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Abstract—Heating, ventilation, and air conditioning (HVAC) sys-
tems of buildings account for a major part of global energy demand
and HVAC optimization offers significant potential to improve
energy efficiency. As a promising optimization technology, Model
Predictive Control (MPC) can reduce the energy demand while
maintaining thermal comfort in buildings, but it also requires a
thermal building model. Most existing models are too complex for a
reliable parameter identification from measurements or too simple to
represent thermal comfort. In this paper, we derive and implement
a minimalistic thermal building model that can be applied to (i)
parameter identification from measurements (grey-box modeling),
and (ii) control of thermal parameters for assuring thermal comfort.
We derive our grey-box model from the laws of thermodynamics,
heat transfer, and the electro-thermal RC analogy. As a novelty, we
present not only the detailed theoretical derivation but also the open-
source code for applying the identification to various buildings. The
proposed minimalistic model ensures a reliable parameter estimation
and requires only a few measurements of temperatures, heating,
and global radiation. We identify and validate our model with
measurements from a research building under real-world conditions.

Index Terms—building control, thermal comfort, operative tem-
perature, thermal building model, grey box model, model identifica-
tion

I. Introduction
Buildings are responsible for approximately 40% of energy

demand [1], [2], which creates a significant potential for energy
savings and load shifting. Almost half of this energy is con-
sumed by heating, ventilation and air conditioning (HVAC)
systems [3]. Advanced control strategies of HVAC, e.g. by
model predictive control (MPC), provide great possibilities for
energy savings [4], the integration of renewable energy [5] or
grid stabilization by demand-side management (DSM) [6]–[8].
For instance, DSM can help to shift and store the fluctuating
renewable energies of future energy systems [9], [10].

Despite the goal to reduce and shift energy consumption,
the building occupants’ preferences and requirements on the
indoor thermal environment must be taken into account. On
one side, the consideration of occupants’ individual preferences
is crucial and it leads to higher satisfaction and well-being
[11]. On the other side, the occupants’ preferences shape their
energy consumption-related behavior and partially drive the

occupant-building interactions. These actions have a direct
impact on the buildings’ energy consumption and should
therefore be considered in control. This bidirectional impact
could be summarized as (i) occupant-building interactions in
terms of manual control (e.g. windows openings or setpoint
adjustments) and (ii) the impact of the thermal conditions
on occupants’ well-being and perceived thermal conditions. In
that context, the manual setpoint adjustments have been in
the focus of several existing studies [12], [13]. The thermal
conditions that pose a significant driver for the occupants’
actions have been in the focus of the thermal comfort re-
search during the past decades [14]–[16]. Wagner et al. [15]
analyzed the correlation between the occupants’ satisfaction
and measured thermal conditions. Langevin et al. [14] showed
that thermal conditions are one of the key drivers for occupants’
adaptive actions. Frontczak and Wargocki [16] pointed out that
the thermal conditions have the greatest impact on humans’
perceived comfort. In summary, the thermal conditions have
an undoubted impact on the occupants’ actions and therefore,
holistic building energy consumption optimization is required
for ensuring a high-quality indoor thermal environment.

In the context of MPC for assuring thermal comfort and
DSM, a major drawback for the widespread application of
MPC is the necessity of suitable thermal building models.
These models should be easily applicable to a variety of
different buildings and computationally efficient. Typically,
thermal buildings models rely on physical equations and ma-
terial parameters (white box model), on a combination of a
physical structure and measurement data (grey box model),
or on data-driven technologies (black box model). White box
models are complex, require excessive modeling effort, and are
computationally unfriendly for the MPC application. Although
black box models are easily applicable as they need no prior
knowledge of the system, they might require large data sets and
lack reliability. They need to be estimated individually for each
building and are therefore not yet available immediately after
the buildings go into operation. Grey box models, however,
offer a simple physical structure and make use of parameter
identification from measurements. In the context of thermal



building models, grey box models usually apply the electro-
thermal analogy of heat transfer [17], [18] and are hence called
RC models.

These RC models have gained significant importance for
MPC in buildings because they can address the limitations of
white and black box models thanks to their following benefits:
(i) reliability outside identification range, (ii) requiring few
data for model identification, (iii) high adaptability for MPC
(thanks to continuity, linearity, and differentiability), and (iv)
representability for most buildings [17].

A. State of the Art
RC models have been investigated since the 1980s [19]–[25]

and the first models applied two resistors and one capacitor
(2R1C) to model the building envelope. After discovering the
model performance drawbacks of these oversimplified models,
Gouda et al. proposed more complex models in 2002 [26].
In 2018, Koeln et al. [27] remind: “However, a series of
simulation tests from [3]1 that compared low order models
to a 21R20C benchmark model demonstrated that a slightly
higher-order model, 3R2C, provided significant model accuracy
improvements over the 2R1C model with a tolerable increase
in computational effort”.

In general, Koeln et al. [27] separate the thermal building
model technologies into two different categories: (i) lumped and
(ii) constructive approaches. The lumped approach utilizes only
a few thermal elements, thermal resistors, and capacitors, to
represent an entire building. These elements do not necessarily
need to represent single physical elements such as walls,
windows, roofs, or floors; they can be equivalent parameters to
multiple thermal elements and physical effects. The parameter
of lumped models are usually identified by measurement data,
also referred to as grey box modeling [28]. For example, Park
et al. [29] represent an entire building with only one resistor
and one capacitor (1R1C). Harb et al. [30] developed three
grey box models and concluded that a 4R2C model performs
most appropriately. Attoue et al. [31] examined the necessary
model order depending on the heating power and conducted a
sensitivity analysis on each parameter; model orders between
two and three yielded the best results. Although the lumped
approach is often applied on one-zone thermal building models
that represent the entire building, this approach is not limited
to only one zone and can be used for each zone of a multi-zone
model [32].

In contrast, the constructive approach is often applied for
more complex models. “The constructive approach system-
atically builds up a zone model based on the individual
building element models” [27]. Each thermal element, such
as walls, roof, floors, or windows, are individually modeled
by resistors and capacitors. This approach, combined with
multiple thermal zones, yields high complexity and is less
applicable for parameter identification (grey box modeling)
or MPC. Instead, it is applied to derive complex white box
models. Those are capable of delivering the most accurate
results [33], although it is time-consuming and difficult to
gather the necessary data.

In summary, we conclude that data-driven lumped approach
models offer a sufficient balance between modeling effort and
model performance for MPC.

1Remark, that [3] is [26] in the present paper.

B. Research Gap
Despite the high availability of RC models and thermal com-

fort studies in the literature, there is no – to the best knowledge
of the authors – straightforward explanation of RC models
and their derivation via conservation of energy, including
thermodynamic assumptions in internal energy, enthalpy, and
heat transfer. Furthermore, little literature on building control
with a focus on thermal comfort is available as Park et al. [34]
state: ”We find that building control focuses predominantly on
energy savings rather than incorporating results from thermal
comfort, especially when it comes to occupant satisfaction. We
identify potential research directions in terms of bridging the
two fields”.

In this work, we explain the thermodynamic principles and
simplifications applied for RC models and investigate how the
resulting model can enable the control of thermal parameters
required for thermal comfort. Finally, we propose an RC grey
box model for the control of thermal parameters for thermal
comfort. Our approach requires only a few measurements
of temperatures, heating, and global radiation for system
identification and control.

II. Theoretical Foundations and Thermal Building Model
We describe the foundations of heat transfer and thermo-

dynamics that support an understanding of the RC modeling
technology and thermal parameters required for thermal com-
fort in buildings.

A. Heat Transfer
As a foundation, we explain the basics of heat transfer by

conduction, convection, and radiation, similarly to literature
[35], [36].

1) Conduction: Heat conduction describes the heat flow
within a body, which spontaneously occurs from warm to cold
and in absence of an external driving energy source. In a
planar wall, one-dimensional heat transfer Φa→bconduct from
temperature Ta to Tb can be simplified by Fourier’s Law in
Eq. (1) [36]:

Φa→bconduct =
kA

L
(Ta − Tb) (1)

k - thermal conductivity, A - plane area, L - plane thickness.
2) Convection: Convective heat transfer is a superposition

of heat conduction and movement of fluids. In contrast to only
conduction, the convective heat transfer is additionally driven
by fluid velocity, e.g. wind, considered by the heat transfer
coefficient [36]:

Φa→bconvect = hA(Ta − Tb) (2)

h - heat transfer coefficient, A - contact area.
3) Radiation: Thermal radiation is a form of heat transfer

where a heated surface transmits energy in all directions at the
speed of light. The radiation results from the thermal motion
of particles. In contrast to conduction and convection, the heat
transfer depends on the temperatures in the fourth-order. Eq.
(3) presents the radiative heat transfer over a distance between
two grey bodies in sight [36]:

Φa→bradiate =
Aaσ(T

4
a − T 4

b )
1
F
+ 1−εa

εa
+ Aa(1−εb)

Abεb

(3)

ε - emissivity of the surfaces, A - surfaces, σ - Stefan–Boltzmann
constant, F - view factor between two surfaces a and b.



4) Simplification: On the analogy of Ohm’s law, Eq. (4)
simplifies the heat flows in Eq. (1), (2), (3),

Φa→b =
Ta − Tb

Ra,b
(4)

where Ra,b is the thermal resistance between the entities a
and b. For example, in the case of only convection: Ra,b = 1

hA

(compare eq. (2)).

B. Energy Conservation

The thermal building model must satisfy energy conservation
by the first law of thermodynamics. Neglecting changes in
kinetic and potential energy, this law yields Eq. (5) [37]. The
derivative of internal energy dU

dt
depends on the sum of heat

flows Φ, work flows Ẇ , and enthalpy flows Ḣ:

dU

dt︸︷︷︸
derivation of

internal energy

=
∑

Φ︸ ︷︷ ︸
heat flows

+
∑

Ẇ︸ ︷︷ ︸
work flows

+
∑

Ḣ︸ ︷︷ ︸
enthalpy

flows

. (5)

1) Internal energy: The internal energy U is the energy
within a thermodynamic system, such as a thermal build-
ing element. From the fundamental thermodynamic relation
dU = TdS−pdV with constant volume yields the inner energy
derivative dU

dt
:

dU

dt
= Cv · dT

dt
. (6)

For simplicity, we will use Cv = C in the following.
2) Heat flows: Two types of heat flows occur in RC models:

(i) heat flows driven by a temperature difference, and (ii) heat
flows due to internal heat generation (e.g. heating system) or
external heat sources (e.g. the sun).

(i) Heat flows driven by a temperature difference ∆Ta,b are
characterized by the thermal resistance R according to the
electro-thermal analogy Eq. (4). This simplifies conduction,
convection, and radiation (compare Subsection II-A) into only
one equivalent heat flow [35], [38]:

Φa→bheat flows =
∆Ta,b

Ra,b
=

Ta − Tb

Ra,b
. (7)

(ii) Heat flows due to internal heat generation or external
sources are widely called “heat gains”. A typical example is that
the power used within a system will be partially converted into
heat, e.g. by lights or appliances such as a printer.

3) Enthalpy flows: Enthalpy flows describe by mass flow
ṁ transported energy, e.g. due to ventilation. The difference
between in- and outflowing enthalpy ∆Ḣa,b is equivalent to a
heat flow Φa→b according to Eq. (8),

Φa→benth flows = ∆Ḣa,b = ṁ · c · (Ta − Tb) =
Ta − Tb

Ra,b
(8)

where c is the specific heat capacity. Enthalpy flows occur
in buildings due to ventilation and infiltration of air. Under
application of an RC analogy, we derive the equivalent heat
transfer resistor Ra,b = 1

ṁ·c .
4) Work flows: Work can be divided into ”flow work” p · v

and other forms of work across the boundaries of the control
volume [37]. Flow work is included in the enthalpy [37] and we
neglect any other form of work: Ẇ = 0.

C. Lumped Capacitance Model
From the energy conservation in Eq. (5), with the internal

energy from Eq. (6), the heat flows and enthalpy flows in
RC analogy in Eq. (7) and (8), we obtain the temperature
differential equation for each node i,

Ci
dTi

dt︸ ︷︷ ︸
derivation of

internal energy

=

m∑
j=1

Φi,j︸ ︷︷ ︸
heat gains

+

n∑
k=1

∆Ti,k

Ri,k︸ ︷︷ ︸
heat transfer

between nodes

(9)

where the resistor Ri,k combines several thermodynamic and
heat transfer effects: enthalpy flows, conduction, convection,
and radiation. In addition to heat transfer between nodes, heat
gains occur, which are typically a result of the heating system,
electrical appliances, and solar radiation.

The heat flows of the lumped capacitance model occur
between thermal elements, such as the wall or the air. Each
wall can be further separated into multiple thermal elements.

1) Lumped Parameter Wall: The number of nodes z inside
a wall determines the accuracy of the wall’s temperature
profile. Fig. 1 presents a general wall model with z nodes. For
z = 1, the wall temperature is homogeneous; the assumption
of a homogeneous temperature applies for fast conductive
heat transfer inside the wall in relation to the convective
heat transfer on the wall’s surfaces [36]. A homogeneous wall
temperature is rarely the case for thermal building models, as
the evaluation in Subsection I-A indicates. Typically, z = 2
yields appropriate model performance [26].

CzC2C1

TinTzTamb T1 T2

Ramb,wall Rwall,inR1,2 R2,3 Rz−1,z

Fig. 1: Lumped parameter wall for z layers.

D. Operative Temperature
The thermal comfort of humans in buildings depends on

the thermal environment and the personal variables, such as
clothing, activity, or metabolic rate [39]. Unlike these personal
variables, the building control system can usually affect the
thermal room conditions: air temperature Tair, radiant tem-
perature Tr, and air velocity v.

These physical variables of the thermal environment charac-
terize the heat transfer between human and building (compare
Subsection II-A). Convective heat transfer depends on the
air temperature and the air velocity. Radiating heat transfer
results from the surrounding surfaces and their mean radiant
temperature. Combining the physical variables and effects into
a single index could equivalently characterize the warmth of
an environment, resulting in the operative Temperature Top in
Eq. (10) [39]:

Top =

0.56Tair + 0.44Tr for v ≤ 0.1m s−1,
0.44Tr+0.56

(
5−

√
10v(5−Tair)

)
0.44+0.56

√
10v

for v > 0.1m s−1.
(10)



III. Resulting Model for Control
Inspired by the state of the art grey box models [30],

we illustrate a lumped thermal building model for control
applications that is easily applicable to a variety of buildings
in Fig. 2. After a general explanation of the model, we describe
in the following how this model enables the control of thermal
parameters required for thermal comfort.

Rair,amb

Tw,in Tw,outTair
Tamb,eq

Tamb

Cw,outCw,inCair

Φh,wall

Rw Rw,amb

Φsol
Φh,air

Rw,air

Fig. 2: RC thermal building model with 3R2C wall.

In contrast to the wall model in Fig. 1, the building model in
Fig. 2 represents the thermal dynamics of the entire building.
Therefore, the model contains not only wall elements, but also
indoor air and connections to the ambient.

A. System Equations
The illustrated model in Fig. 2 consists of three inputs: the

heating Φh, the solar radiation Φsol, and the ambient tem-
perature Tamb. These inputs affect the building temperatures,
which are dynamically described by states: one state for the
indoor air temperature Tair and two for the walls, an inner wall
element Tw,in and an outer Tw,out. The temperature dynamics
are described by the differential Eq. (11) - (13), based on the
Lumped Capacitance Model methodology in Eq. (9):

Cair
dTair

dt
=

Tw,in − Tair

Rw,air
+

Tamb − Tair

Rair,amb
+Φsol +Φh,air (11)

Cw,in
dTw,in

dt
=

Tair − Tw,in

Rw,air
+

Tw,out − Tw,in

Rw
+Φh,wall (12)

Cw,out
dTw,out

dt
=

Tw,in − Tw,out

Rw
+

Tamb,eq − Tw,out

Rw,amb
. (13)

We describe the system inputs more precisely in Eq. (14)
and (15). The heating in Eq. (14) is separated into a radiant
and a convective part by the factor fheat,rad (radiation heat
flux contribution), where the convective part heats the air and
the radiant part the inner wall:

Φh,air = (1− fheat,rad)Φh, Φh,wall = fheat,radΦh. (14)

The solar input in Eq. (15) is determined by the global radia-
tion φglobal. The sun directly affects the inside air temperature
by Φsol, which depends on the global radiation φglobal and the
solar heat gains factor fsol. The heat transfer on the outside
wall results from the equivalent ambient temperature Tamb,eq,
which combines the ambient temperature Tamb and the global
radiation φglobal. This equivalent temperature Tamb,eq also
depends on the parameters short-wave absorption coefficient
hf, and the exterior heat transfer coefficient hA [30]:

Φsol = fsolφglobal, Tamb,eq = Tamb + φglobal
hf

hA
. (15)

B. Model Implementation and Validation
We implement the previously described model in Matlab and

identify the thermal parameters with the Matlab Identification
Toolbox [40]. We publish our model implementation as open-
source code on Github2. Our implementation identifies a
thermal building model from measurements and has two user-
defined functions: (i) defining the model equation, and (ii)
defining parameters to be identified. Given those two functions,
our code provides easily applicable methods for identifying and
validating the model with the use of input and output data.

For the identification, we use measurements with a sample
rate of Ts = 120s from May 06 – May 18, 2021 in a research
building [41] under real-world conditions. We measure the
indoor air temperature Tair, the heating (power of electrical
heater) Φh, the ambient air temperature Tamb, and the global
radiation φglobal. While we know that the research building
is used as an office space, we have no information about the
occupancy behavior, such as attendances or windows openings.
We validate the model on the indoor air temperature with
measurements from May 19 – May 31, 2021, without any re-
calibration of the temperature. The results for the identification
and validation are presented in Fig. 3 and Fig. 4.
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Fig. 3: Identification results
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Fig. 4: Validation results

Over the entire validation period (May 19 – May 31, 2021),
the model yielded a Mean Absolute Error (MAE) of 0.556 K
and a Root Mean Square Error (RMSE) of 0.705 K. The error
increases considerably on each of the weekends, May 22-24 and
May 29-30, and decreases again on the weekdays, as the model
does not account for occupancy behavior. While the building
is used as an office space, the absence of occupants on the

2https://github.com/Building-Measurement-to-Control-
Toolbox/Matlab-Toolbox-Pub

https://github.com/Building-Measurement-to-Control-Toolbox/Matlab-Toolbox-Pub
https://github.com/Building-Measurement-to-Control-Toolbox/Matlab-Toolbox-Pub


weekend can lead to lower internal heat gains and thus reduce
the measured temperatures, compared to the simulation.

C. Control Variables for Thermal Comfort
For thermal control of buildings, we define the heating Φh

as the control input u and the weather conditions, which is
a combination of ambient temperature Tamb and global solar
radiation φglobal, as measureable disturbances z. Instead of the
indoor air temperature, we propose the control output y as the
operative temperature from Eq. (10) by our simplified defini-
tion in Eq. (16). Therefore, we use the inner wall temperature
Tw,in as radiant temperature Tr and assume negligible air flows.

This assumption is supported by Gaffor et al.: “Indoor
operative temperature is found to have the most significant
influence on occupant’s thermal comfort [...]. While clothing,
air velocity, and relative humidity affect thermal sensation, they
have a weak correlation with TSV [Thermal Sensation Votes]
and their influence is much weaker or statistically insignificant
than that of operative temperature” [42]:

y = Top = 0.56Tair + 0.44Tw,in,

u = Φh, z = (Tamb, φglobal)
T (16)

For more information about the control application, we refer
to our previous work [43].

IV. Discussion and Conclusion

This work focuses on the thermodynamic and heat transfer
foundations for the thermal parameters required for thermal
comfort and its open-source model implementation. Our lit-
erature review concludes a high demand for thermal building
models that are applicable to a variety of buildings for the
purpose of temperature control. Model-based controllers in
the building context can satisfy thermal comfort in buildings,
reduce energy demand, integrate renewable energy, or provide
DSM. Despite the high interest in simple, identifiable thermal
building models and their control application, we observe in the
literature a lack of a straightforward physical explanation from
thermodynamics and heat transfer of these RC models and the
control of the thermal parameters for thermal comfort.

We obtain a thermal building model from the laws of ther-
modynamics and heat transfer. While all types of heat transfer
are driven by temperature differences, the main differences
are that conduction occurs without an external driving energy
source, convection is strongly dependent on a fluid’s velocity
and radiation transmits heat over distances between bodies in
sight. The different types of heat transfer are superpositioned
and simplified by the Lumped Capacitance Model methodology
(RC model), where equivalent heat flows only depend on tem-
perature differences and resistors. This analogy also includes
the contribution of enthalpy flow differences.

Our derived RC model is identified and validated with
measurements from a research building under real-world con-
ditions. Therefore, we use the Matlab Identification Toolbox
and publish our open-source code. In general, the validation
results demonstrate a minor deviation from the measurement.
The most significant contribution to the mismatch to the
measurement occurs on the weekend, resulting in an overall
RMSE of 0.7 K over the validation period of 12 days. This
indicates a different occupancy behavior in the office space
during the weekend. The integration of occupancy behavior

into thermal building models for control should be addressed
in future work.

Finally, we extend our RC model by a formulation of thermal
comfort based on the operative temperature that combines
two of the temperature states: the indoor air temperature and
the inside wall temperature. As a result, we obtain a simple
modeling approach to provide thermal parameters required
for thermal comfort in a building. The model is identifiable
and requires only measurements of temperatures, heating, and
global solar radiation.
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