
EasyChair Preprint
№ 3343

L Versus Parity-L

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 7, 2020



L versus parity-L
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
A major complexity classes are L and ⊕L (parity-L). A logarithmic space Turing machine has a
read-only input tape, a write-only output tape, and some read/write work tapes. The work tapes
may contain at most O(log n) symbols. L is the complexity class containing those decision problems
that can be decided by a deterministic logarithmic space Turing machine. The complexity class
⊕L has the same relation to L as ⊕P does to P . Whether L = ⊕L is a fundamental question that
it is as important as it is unresolved. We prove there is a complete problem for ⊕L that can be
logarithmic space reduced to a problem in L. In this way, we demonstrate that L = ⊕L.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, logarithmic space, XOR-3SAT, XOR-2SAT, reduction

1 Results

I Definition 1. XOR–3SAT
INSTANCE: A natural number n and a Boolean formula φ that is the conjunctions of a

set C of clauses c1, . . . , cm, where each ci consists of the EXCLUSIVE OR (denoted ⊕) of
three literals and φ contains n variables represented by a unique positive integer between 1
and n just similar to the DIMACS representation [3].

QUESTION: Is it the case that φ is satisfiable?
REMARKS: XOR–3SAT is complete for ⊕L [2].

I Definition 2. XOR–2SAT
INSTANCE: A Boolean formula ψ that is the conjunctions of a set C of clauses c1, . . . , cm,

where each ci consists of the EXCLUSIVE OR (denoted ⊕) of two literals and the ψ variables
are represented by a unique positive integer just similar to the DIMACS representation [3].

QUESTION: Is it the case that ψ is satisfiable?
REMARKS: XOR–2SAT is in L [1], [4].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-
only output tape, and some read/write work tapes [5]. The work tapes must contain at most
O(logn) symbols [5]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [5]. We call f a logarithmic space computable function [5]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

I Theorem 3. L = ⊕L.

Proof. From the Definition 1, we assume that each variable in the Boolean formula φ of n
variables in XOR–3SAT is represented by a unique positive integer between 1 and n. The
negative literals are represented as the negative value of each variable value, such that the
negative literal of the variable a is −a. In order to make the reduction, we need to create

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com


2 L versus parity-L

the variables inside of a Boolean formula in XOR–2SAT and therefore, we use the function h
such that

h(x) = if (x > 0) return (2× x) else return (−2× x+ 1).

Moreover, from a tuple (x, y) of two integers, we denote the function g such that

g((x, y)) = if (x < y) return (x, y) else return (y, x)

where g sorts the elements of a tuple (x, y) of two integers. Furthermore, from a tuple (x, y)
of two positive integers, we denote the function v such that

v((x, y)) = ((x+ y)2 + 3 ∗ x+ y)/2

where v returns a unique integer for a tuple (x, y) of two positive integers. Finally, we denote
a clause that contains n-integers a1, a2, . . . , an as the function c(a1, a2, . . . , an) just similar to
the DIMACS representation [3]. The logarithmic space reduction is described in the pseudo
code Algorithm 1.

In this reduction, we guarantee that creation of the variables through the function h. In
addition, using the functions g and v, we create the literals into the clauses of the final formula
ψ in XOR–2SAT. In the first step, we create four clauses in XOR–4SAT for each clause in φ
introducing two new variables p = n+ 1 and q = n+ 2, where these total generated clauses
are satisfied for some truth assignment if and only if the Boolean formula φ is satisfiable
when the variables p = n+ 1 and q = n+ 2 take opposite values. Hence, we output three
clauses that are satisfied for some truth assignment if and only if the four generated clauses
are satisfied. Certainly, a clause (x⊕ y ⊕ z ⊕w) is satisfied for some truth assignment if and
only if the clauses (ax⊕y ⊕ bz⊕w), (ax⊕z ⊕ by⊕w) and (ax⊕w⊕ by⊕z) are satisfied for the same
truth assignment, where in this case x, y, z and w are literals and the variables ax⊕y, bz⊕w,
ax⊕z, by⊕w, ax⊕w and by⊕z are equals to the values of (x ⊕ y), (z ⊕ w), (x ⊕ z), (y ⊕ w),
(x⊕w) and (y⊕ z), respectively. Note, that we use tuples and thus, for that reason, we need
to output two additional clauses for each pair of variables including the introduced variables
p = n+ 1 and q = n+ 2. For these two new clauses in the second step, we guarantee the
appropriated assignment for a single variable in φ, which means that a literal should have the
opposite value of its negation. We could affirm this, because of the clauses (x⊕ j⊕⇁ x⊕ j)
and (x⊕ ⇁ j⊕ ⇁ x⊕ ⇁ j) are always satisfied for any truth assignment, where ⇁ is the
NOT Boolean function. Finally, in the third step, we guarantee the variables p = n+ 1 and
q = n+ 2 could take opposite values just making the formula φ satisfiable from the first step.
Actually, we can assure this, because of the clause (p⊕ j ⊕ q ⊕ j) is satisfied for some truth
assignment if and only if p and q take opposite values. In this way, we create a Boolean
formula ψ ∈ XOR–2SAT if and only if φ ∈ XOR–3SAT. In general, the whole algorithm uses
logarithmic space in the work tapes since the new Boolean formula is created in the output
tape into a write-only way. Consequently, we obtain XOR–3SAT ≤l XOR–2SAT. The single
existence of a complete problem in ⊕L that could be logarithmic space reduced to a problem
in L is sufficient to show L = ⊕L. This work is implemented into a Project programmed in
Scala from a GitHub repository [6]. J

References

1 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9(2):123–145, 2000. doi:10.1007/PL00001603.

http://dx.doi.org/10.1007/PL00001603


F. Vega 3

Algorithm 1 Logarithmic space reduction from XOR–3SAT to XOR–2SAT
1: /*A natural number n and a Boolean formula φ of an instance from XOR–3SAT*/
2: procedure REDUCTION(n, φ)
3: /*Create two new variables*/
4: p← n+ 1
5: q ← n+ 2
6: /*First step: Iterate for the clauses in φ*/
7: for all c(a, b, c) ∈ φ do
8: /*Convert the clause to four clauses in XOR–4SAT*/
9: S ← {c(a, b, c, p), c(a, b, c,−q), c(−a,−b,−c,−p), c(−a,−b,−c, q)}
10: for all c(x, y, z, w) ∈ S do
11: output c(v(g((h(x), h(y)))), v(g((h(z), h(w)))))
12: output c(v(g((h(x), h(z)))), v(g((h(y), h(w)))))
13: output c(v(g((h(x), h(w)))), v(g((h(y), h(z)))))
14: end for
15: end for
16: /*Second step: Iterate quadratically from 1 to n+ 2*/
17: for i ← 1 to q do
18: for j ← 1 to q do
19: if i 6= j then
20: output c(v(g((h(i), h(j)))), v(g((h(−i), h(j)))))
21: output c(v(g((h(i), h(−j)))), v(g((h(−i), h(−j)))))
22: end if
23: end for
24: end for
25: /*Third step: The variable p takes the opposite value of q*/
26: for j ← 1 to n do
27: output c(v(g((h(p), h(j)))), v(g((h(q), h(j)))))
28: output c(v(g((h(p), h(−j)))), v(g((h(q), h(−j)))))
29: output c(v(g((h(−p), h(j)))), v(g((h(−q), h(j)))))
30: output c(v(g((h(−p), h(−j)))), v(g((h(−q), h(−j)))))
31: end for
32: end procedure



4 L versus parity-L

2 Carsten Damm. Problems complete for ⊕ L. In International Meeting of Young Computer
Scientists, pages 130–137. Springer, 1990.

3 Varisat Manual. DIMACS CNF, May 2020. In Varisat Manual at https://jix.github.io/
varisat/manual/0.2.0/formats/dimacs.html.

4 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1–24, September 2008.
doi:10.1145/1391289.1391291.

5 Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2
edition, 2006.

6 Frank Vega. Sat Solvers, October 2019. In a GitHub repository at https://github.com/
frankvegadelgado/sat.

https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
http://dx.doi.org/10.1145/1391289.1391291
https://github.com/frankvegadelgado/sat
https://github.com/frankvegadelgado/sat

	Results

