p, q, and d parameters for
each individual model. This lack of parameter adjustment significantly degraded
the models’ performance, as demonstrated in the results section.
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Use Case 04 - Binary Classification with Naive Bayes Use case 4 uti-
lizes Naive Bayes classification for spam detection. As of May 2024, the Naive
Bayes algorithm in the MADlib framework is in the early stages of development.
Given the relatively low complexity of the algorithm, we opted for a custom
implementation from scratch. Initially, our preprocessing step involves unnest-
ing the review table of each text chunk into an array of stemmed word tokens.
During the training step, utilizing Laplace Smoothing for zero probability ad-
justment, a lookup table for all tokens with their respective probabilities for
the binary classes is created. In the prediction phase, probabilities for a test
dataset are calculated using the previously built model. One of the significant
challenges encountered during the implementation was the issue of numerical
underflow, commonly faced in applications involving large-scale multiplication
of small probabilities. Our training corpus consisted of approximately 250,000
total word tokens, with an average review containing about 100-150 words. The
multiplication of these tiny probabilities representing each word resulted in the
numeric underflow problem. By utilizing the logarithm of probabilities instead
of the probabilities themselves, we effectively stabilized the computation.

Use Case 06 - Binary Failure Prediction with SVM Use Case 6 focuses
on predictive maintenance, particularly predicting hard drive failures using SVM
(Support Vector Machine) classification. In the preprocessing stage, cases are
selected from the failures table where at least one failure has occurred. This
selection is crucial for training the model to recognize patterns indicative of im-
pending failures. Additionally, the preprocessing includes calculating the ’time
to fail’ (TTF) for each drive and setting the prediction label (True label) for the
day before failure to 1, which is critical for predicting imminent hard drive fail-
ures. During the training phase, data is upsampled to address class imbalance,
a common issue in datasets where failures are rare compared to non-failures.
This balancing ensures that the SVM model is not biased toward the majority
class. While the Python implementation of TPCx-AI leverages the imblearn
package’s ADASYN algorithm—which generates a weighted distribution of syn-
thetic data with a stronger focus on harder-to-learn minority classes—we utilized
MADlib’s stratified sampling function for upsampling. This approach resulted
in comparable performance, as there is only one minority class. For prediction,
the test dataset from the score or serve schema is first standardized and then
forwarded to MADlib’s SVM classifier. For scoring, we implemented a custom
metric function to calculate the Matthews Correlation Coefficient (MCC). Both
use cases (Python and MADlib) utilize the Gaussian kernel for classification. To
align with TPCx-AI’s Python implementation, we changed the default lambda
value to 1.0, as in the default implementation of Scikit-Learn. Here, λ = 1

C and
C is set to 1.0. Furthermore, we increased the maximum number of iterations to
100,000 to match the unlimited (-1) setting in Scikit-Learn. We also increased
the tolerance level from 1×10−10 to 1×10−3. Lastly, the class weight parameter
has been set to "balanced" [2].
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Use Case 07 - Recommender System with SVD The objective of use case
7 is to perform product recommendation through collaborative filtering using
matrix factorization. The training table productrating represents a highly sparse
user-item rating matrix. We predict the unknown ratings by employing MADlib’s
low-rank matrix factorization (LMF) to fill in the blanks. During preprocessing,
user IDs are incremented by one to ensure proper indexing. This step is critical
as it prepares the data in the format required by the MADlib’s factorization
operations. The training procedure begins with calculating the dimensions of
the user-item matrix before applying matrix factorization. Both MADlib’s LMF
and Python library Surprise use stochastic gradient descent (SGD) to optimize
the latent factors in matrices U and V . The aim is to minimize prediction errors
on known ratings while generalizing to predict unknown ratings. We adjust the
following parameters in line with the Python implementation: max rank r is
increased from the default value 20 to 100, step size is decreased from 0.01 to
0.005, and number of iterations is increased from 10 to 20 [3]. The prediction
procedure offers three options for filling the sparse user-item rating matrix. The
first option utilizes MADlib’s built-in matrix_mult function to multiply the
dense matrices U and V. While independent of the input matrices’ sizes, it is
computationally very slow. The second option leverages the numpy framework
for matrix multiplication, which significantly improves computation speed but is
constrained by memory size. The third and our preferred option uses MADlib’s
array_dot function for matrix dot product and computes only the required
user-item combinations specified by the serve dataset.

Use Case 08 - Multi-class Classification with XGBoost Use Case 8’s
objective is to predict the outcome of the multi-label variable trip_type with
XGBoost. The tables order, lineitem, product, and store_dept are consolidated
during preprocessing. This procedure generates binary columns for each day of
the week and for each department. In the final step of preprocessing, MADlib’s
stratified_sampling function is called for downsizing the preprocessed table if
it exceeds 1GB.3. For training, we also adjusted the default training parameters
to align with TPCx-AI’s implementation. Notably, the training time was more
than halved without significant loss in performance by using the histogram-
based tree method. Unlike the exact greedy algorithm, histogram-based tree
method significantly reduces the computational complexity and memory usage
[7]. During inference, our test showed that XGBoost’s predict function could
not handle any input table exceeding 300MB in size. Therefore, downsizing via
stratified sampling was applied at SF15.

Use Case 10 - Binary Classification with Logistic Regression Use Case
10 employs logistic regression for fraud detection. Compared to classification

3 As of MADlib 2.1.0, XGBoost is still under early development. Its training function
has an input limit of 1GB since all data is collected in a single segment and stored
in one single cell[1]
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with XGBoost, logistic regression is a much faster algorithm with good accu-
racy and high explainability. During preprocessing, the financial_account table
is joined with the financial_transactions. The features used for training are the
columns business_hour_norm and amount_norm. These represent the normal-
ized business hour and transaction amount, respectively. The Python implemen-
tation uses the LBFGS solver, a quasi-Newton method, particularly useful for
large-scale optimization problems with limited memory [16]. The closest method
available in the Apache MADlib logistic regression implementation is the conju-
gate gradient solver. While it doesn’t use gradient information to approximate
the inverse Hessian matrix as LBFGS does, it uses the conjugate directions of
gradients for faster convergence [12]. The conjugate gradient solver achieved
similar accuracy as the default optimizer IRLS and required considerable longer
computation time. Thus, we opted for IRLS.

6 Experiments

An experiment is defined as the end-to-end execution of the seven implemented
use cases at a specific scale factor. To minimize bias and ensure consistent perfor-
mance, a system-wide restart is performed before initiating a new experiment, as
PostgreSQL’s performance may vary once the data has been pre-read. Runtime
of use case 8’s train procedure is not included in the analysis due to the input
limit restriction as mentioned in the implementation section. A summary of all
output tables for various stages is shown in Table 4.

6.1 Data Loading - CSV to PostgreSQL

Before initiating any experiments, data generated using PDGF at different scale
factors needs to be loaded into the PostgreSQL database. We utilize the Psycopg
library to copy the CSV files into predefined empty tables, which are then indexed
to enhance performance. This step closely resembles the loading test (TLD) of
TPCx-AI. A fitted linear regression with an R2 score of 0.98 indicates a linear
relationship between dataset size and loading time.

6.2 Performance Comparison against the Python Implementation

The Power Training Test of TPCx-AI involves the following steps: reading the re-
spective CSV and PSV files, preprocessing the loaded data with Python libraries
such as Pandas and Numpy, and model training. To facilitate a fair comparison,
we combine the runtime results from our Preprocess and Train procedures and
refer to it as train henceforth.

The Power Serve Test of TPCx-AI comprises data loading, preprocessing, and
inferencing with the trained model. TPCx-AI evaluates serving performance in a
single-stream scenario and in a multi-stream version, known as the Power Serv-
ing Test and the Serving Throughput Test, respectively. Our Serve procedure
comprises Preprocess and Predict procedures, making them comparable. As we
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Fig. 2: Comparison of training and serving in TPCx-AI’s Python benchmark and
PostgreSQL with Apache MADlib

Table 2: Performance comparison between PostgreSQL and Python in seconds
at different scaling factors.
Use Case Step SF1

Post-
greSQL

SF1
Python

SF5
Post-

greSQL

SF5
Python

SF10
Post-

greSQL

SF10
Python

uc01 train 26.151 14.184 33.644 42.676 153.903 112.377
uc03 train 36.318 17.306 61.718 44.630 120.630 111.159
uc04 train 15.670 11.350 52.177 34.455 96.853 58.895
uc06 train 2.096 0.779 5.541 21.442 11.801 183.954
uc07 train 8.240 1.200 26.673 4.364 47.484 7.485
uc10 train 51.319 17.829 166.987 43.860 362.780 111.882∑

train 139.794 62.648 346.74 191.427 793.451 585.752
geometric mean train 15.371 5.995 37.255 25.412 84.558 69.565

uc01 serve 1.268 1.509 3.901 3.785 9.424 9.915
uc03 serve 4.638 2.560 6.449 2.986 8.525 3.970
uc04 serve 2.203 2.131 4.863 5.022 8.473 7.765
uc06 serve 0.113 0.518 0.790 11.631 1.899 81.296
uc07 serve 0.036 0.597 0.171 1.673 0.288 2.891
uc10 serve 1.516 1.794 6.672 4.679 15.689 11.460∑

serve 9.774 9.109 22.846 29.776 44.298 117.297
geometric mean serve 0.656 1.288 2.190 4.158 4.244 9.681∑

total 149.568 71.757 369.586 221.203 837.749 703.049
total geometric mean 3.176 2.779 9.032 10.279 18.943 25.951
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have conducted our tests using a single stream, we compare our serving test
results with the results of TPCx-AI’s single-stream benchmark.

Table 2 displays a detailed comparison between both for each use case up
to scale factor 10. The Python implementation outperforms PostgreSQL with
Apache MADlilb on an aggregated level. The primary discrepancy arises in use
case 10: Scikit-Learn’s logistic regression with the LBFGS optimizer performs
significantly faster than MADlib’s implementation of logistic regression with
IRLS. Figure 3 visually represents this information using a radar chart. Although
model training speed is generally faster in Python, PostgreSQL’s strength lies
in model serving, particularly at higher scale factors. This advantage is clearly
illustrated in Figure 2.

Table 3: Runtime comparison of loading and preprocessing training data in sec-
onds between PostgreSQL and Python at SF15. *failed preprocessing
Use Case Step SF15 PostgreSQL SF15 Python
uc01 preprocess (train) 142.278 199.077
uc03 preprocess (train) 95.437 158.588
uc04 preprocess (train) 84.693 4.642
uc06 preprocess (train) 2.161 5.892
uc07 preprocess (train) 0.022 0.881
uc08 preprocess (train) 634.553 NaN*
uc10 preprocess (train) 97.334 159.816

6.3 Qualitative Metrics

With the exception of use case 3, almost all use cases on different scale factors
achieve the minimum threshold requirement.4 Just as in the Python implemen-
tation of TPCx-AI, metrics for most use cases remain constant, with few metrics
improving with increasing data size, as shown in Table 4.

7 Conclusion and Future Work

In this paper, we demonstrated the machine learning capabilities of PostgreSQL
with the Apache MADlib extension. PostgreSQL exhibited outstanding perfor-
mance in data aggregation and manipulation, while MADlib proved effective for
classical machine learning algorithms, particularly for inference tasks. However,
in-database ML with MADlib has limitations, especially in deep learning. De-
spite support for TensorFlow, there are limited fine-tuning possibilities, such as
training for regression problems.
4 As described in the implementation section, the poor performance of use case 3 is

due to the usage of ARIMA instead of exponential smoothing without adjusting
p,d,q values for each individual model.
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Fig. 3: Detailed comparison of TPCx-AI’s implementation of each use case vs
PostgreSQL with Apache MADlib. Runtime in seconds. Use case 08 excluded.
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Table 4: Scoring metrics for the 7 use cases at different scale factors
Use Case SF1 Score SF5 Score SF10 Score SF15 Score Threshold
1 0.652160 0.642697 0.605474 0.618169 None
3 70.543810 72.340388 77.657227 79.681503 < 5.40
4 0.695846 0.702113 0.705238 0.694204 > 0.65
6 0.362314 0.438165 0.463538 0.468870 > 0.19
7 1.570248 1.443262 1.498282 1.500000 < 1.80
8 0.641002 0.667867 0.652621 0.654225 > 0.65
10 0.816386 0.817302 0.816795 0.815871 > 0.70

Additionally, MADlib lacks implementations of some popular machine learn-
ing algorithms like Holt-Winters exponential smoothing and XGBoost, the latter
of which is still in early development. The training time for many algorithms is
slower compared to their Python counterparts. However, MADlib’s SVM (Sup-
port Vector Machine) significantly outperforms scikit-learn’s implementation,
indicating the potential for speed improvements in Apache MADlib’s algorithms.

One key advantages of in-database machine learning is the minimized data
movement. During preprocessing, up to SF15, PostgreSQL scales linearly and
outperforms Python’s loading and preprocessing (as shown in Table 3), high-
lighting the efficiency of in-database ML for data handling and preparation.

The TPCx-AI benchmark has proven to be a valuable tool for examining
the ML capabilities of database systems. For future work on Apache MADlib,
we suggest focusing on performance optimization for selected algorithms, ex-
panding algorithm coverage, and enhancing deep learning support. Additionally,
testing other types of database systems with TPCx-AI’s benchmark use cases
would further expand the applicability and understanding of in-database ma-
chine learning.

In summary, PostgreSQL with Apache MADlib shows strong potential for in-
database ML despite the mentioned limitations. At SF5 and beyond, the total
geometric mean for training plus serving is smaller than that of its Python coun-
terpart. Its advantages in inference performance, data handling efficiency, and
integration with existing database infrastructure make it a promising solution
for organizations looking to leverage ML capabilities within their databases.
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