
EasyChair Preprint
№ 7677

A Review Paper on Pushdown Automata
Implementation

Aditya Akangire, Sarthak Akkarbote, Kartik Rupauliha,
Ayush Vispute and Abdul Mueed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 29, 2022



A Review Paper on Pushdown Automata
Implementation

Aditya Akangire
AI and Data Science

VIT Pune
Pune, India

Ayush Vispute
AI and Data Science

VIT Pune
Pune, India

Sarthak Akkarbote
AI and Data Science

VIT Pune
Pune, India

Abdul Mueed
AI and Data Science

VIT Pune
Pune, India

Kartik Rupauliha
AI and Data Science

VIT Pune
Pune, India

Abstract— Pushdown Automata is a finite automaton with
an additional data input segment called stack that helps in
recognizing Context Free Languages. We can compare it to
finite automata, but the exception is that because of stacks, it is
able to handle infinite strings. This paper consists of review
and survey of other projects related to Pushdown Automata
implementation and Comparative study of other projects
which have implemented PDA. Theoretical information of
PDA would help to understand it better and design our
problem statement. We plan to design PDA applications that
will help to study PDA operations properly with the help of
transition tables.

Keywords—pushdown automata, palindrome, automata
theory

INTRODUCTION

A push down automaton (PDA) as shown on[4] is a
procedure for creating a grammar without context in the
same way that a regular grammar is implemented using
DFA. A DFA is able to remember or store only a certain
amount of data, but a PDA has the ability which allows it to
keep unlimited data because it has an additional memory
section known as the stack.
Pushdown Automata is a type of finite automaton which
includes an additional memory known as a stack that allows
it to recognise Languages that are free of context. [5]
Formal Definition of pushdown automata can be defined as :
● Let S be the states
● Let ∑ be the input symbols
● Γ is the set of pushdown symbols
● Let P be the PD symbol
● Let F be the last state δ is a transition feature which
maps S x {Σ ∪∈} x Γinto S x Γ*. In each state, PDA will
read symbols from top of the stack and shift to a new state
and change the symbol of stack.
● A PDA is more capable than an FA. Any language that is
acceptable to FA is likewise acceptable to the PDA. PDA is
able to accept a class of languages that FA can not accept.
As a result, PDA is very much superior to FA.
● Components of Pushdown Automata[4] :
Input tape : The input tape is separated into several cells or
symbols. The input head is read-only and can only move
one symbol at a time from left to right.

Finite control : The finite control has a pointer that points to
the currently being read symbol.
Stack : The stack is a structure in which objects may only be
pushed and removed from one end. It is unlimited in size.
The stack is used to temporarily store items in a PDA.

According to [6] In automata as well as sequential logic,
there is a state-transition table which displays which state
(or states in NFA) a finite-state machine will transition to
considering the current situation as well as other inputs.
[6]This is a form of truth table that accommodate the
present state as well as other inputs as inputs and the next
state as well as other outputs as outputs.

1. LITERATURE SURVEY
A. Non-Deterministic PDA Tool[1]

It's a tool used for simulating PDA which is similar to our
project. The program is in Java language. The user is able to
run PDA with many inputs at around the same moment.
User has to specify all necessary information in an input
file. This tool is able to stimulate PDAs in the form of
graphs so that it could assist the user to follow the steps as
per simulation.
B. Pushdown Automata Simulator[2]

This is another simple GUI based java program which has
developed a simulator to study the behavior of PDA by
visualization. This type of simulator can handle both vacant
stack as well as the end state techniques of approval. It
allows users to easily transform the PDA which takes a
vacant stack into a PDA which accepts by end state. It is a
similar process the other way around.

2. PROBLEM STATEMENT

1. We will be designing a PDA system for accepting the
language in the form 0ⁿ1ⁿ. Here,we need to maintain the
order of 0’s and 1’s.

2. L={x∈{o,1}*/#o=#1} where # represent no. of zero i.e.
0s in x = 1s in x.

3.  L = {wcv | w={0, 1}*}



3. PROPOSED SYSTEM

Our project is such that the user is first asked to input the
file path. He/she can choose among the following file paths:
1. 0n1n: If the user inputs this path, he/she will then be
asked to input a string. This language accepts L = .0n1n, n≥1.
2. 0n-1-2n: If the user inputs this path, he/she will then be
asked to input a string. This language accepts L = 0n12n, n≥1.
3. n0n1: If the user inputs this path, he/she will then be
asked to input a string. This path is to check whether the 0s
in string are in the same number as 1s in string.
4. wcwR: If the user inputs this path, he/she will then be
asked to input a string. This path is to check whether the
input string is a palindrome or not.
After inputting the string, the push-pop operations will
commence in the stack memory. If, after all the operations
the stack memory is empty, the string will be accepted in the
PDA.
Finally, if the STACK is empty, a message will appear
“String is accepted by PDA” else the message will occur
“String is rejected by PDA”.

4. DATA COLLECTION METHOD AND ANALYSIS

There is an extra memory section called stack in Push Down
Automata (PDA) that aids in the recognition of context-free
language.

The input tape collects data and sends it to the Finite
Control Unit, which determines whether to push the data
into the stack, move it to another state, or pop something
from the stack. When all the data is obtained, the final state
and stack are checked, and the string is either accepted or
not accepted depending  upon the results.

5. COMPARISON WITH EXISTING SYSTEMS

There exist multiple machine models that have data types
that are similar to the topic in discussion which is the
pushdown stack. There have been various similar machine
models that existed prior to this and a few that are still being
used. These machine models are alternates or types of PDA
and have been mentioned below.
Simple grammars:
Simple form is when it is in Greibach normal form, which is
a special case in which we do not observe 2 productions.

They directly correlate to PDAs that are solitary, immutable,
or real-time. Although, in some cases, we can remove the
instantaneous PDAs.
Two stacks:
Turing power is very well prevalent in finite state appliances
which have two stacks. The two stacks in a combination are
used as an operating tape, and indeed the 1 PDA 19
equipment could really start moving both paths upon the
tape, going to pop and trying to push the components of one
stack to another.
Counter automaton:
In this type of model the stack is to string of a fixed symbol
* another symbol is restricted. We end up with a natural no.
upon which we can perform operations like incrementing,
decrementing, and testing for zero. An automaton of this
sort does have a class name which contains a numeric value
(Z) that could be slightly increased, slightly decreased, or
evaluated for nil. Automata with both such similar counters
are able to code and perform operations on strings; this
makes them very similar to Turing machines.
Blind/Partially blind type of counters:
Let there be a machine that can assume values that are both
positive and negative and this machine is able to set all
counters to zero in its final state. The machine is blind in the
case that the exertion hangs on the state and input only but
not on the way the counter is configured. They get termed as
partially blind in the case where it blocks at the time the
counter is in negative form but does not consider the
possibility of any of the counters being 0. Partially blind
multi-counters can be very well used for simulating a very
complex system of Petri nets.
Finite turn PushDown Automaton:
A finite turn is a PushDown Automaton where the amount
of times this same procedure gets toggles between pushing
and popping is pre-established. As there is considered to be
a constraint of having only a single turn, In contrast to finite
turn PDA, which produces ultralinear context-free
grammars, this results in linear languages.
Alternation:
A certain non-deterministic automaton is deemed greatly
successful when it has a calculation which interprets the
information and arrives at an inclusive arrangement then it
is considered to be successful. In the case of this type of
automata, the starting steps involved in a certain
arrangement cause acceptance and are added. So, we can
conclude that states and configurations can be
non-deterministic or can also be universal. Hence, we have a
dual mode system. It is important to note that just standard
languages can be accepted by interchanging finite automata.
Two-way PDAs:
The entry path is a double-way mechanism, so we call it a
two-way PDA because of its nature. A key step in the
process is labeling both ends of the tape that accepts the
entry, and thus the double-way PDA can pinpoint the entry's
ending and beginning points. Such devices can scan their
feed two times as well as in backwards order. This allows
for the recognition of non-contextual languages. Eventually,
we have multi-head PDAs which are either deterministic or



non-deterministic (! ), and indeed the class P of languages
are recognizable in deterministic polynomial time. The
deterministic (k 1)-iterated exponential time complexity
classes are better described using multi-headed k-iterated
PDAs.
Stack type automata:
This form of PDA has the extra capacity to analyze its stack.
In read-only mode it may vary its position which is up and
down the stack, thus, its contents exist without change.Stack
automata have been shown to be equivalent to PDAs when
they do not interpret input while the testing procedure is in
progress of the given stack, they are said to be equivalent to
PDAs. A recursive stack automaton could indeed begin a
fresh stack in between cells of the existing stack. However,
before the machine could perhaps advance in the authentic
stack, this latest stack must be entirely erased. These
automata are analogous to push down-of-PDA, which can
also be referred to as ordered grammatical structures.

6. FUTURE SCOPE

The extensive review of Push down automata had also
revealed a variety of intriguing different theories and models
with unsettled complex issues.One is able to study the
various sophisticated applications of pushdown automata to
a great extent and consider the complexity of pushdown
automata(PDA) in various fields of operation. Currently
there have been four examples that have been worked on but
upon further investment of time and effort, more can be
worked out. Numerous simulations can be made using this
model.

7. CONCLUSION

We have considered the problems of push down
automata.These problems can be seen as model checking
and context-free properties for pushdown models.We have
used Python for checking PDA for Palindrome, if number of
0s and 1s are equal or not and if no of 1s are twice as
compared to number of 0s.We have seen how the system
works and what are the methods of Data Collection and
Analysis.

REFERENCES

[1] Another non-deterministic push-down automaton.
available at http:
//www.cs.binghamton.edu/˜software/pda/pdadoc.html.

[2] Pushdown Automata Simulator by  Felix Erlacher
[3] https://research.cs.queensu.ca/home/ksalomaa/julk/p47-

okhotin.pdf
[4] https://www.geeksforgeeks.org/introduction-of-pushdo

wn-automata/
[5] https://www.tutorialspoint.com/automata_theory/pushd

own_automata_introduction.htm
[6] https://en.wikipedia.org/wiki/State-transition_table
[7] Pushdown Automata Hendrik Jan Hoogeboom and

Joost Engelfriet
[8] Head Pushdown Automata Samson Ayodeji Awe

[9] RE-DESIGNING THE PACMAN GAME USING
PUSH DOWN AUTOMATA

[10] Complexity of Input-Driven Pushdown Automata1
Alexander Okhotin2 Kai Salomaa3

[11] Atig, M. F., Bollig, B., & Habermehl, P. (2017).
Emptiness of Ordered Multi-Pushdown Automata is
2ETIME-Complete. International Journal of
Foundations of Computer Science, 28(08), 945–975.
https://doi.org/10.1142/s0129054117500332

[12] Fransson, T. (2013). Simulators for formal languages,
automata and theory of computation with focus on
JFLAP [Student thesis, Mälardalens högskola,
Akademin för innovation, design och teknik].
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-1835
1

[13] LIN, H. J., & WANG, P. S. P. (1989). PUSHDOWN
RECOGNIZERS FOR ARRAY PATTERN.
International Journal of Pattern Recognition and
Artificial Intelligence, 03(03n04), 377–392.
https://doi.org/10.1142/s0218001489000292

[14] Vayadande, Kuldeep, Ritesh Pokarne, Mahalaxmi
Phaldesai, Tanushri Bhuruk, Tanmai Patil, and Prachi
Kumar. "SIMULATION OF CONWAY’S GAME OF
LIFE USING CELLULAR AUTOMATA."
International Research Journal of Engineering and
Technology (IRJET) 9, no. 01 (2022): 2395-0056.

[15] Vayadande Kuldeep, Ram Mandhana, Kaustubh
Paralkar, Dhananjay Pawal, Siddhant Deshpande, and
Vishal Sonkusale. "Pattern Matching in File System."
International Journal of Computer Applications 975:
8887.

[16] Vayadande Kuldeep, Neha Bhavar, Sayee Chauhan,
Sushrut Kulkarni, Abhijit Thorat, and Yash Annapure.
Spell Checker Model for String Comparison in
Automata. No. 7375. EasyChair, 2022.

[17] VAYADANDE, KULDEEP. "Simulating Derivations of
Context-Free Grammar." (2022).

[18] Vayadande, Kuldeep, Neha Bhavar, Sayee Chauhan,
Sushrut Kulkarni, Abhijit Thorat, and Yash Annapure.
Spell Checker Model for String Comparison in
Automata. No. 7375. EasaafyChair, 2022.

[19] Varad Ingale, Kuldeep Vayadande, Vivek Verma,
Abhishek Yeole, Sahil Zawar, Zoya Jamadar. Lexical
analyzer using DFA, International Journal of Advance
Research, Ideas and Innovations in Technology,
www.IJARIIT.com.

[20] Kuldeep Vayadande, Harshwardhan More,Omkar More,
Shubham Mulay,Atahrv Pathak, Vishwam Talanikar,
“Pac Man: Game Development using PDA and OOP”,
International Research Journal of Engineering and
Technology (IRJET), e-ISSN: 2395-0056, p-ISSN:

https://doi.org/10.1142/s0129054117500332
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18351
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18351
https://doi.org/10.1142/s0218001489000292
https://www.ijariit.com/


2395-0072, Volume: 09 Issue: 01 | Jan 2022,
www.irjet.net

[21] Kuldeep B. Vayadande, Parth Sheth, Arvind Shelke,
Vaishnavi Patil, Srushti Shevate, Chinmayee Sawakare,
“Simulation and Testing of Deterministic Finite
Automata Machine,” International Journal of
Computer Sciences and Engineering, Vol.10, Issue.1,
pp.13-17, 2022.

[22] Rohit Gurav, Sakshi Suryawanshi,Parth
Narkhede,Sankalp Patil,Sejal Hukare,Kuldeep
Vayadande,” Universal Turing machine simulator”,
International Journal of Advance Research, Ideas and
Innovations in Technology, ISSN: 2454-132X, (Volume
8, Issue 1 - V8I1-1268, https://www.ijariit.com/

[23] Kuldeep Vayadande, Krisha Patel, Nikita Punde,
Shreyash Patil, Srushti Nikam, Sudhanshu Pathrabe,
“Non-Deterministic Finite Automata to Deterministic
Finite Automata Conversion by Subset Construction
Method using Python,” International Journal of
Computer Sciences and Engineering, Vol.10, Issue.1,
pp.1-5, 2022.

[24] Kuldeep Vayadande and Samruddhi Pate and Naman
Agarwal and Dnyaneshwari Navale and Akhilesh
Nawale and Piyush Parakh,” Modulo Calculator Using
Tkinter Library”, EasyChair Preprint no. 7578,
EasyChair, 2022

http://www.irjet.net/
http://www.irjet.net/
https://www.ijariit.com/

