
EasyChair Preprint
№ 8456

Spotting Railway Signs to Build Smart Decision
Support Tools in Railway Management Systems

Pramuka Weerasinghe, Mohamed Shaheer, Rochana Rumalshan,
Prabhath Gunathilake and Erunika Dayaratna

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 12, 2022

Spotting Railway Signs to Build Smart Decision
Support Tools in Railway Management Systems

Abstract— Railway being an important mode of
transportation, it demands highly precise management and
decision support as it is extensively used for both commuter and
cargo transportation. Also, it is considered as a salient element in
smart city and modern infrastructure planning. Railway track
diagrams are available with service providers in
portable document format where a single document consists of
information from one station to another, including information
regarding the tracks, signals, crossovers, switches, and their
location details denoted using a standard set of symbols and
drawn using a computer aided tool. A Management tool that has
all details of individual symbols is an important tool for decision
support systems. This research focuses on developing an
automated system to extract this information based on deep
learning techniques. The method consists of two steps: object
detection and optical character recognition (OCR). State of the
art Convolutional Neural Network (CNN) architectures are used
to perform object detection. They include single stage detectors
like YOLOv3 and SSD and two stage detectors like Faster-RCNN
and RFCN. Among the selected, RFCN resulted in the highest
accuracy with the minimum loss value of 0.22, compared to other
methods. This is because of RFCNs architecture catering small
object detection by dividing the image into small feature maps.
Then, OCR is performed on detected Regions of Interest (RoI) to
extract and store the text in a dedicated database which has the
information of all the signs along with their location details.
Image processing techniques such as template matching and
Neural Network (NN) based OCR is tested here. Out of these two
approaches, NN based technique outperformed template
matching drastically with more than 50% accuracy.

Keywords—object detection, railway sign detection, railway
management systems, decision support tools

I. INTRODUCTION

In today's world, effective transportation management
systems are really important as it directly affects the general
public and many industries. This can be vital in many
aspects for an instance, at a state of emergency in order to
make feasible decisions not just experience and expert
knowledge but having decision support data and tools are
important. In the domain of transportation, railway services
have a significant place around the globe where cargo and
passenger trains are used to transport goods and people
across cities. Unlike road transportation, infrastructure and
resources are limited in this domain where expansion is

possible at a higher cost. Therefore, utilizing the resources
and managing the system effectively is a prior concern.

There are railway track diagrams available, which
include all the information regarding the tracks, signals,
crossovers, switches and their location details denoted using
a standard set of symbols and drawn using a computer aided
tool. These diagrams are in a portable document format
(PDF) where a single document contains the track details
from one station to another. Even though this information is
available, there is no single database that has all details of
these individual symbols. This research focuses on
developing an automated solution to use these available
PDF documents and create a database, which includes
information on individual symbols in order to build a
decision support tool. The main approach is to extract the
document into images and use state of the art deep learning
techniques to detect symbols.

II. BACKGROUND

Deep learning approaches based on convolutional neural
networks (CNN) have been successful in image
classification and object detection. CNNs have the
capability to extract localized features and perform image
classification better than other neural network architectures.
Object detection aims at locating and classifying existing
objects in any image, and labeling them with rectangular
bounding boxes to show the confidences of existence.
Object detection methods can mainly be categorized into
two types: (i) Region proposal based (two stage object
detection), where a two-step process, matches the attentional
mechanism of human brain to some extent, which gives a
coarse scan of the whole scenario firstly and then focuses on
regions of interest. (ii) Classification based (single stage
object detection), where one-step frameworks based on
global regression/classification, mapping straightly from
image pixels to bounding box coordinates and class
probabilities, can reduce time expense. In this research we
will be using both region proposal technique based
architectures and classification based architectures to detect
symbols in rail track diagrams. Figure 1 shows some
popular network architectures that are used in this study.

Fig. 1. Neural network architectures used in object detection

A. Faster RCNN

The motivation behind R-CNN's is to tackle the
problems with bounding box issues [1]. Given a specific
image, the need of having an option to draw bounding boxes
over all identified objects is solved by R-CNN methods. The
method consists of two stages namely the region proposal
step and the classification step. Basic R-CNN strategy runs a
neural net classifier on samples taken from image data
utilizing remotely computed bounding box proposals. The
methodology costs much in computation. Fast R-CNN
decreases the calculation by doing the feature extraction just
a single time to the entire image. Faster R-CNN goes
beyond and utilizes the extracted features to make class-
related bounding box proposals.

B. SSD

Single Shot Multi-Box Detector (SSD) [2] differs from
the R-CNN based methodologies by not needing a second
stage for each region proposal. This makes it quick enough
for ongoing real-time applications. Nonetheless, this
accompanies a cost of decreased accuracy. Here the key
thought is a single network (for speed) and no requirement
for region proposals rather it utilizes bounding boxes and
afterward changes the bounding box as a component of
prediction.

C. RFCN

In contrast to previous region-based detectors such as
Fast/Faster R-CNN that apply a costly per-region
subnetwork hundreds of times, region-based detector is fully
convolutional with almost all computation shared on the
entire image [3]. To achieve this goal, a position-sensitive
score maps to address a dilemma between translation-
invariance in image classification and translation-variance in
object detection. This method can thus naturally adopt fully
convolutional image classifier backbones, such as the latest
Residual Networks (ResNets), for object detection.

D. YOLOv3

You Only Look Once version 3 is the available stable &
fastest method among YOLO versions proposed yet and it
works on different principles than the before- mentioned R-
CNN models. Like in SSD, this runs a single convolutional
network on the whole input image (once) to predict

bounding boxes with confidence scores for each class
simultaneously [4]. The advantage besides the simplicity of
the approach is, the YOLO model is fast (compared to
Faster R-CNN and SSD) and it learns a general
representation of the objects. However, this increases the
localization error rate. Another drawback in this model is
that it performs poorly with images with new aspect ratios
or small object flocked together, but it reduces the false-
positive rate. In the overall scenario, this method is fast in
predicting results.

III. LITREATURE REVIEW

With the advancement of Deep Learning and
Computer Vision the area of Object Detection has gained a
lot of success over the recent years. Many new models have
been introduced to outperform the state of the art and
achieve a high degree of accuracy in detecting objects
efficiently. Although this is the case there are still areas
where object detection can improve specially when the
object size gets smaller and also when the environment
conditions change. Many object detection frameworks have
been introduced to provide satisfactory results and obtain
high degrees of accuracy.

Frank D. Julca-Aguilar in 2017 proposes a method
to detect handwritten symbols using Faster R-CNN object
detection algorithm [5]. In their study they discuss the issues
relative to the handwritten nature of data. Their results show
that Faster-RCNN can be effectively used on both publicly
available flowchart and mathematical expression
(CROHME-2016) datasets. Guo X. Hu in 2018 proposes an
effective approach to detect small objects by extracting
features at different convolutional levels of the object and
using multi-scale features to detect small objects [6]. In their
results they show that their accuracy in detecting small
objects is 11% higher than the state-of-the-art models. As
previous studies have not looked to detect small objects
such as railway symbols which has a very specific shapes
and sizes. In this study we look to implement different
object detection models and compare their results while
showing the state-of-the-art model for small object detection
in the railway domain.

IV. METHODOLOGY

A. Dataset

As the dataset, first we had a PDF of Railway signal
diagrams that was constructed using a CAD (Computer
Aided Design) tool. In order to obtain individual images of
the dataset, railway signal diagram images were extracted
from the PDF and saved into a separate directory in .jpg
format. The dataset contained 60 railway signal diagram
images, which consists of four main symbols. Figure 2
shows a sample image used for training and validation
where Figure 3 shows the list of symbols/objects to be
detected. The mileposts are labelled as a single object where
the detected region will be used to perform optical character
recognition and store the milepost details for respective
symbols in a database.

Fig. 2. Sample Railway Signal Diagram

Fig. 3. Railway Signal Diagram labels

B. Image Labelling

The railway signal diagram images extracted is labelled
using a labelling/annotation tool where each symbol of
interest is marked with a corresponding bounding box and a
corresponding label is assigned to each symbol. After
labelling the images the labelled data annotations was
exported into Extensible Markup Language (XML) format
where a corresponding XML file was created for each
labelled image. The XML file contains the label names and
the coordinates of the bounding boxes that were drawn for
each symbol in the image.

C. Experimental Setup

The dataset was separated as train and test sets where
2/3rd of the images were taken for training and 1/3rd of the
images were taken for testing. For the training environment,
we used Google Colaboratory which is a free online GPU
service. The dataset was trained on an Nvidia Tesla K80
GPU with 12GB of RAM. Due to the scarcity of training
data due to confidentiality concerns, Transfer Learning
approach has been used.

D. Use of Transfer Learing

Transfer learning is a technique that reuses already trained
models on a new problem. In transfer learning, the
information on a previously prepared machine-learning
model is applied to an alternate yet related issue. For
instance, if you prepared a basic classifier to anticipate
whether a picture contains a bus, you could utilize the
information that the model picked up during its preparation
to perceive different items like a truck.

With Transfer learning, we fundamentally attempt to exploit
what has been realized in one errand to improve the
speculation in another. We move the weights that a network
has learned at "task A" to another "task B". The overall
thought is to utilize the information a model has gained from
an undertaking with a great deal of accessible labeled data,
in another errand that does not have many training data. For
training we implemented the Tensorflow Object Detection
API, which has pre-trained, models in-built known as the
model zoo. These pre-trained models we trained on the
popular MS COCO dataset. MS COCO is a large-scale
object detection segmentation and captioning dataset.

E. Faster-RCNN, SSD and RFCN based object detection

Faster RCNN: Faster-RCNN is one of the most popular
region proposal based object detection networks [1]. It
consists of two networks: Region Proposal Network (RPN)
for generating region proposals and a network using these
proposals to detect objects. Faster-RCNN showed good
detection results on the famous PASCAL VOC 2007 test set
giving high mAP (mean average precision %) values. Our
study uses Faster-RCNN with a batch size of twelve, with
thousand training steps and fifty testing steps together with
the tensorflow object detection API (framework for creating
a deep learning network that solves object detection
problems) for training and evaluating the object detection
model.

SSD: SSD is a single-shot-detector, which has no delegated
region proposal network and predicts the boundary boxes
and the classes directly from feature maps in one single
pass. SSD showed new records in performance and
precision for object detection tasks, scoring over 74% mAP
at 59 frames per second on standard datasets such as
PASCAL VOC and COCO. Our study uses SSD with a
batch size of twelve, with thousand training steps and fifty
testing steps together with the tensorflow object detection
API (framework for creating a deep learning network that
solves object detection problems) for training and evaluating
the object detection model.

RFCN: RFCN is a Region-based Fully Convolutional
Network, which uses a method known as position-sensitive-
ROI-pool, which is similar to the ROI pool in Fast R-CNN.
In position-sensitive-ROI-pool process, it maps the score
maps and RoI’s to the vote array. After calculating all the
values for the position-sensitive ROI pool, the class score is
taken as the average of all its elements. Both Faster RCNN
and RFCN uses ResNet 101 for feature extraction. And
RFCN performs 20 times faster than R-CNN giving higher
mAP (mean average precision %). Out study uses RFCN
with a batch size of eight, with thousand training steps and
fifty testing steps together with the tensorflow object
detection API (framework for creating a deep learning
network that solves object detection problems) for training
and evaluating the object detection model.

YOLOv3: One of the state-of-the-art, one-stage object
detector, YOLOv3, has been implemented as a customized
version for this particular problem scenario using the
generic implementation which is thoroughly explained by

(Pylessons, 2018) at their tutorial series and the
implementation which is provided at Git repository [1] and
it has been modified to address the problem scenario with
the custom dataset and the requirements.

Annotations file conversion: XML to YOLOv3 file
structure. Labeled data set annotations have been exported
as XML data and those were needed to convert into a
YOLOv3 implementation understandable single file format
as follows. Each row contains all the labeled bounding box
for a single image. To train the custom object detection
model it is required the annotations file and class file. Both
of these files have been created with an external single
script.

TRAIN_INPUT_SIZE = 416
TRAIN_DATA_AUG = True
TRAIN_TRANSFER = True
TRAIN_LR_INIT = 1e-4
TRAIN_LR_END = 1e-6
TRAIN_WARMUP_EPOCHS = 2
TRAIN_EPOCHS = 300

F. Optical Character Recognition

In order extract the required milepost text our first approach
looked at implementing optical character using template
matching where a template image for each character
including Numeric, Alpha Numeric and Special Symbols
was given and that image was used as a template so that the
cropped image of the milepost that is extracted is matched
using image processing techniques with the template to
recognize similar characters

The second approach looked at using a neural network
based Optical Character Recognition using open source
libraries. By implementing this approach together with
image processing techniques we were able to extract the
milepost texts as required.

V. RESULTS

A. Object Detection

The following are the results obtained after training railway
signal diagram images and building the models using Faster-
RCNN, RFCN, SSD and Yolov3 detecting the railway
signal diagram symbols.

Faster-RCNN, SSD RFCN were all trained on 1000 steps
with 24 training images where Faster-RCNN with an initial
learning rate of 0.00002 and a learning rate of 0.000002 at
the end, SSD with 24 training images with an initial learning
rate of 0.004 using RMSprop Optimizer and RFCN with an
initial learning rate of 0.003 and a learning rate of 0.000003
at the end. The Loss Graphs for Faster-RCNN, SSD and
RFCN are shown in Figure 4. Table I. shows the results
obtained from Faster-RCNN, SSD and RFCN where
accuracies of detection box precision and recall with small
and large mAP and loss values are shown.

Fig. 4. Loss graphs of (i) Faster RCNN (ii) SSD (iii) RFCN

TABLE I. RESULTS FOR FASTER RCNN, SSD AND RFCN

Faster
RCNN

SSD RFCN

Detection Boxes Precision/mAP 0.39 0.02 0.41
Detection Boxes Precision/mAP (large) 0.38 0.03 0.49
Detection Boxes Precision/mAP (medium) 0.41 0.00 0.29
Detection Boxes Precision/mAP@.50IOU 0.75 0.07 0.83
Detection Boxes Precision/mAP@.75IOU 0.40 0.00 0.37
Detection Boxes Recall/AR@100 (large) 0.55 0.04 0.55
Detection Boxes Recall/AR@100 (medium) 0.49 0.00 0.47
Loss/Box Classifier Loss/Classification

Loss

0.22 9.94

0

0.28
Loss/Box Classifier loss/Localization Loss 0.25 4.36 0.38
Loss/RPN Loss/Localization Loss 0.13 - 0.13
Loss/RPN Loss/Objectness Loss 0.04 - 0.02
Loss /Total Loss 0.63 14.5 0.82
Final Loss 0.30 3.88 0.22

In YOLOv3, the loss function of YOLOv3 can be
summarized as follows. Confidence loss determines whether
there are objects in the prediction frame (conf_loss). Box
Regression loss, calculated only when the prediction box
contains objects (giou_loss). Classification loss, determine
which category the objects in the prediction frame belong to
(prob_loss).

The YOLOv3 model was trained with 2400 steps with 57
training images. Initially the learning rate was set to 0.0001
and it was 0.000001 at the end. Fig. 5. Shows the loss
graphs plotted over number of steps and the Table 2 shows
the results obtained with YOLOv3 model.

Fig. 5. Loss graphs of YOLOv3 (i) Classification loss (ii) total loss

TABLE II. RESULTS OBTAINED WITH YOLOV3

 giou loss conf loss prob loss total loss

Training 8.81 2.88 4.22 15.91

Validation 5.63 4.01 4.47 14.11

B. Optical Character Recognition

For extracting characters in the railway signal diagrams, two
approaches are used. Template matching based approach
and also a neural network-based architecture together with a
LSTM implementation. Character detection accuracy using
template-matching technique is 42.5% and the neural
network-based character detection accuracy is 92%.

VI. CONCLUSION

According to the results obtained, we can see that all the
models (Faster-RCNN, SSD, RFCN and YOLOv3) mostly
are better at detecting larger objects than smaller ones.
When considering the final loss values, we can see that
RFCN outperforms the other model architectures. YOLO
and SSD, which are single stage detectors they are better at
detecting real time images with less inference time, we can
see that the accuracies are less compared to region proposed
networks. Here we have tried two region proposed networks
namely Faster-RCNN and RFCN. Both of these networks
outperform the single stage detectors even though their
inference time is comparatively higher. In this scenario we
are more concerned about the accuracy than the inference
speed therefore we can arrive at a conclusion that region
proposed networks are more suitable network architectures
for detecting railway signal diagrams. Here we can see that
RFCN has the best detection accuracies as they divide the
image into small feature maps and create a voted array for
each of these feature maps as a result it is able to easily
identify smaller objects better than other architectures as it
focuses on all the smaller areas of the image rather than on a
specific region. For optical character recognition, we have
implemented two different techniques. The template
matching approach was drastically outperformed by the
neural network-based approach.

REFERENCE

[1] Ren, Shaoqing & He, Kaiming & Girshick, Ross & Sun, Jian. (2015).
Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 39. 10.1109/TPAMI.2016.2577031.

[2] Liu, Wei & Anguelov, Dragomir & Erhan, Dumitru & Szegedy,
Christian & Reed, Scott & Fu, Cheng-Yang & Berg, Alexander.
(2016). SSD: Single Shot MultiBox Detector. 9905. 21-37.
10.1007/978-3-319-46448-0_2.

[3] Dai, Jifeng & Li, Yi & He, Kaiming & Sun, Jian. (2016). R-FCN:
Object Detection via Region-based Fully Convolutional Networks.

[4] Redmon, Joseph & Farhadi, Ali. (2018). YOLOv3: An Incremental
Improvement.

[5] Julca-Aguilar, Frank & Hirata, Nina. (2018). Symbol Detection in
Online Handwritten Graphics Using Faster R-CNN. 151-156.
10.1109/DAS.2018.79.

[6] Hu, Guo & Yang, Zhong & Hu, Lei & Huang, Li & Han, Jia. (2018).
Small Object Detection with Multiscale Features. International
Journal of Digital Multimedia Broadcasting. 2018. 1-10.
10.1155/2018/4546896.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

