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Abstract. Matrix multiplication plays an important role in various ter-
ritories. The input data density leads to low computation efficiency, and
synchronous circuits fail to meet the low-power requirement of specific
fields. Therefore, an asynchronous matrix multiplication accelerator is pro-
posed, which selects the appropriate calculation method by sensing the
data density. For SpGEMM, a two-way condensation technique is adopted
to solve the problem of spoiling the right matrix input reuse. An "one-
to-one" merge strategy to reduce the uncertainty of the merge process is
further proposed. Finally, the area of the accelerator is 17.3 mm2, and
the power demand is only 0.00468W in the UMC 110nm process. This re-
search evaluates the accelerator on the SuiteSparse set and random matrix
set, achieving 3.4× and 3.1× speed-up and 86× and 304× energy saving
over MKL and cuSPARSE, respectively. It also achieves 62.3× and 11.25×
energy saving over OuterSPACE and SpArch, respectively.
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1 Introduction

Matrix multiplication is indispensable in almost all large scientific computing
domains, which is widely used in various algorithms (Deep Neural Networks
[1], etc.). Depending on the data density, matrix multiplication can be divided
into dense matrix-matrix multiplication and sparse matrix-matrix multiplica-
tion(SpGEMM). Running on general-purpose computing platforms (e.g., CPUs
and GPUs) will lower the performance of SpGEMM, due to the irregular memory
access of low-density matrices. Therefore, there is an inevitable requirement to
study specific architectures for different data densities. Most recent hardware ar-
chitectures have focused on the inner product (e.g., [2, 3]) or outer product (e.g.,
[4, 5]). The inner product has good output reuse and is more suitable for denser
matrices. The outer product is more suitable for highly sparse matrices, and pro-
vides input reuse to get a low density partial matrix in the multiplication phase.
So, matrix multiplication requires a different strategy for different data density
to improve the processing advantage.

Furthermore, all the above hardware architectures use the synchronous circuit
design method. As the size of the circuits increases, the timing of the circuits be-
comes more strict. Clock jitter, clock skew and other issues pose substantial design
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challenges. The final implemented accelerator is difficult to break through perfor-
mance bottleneck. Secondly, in certain battery-powered scenarios, synchronous
accelerators cannot meet the low-power requirement. We exploit the clockless
asynchronous circuit method and design an asynchronous architecture. Eventu-
ally, the internal circuitry of the accelerator should start working only when the
conditions are met.

In the present work, an asynchronous matrix multiplication accelerator for
low-power domains is proposed. The main contributions are as follows: The archi-
tecture chooses the inner/outer product method to complete matrix multiplication
according to the input matrix data density; A new sparse matrix condensation
technique is used: this avoids breaking data reuse and reduces the difficulty of
data-matching; An "one-to-one" merging strategy is adopted to reduce the uncer-
tainty associated with the merging process; An asynchronous design approach is
used to implement the matrix multiplication accelerator that avoids the problems
caused by clocks.

2 Architecture

The system architecture consists of five main parts: CPU, NOC(Networks On-
Chip), SPI, Memory, and Matrix Calculation(MC), as shown in Fig. 1. The CPU
first sends the matrix loading instruction to the SPI, which informs the external
input of dense or sparse matrices. The sparse matrix is condensed and stored
in COO format in the Memory, then SPI sends an Ack and the CPU sends the
matrix multiplication instruction to the MC through NOC.

Fig. 1. System architecture of asynchronus matrix accelerator

The Memory uses the fire of Click to trigger the corresponding SRAM. An IO
Access, a Matrix Access and 13 SRAMs together form the Memory module. The
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data stored in SRAMs are condensed, following the rule: two-way condensation of
sparse matrices. Take the left matrix as an example, if an element has a 0 upper
neighbor, it moves up to the 0 position and repeats the above operation. The
advantages of using this method are ensuring data reuse for input matrices and
reducing the amount of data for the partial matrices.

In the MC, the Pattern Parser decides the way to accomplish matrix multipli-
cation. The Scheduler continuously generates the correct data address according
to the result of the Pattern Parser, and obtains the initial or partial data from
the Memory and outputs them to the Filter/Matcher/Merger modules. The Fil-
ter avoids the participation of 0s which remain in the condensed matrix. Due to
the difference between the inner and outer products, a general Matcher which
can support different matching processes is designed. The matched data must
be input to the PE to complete the calculation. In dense mode, PE outputs the
result to the Address Generator. In sparse matrix mode, PE outputs the result
to the Merger which adopts an "one-to-one" sparse merging strategy in Fig. 1.
The storage address is calculated based on the element index. The same index
means the same storage location, and the elements with the same location need
to complete the merge operation. Finally, the Result Output module analyses the
final calculation result flag and outputs the resulting information.

3 System Analysis

A C++ simulator is employed to obtain a set of synthetic matrix datasets and
regular and irregularly structured sparse matrices in the SuiteSparse dataset are
selected. The performance of accelerator on the two datasets is evaluated. Multiple
computing platforms including OuterSPACE, SpArch, CPU and GPU are used.
An Intel® MKL is used on an eight-core AMD Ryzen 7 5800H CPU. For the
GPU, cuSPARSE is used on an NVIDIA GeForce RTX3050 Ti Laptop GPU.
Fig.2 shows the average performance comparison after the scale. Our accelerator
slightly under performs for the dense matrix computation compared to MKL
and cuSPARSE. When calculating highly sparse matrices, it can maintain stable
performance, achieving 2.3×, 3.4× and 3.1× speed-up and the energy efficiency
increases by 62.3×, 86×, and 304× (on average) over OuterSPACE, MKL and
cuSPARSE.

4 Conclusion

In this paper, an asynchronous matrix multiplication accelerator is proposed,
which can select the appropriate calculation method according to different data
densities. The sparse matrices are condensed to reduce the amount of partial ma-
trices’ data. This accelerator takes a “one-to-one” merging strategy, which reduces
the uncertainty associated with the merging process.

Finally, the accelerator is implemented using asynchronous circuits, which
consumes only 0.00468 W at UMC 110nm technology. We evaluate it on ma-
trix datasets which have different structures and densities. The performance is
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Fig. 2. The average performance comparison

improved by 3.4×, 3.1×(on average) and the energy efficiency is increased by
86×, 304×(on average) compared to MKL and cuSPARSE. Our Accelerator also
achieves 62.3× and 11.25× energy improvement comparing to OuterSPACE and
SpArch. The results show that the asynchronous architecture is promising to pro-
vide a low-power solution for future matrix applications.
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