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Abstract. Realtime space weather activity tracking has improved over the years 
advancements in astronomy research due to recent instrumentation techniques. 
Sunspots are important phenomenon of sun and are visible on photosphere of sun 
surface. The occurrences of sunspots determine overall solar activities, sunspots 
are being observed from early eighteenth century. In this study, we have imple-
mented a DL model which automatically detects sunspots from HMI image da-
tasets. A DL based VGG16 model is used for deep hierarchical features extrac-
tion and passed to softmax layer for classification. The proposed DL approach 
achieved improved classification results and model has shown the good perfor-
mance with HMI imaging data which is equal to 97.8%, 96.25% 100%, 98%, and 
93.37% for accuracy, precision, recall, F-score and specificity respectively. The 
proposed DL based model has achieved improved results and robust performance 
solar spot recognition system to monitor solar activities.  
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1 Introduction 

Sun considered to be the core research object of astrophysics from 17th century[1], con-
ventionally Sunspot observation was carried out by drawing and also included location, 
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sunspot number, and area of the sunspots[2] . In recent days solar physics in conjunction 
with machine learning, Computer vision and deep learning techniques has showed var-
ious developments like event detection like coronal hole, sunspot, prominence, solar 
flares [3][4]. In the recent days DNN algorithms outperformed the tasks of classifica-
tion and detection[5]. There are  various studies multidisciplinary approaches addressed 
in the filed of Microscopic imaging[6][7], Medical imaging[8][9][10][11], CAD based 
systems[12][13] and anomaly detection[8][14][15]. Solar activates plays an important 
role in determining the efficient observation of space weather. Sunspots are visualized 
as dark patches on solar photosphere due variation in surface temperature, sunspots[16] 
appearance is dynamic in nature and turns out be a challenging task for differentiating 
among sunspots and group of sunspots manual visualization requires experience human 
expertise and deep learning based approaches could impact to enhance the decision 
making systems for better understanding the solar.  
 In recent days there has been improvement in studies of solar exploration with in-
creased number of space missions and improved instrumentation technologies which 
lead researchers with large amount of solar activity data[17]. Many researchers with 
the help of deep learning techniques has introduced various methods to detect the sun-
spots[18][19][20], filament recognition [21], flare detection[22][23][24], and sunspot 
groups[25][26] various object of interests for observing the solar activities. 
 In recent works Deep Convolution Neural Networks (DCNN) has gained focus in 
solar physics for sun activity tracking, DCNN algorithms for the task of image classi-
fication and detection in the field of computer vision gained popularity and input is 
images with labels. The proposed work consists of SDO data sources. Sunspot and quite 
sun images can be seen in figure 1 provided by NASA SDO 1 mission database reposi-
tory. 

 
Fig. 1. Sunspot images  

 The paper organized as follows. In section 2. We discuss the previous works with 
deep learning and machine learning methods applied to understand the solar activity 
tracking and classification. In section 3. We address the Proposed model for addressing 
sunspot detection. In section 4. We present experimental analysis and discussion and 
finally, in section 5. Conclusion of the proposed model.             

2 Related work  

The improved instrumentation led to exponential generation of data such as image 
data, spectral data and time series data in the field of Astronomy[27]. In recent days the 

 
1 https://sdo.gsfc.nasa.gov/data/  
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large quantum of data generated by space and ground based observatories, existing data 
quantity has attracted and initiated multidisciplinary research.  

The image processing terminology was introduced for sunspot detection by Colak & 
Qahwaji [28], Magnetogram and MDI intensitygram images these images are the indi-
cators of magnetic fields visible in the photosphere of sun, image processing technique 
has used to detect the sunspot and sunspot groups with the accuracy of 99% and 92% 
respectively [28][29].  In [30], detection of sunspot with morphological approaches 
with adoptive threshold based methods with 95% recognition rate on Huairou Solar 
Observing Station (HSOS) full-disk vector magnetic field images. Next, In [31], Ruben 
du Toit et al. addressed the task of sunspot detection and tracking with OpenCV library 
with edge detection and scale-invariant features for localization of sunspot, tracking is 
followed by Discriminative Correlation Filter with Channel and Spatial Reliability 
method and Kernelized Correlation Filters were employed for tracking with Michelson 
Doppler images as input for the proposed approach.       

 Deep Convolution Neural Networks(DCNN) methods are most widely used in re-
cent days for tracking and sun activities such as sunspot detection[20], Solar flare Pre-
diction [24][32], ribbons[33], coronal holes[4] and Prominences[4]. In continuation 
various approaches for solar event detection and classification. Pandey et al. in [24], 
deep learning based solar flare prediction with DCNN based approach with Full-disk 
magnetogram images from Helioseismic and Magnetic Imager (HMI) onboard Solar 
Dynamics Observatory (SDO) were used for flare prediction as binary and multiclass 
classification with AlexNet, VGG16 and ResNet34 as base architecture for feature 
extraction. Evaluation performance is done by True Skill Statistics(TSS) with 0.47 and 
0.55 for binary classification, for multi-class classification as 0.36, and Heidke Skill 
Score(HSS) is noted as for Binary classification 0.46 and 0.43 and Multiclass scenario 
0.31 scores with alexnet employed feature extraction. In [32], they proposed solar flare 
prediction is done with Transfer Learning Alexnet based architecture with adaptive 
average pooling and log softmax is used for classification of flares. The performance 
of the proposed model is evaluated with TSS and HSS with datatype as augmentation, 
oversampling, and normal datasets, noted that TSS is 0.47 with oversampling, 0.44 with 
data augmentation, 0.63 with normal dataset, and  HSS is 0.35 for oversampling, 0.37 
with data augmentation, 0.62 with normal dataset. Love et al. in [33], Solar flare 
observations with CNN based approach with AiA 1,600˚ images were used to detect 
flare ribbon observations and were able to achieve overall accuracy of 94% with the K-
fold validation technique. He et al. in [25], addressed the sunspot group classification 
with HMI and MDI Magnetogram with DCNN based CornerNet-Sac-cade method is 
employed for the detection of sunspot group with Mount Wilson Magnetic 
Classification. The  proposed work noted that results with performance metrics as 
Accuracy(94%), Recall(93%), AP(90%) and Precision(94%).  Solar activity 
monitoring tasks can be eased and can be improved with computer vision techniques.     
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3 Proposed Methodology 

The proposed work deals with the classification of sunspot images into sunspot or 
quite sun. Transfer learning methods are adopted with VGG16 as base architecture. The 
input images were RGB channel with resized to standard size of VGG16. 
 

 
Fig. 2. DCNN based model for classification of sunspot; 

3.1 Dataset Preparation  

Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) im-
ages were considered. The images used for experimentation are publicly available and 
retrieved from NASA SDO [34][20]. All images in this database are resized a fixed size 
of 224x224 pixels. And dataset split into Training, Testing and validation. 

 
3.2 Proposed Architecture  

DCNN approach employed to tackle task of sunspot classification with Transfer Learn-
ing based model with VGG16 [35] as base architecture. Deep features extracted by the 
input SDO images passed to softmax for prediction. 

   In this study we present deep learning based on CNN is used for the classification 
of sun images into quite sun or sunspot. Features are generated by raw input images 
hierarchically based on the depth of the model.  

Convolution Neural Networks are imitation of the cerebral cortex of human brain 
large training amount datasets requires for training a complex model. Features are ex-
tracted with operations like filtering, normalization and nonlinear activation operation 
and learning of algorithm is carried out with backpropagation algorithm and gradient 
descent optimization algorithms.  

Deep Convolution neural network is stack of Input layer, convolution layer, Pooling 
layer, fully connected layer and output layers. These layers are building block of any 
deep convolution architecture. In context of image processing feed forward process is 
adopted for feature extraction, Convolution layer consists of multiple convolution fil-
ters of similar size to extract feature. Every filter is matrix of two-dimension with cor-
responding weights, the value of every neuron for present convolution layer is the result 
obtained by multiplication of data of previous layer with the convolution filter, and the 
addition of corresponding offset. The feature extraction involves the sequential scan of 
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filter on input data of upper layer according to feature stride factors. Here Input image 
of size a*b passed through input layer to convolution block, convoluting with given 
kernel size x*y gives output known as feature map, later non linearity added to the 
network like Relu, ELU, sigmoid, tanh and LeakyRelu most commonly used functions.  

( )( )( )ab xy a x b y
xy

C w v B                  (1) 

Where abC referred as unit in feature map at location (x; y),   represents the acti-

vation function. xyw is weights of kernel ( )( )a x b yv    designates an input unit at location 

( , )a x b y  , and B is bias of feature map.  

Activation function considered is ReLU in general form its shown as equation (**) 
here any negative values is mapped to 0 and rest values no change. 

( ) max( , )f r o r                    (2) 

 The ReLU hyperparameter saturates for negative inputs. 
Pooling is most important operation in terms of reducing feature map dimension and 

overfitting of model, Pooling layer also called as down sampling. There are few pooling 
operations namely Max pooling and average pooling layers. Here the key concept is to 
reduce the size by mapping the values based on application or object pixel distribution. 
Stride factor can be used as pixel shifts over the input matrix. Padding can be used to 
add pixels which helps to keep width and height of previous layer.  When we consider 
max pooling, it covers the most active feature from the pooling region which implies 
that it could be generalized for collecting texture information and Average pooling is 
responsible for background information preservation due to consideration of all features 
of the pooling region. Hyper parameters in pooling layers are Filter size and stride. 
Pooling layer represented as w h d  which is width, height and depth and with kernel 

size as f  and stride as s  the pooling computed as 
p ppw h d  represents width, 

height and depth after the pooling. 

  / 1pw w f s                     (3) 

  / 1
p

h h f s                      (4) 

p
d d                        (5) 

After the extraction of local features from convolution layer. Fully connected layer 
applied to enhance the nonlinear mapping, perceiving of global information and aggre-
gation local features to perform classification. Each neuron in the l  layer is connected 
to l +1 layer. The formula for fully connected layer is  

( ) ( 1) ( ) ( )

1

( * )
n

l l l l
i i ji

i

y f x w b



                  (6) 
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Where n  is no of neurons in the previous layer, l  is the present layer,  ( )l
jiw  is the 

connecting weight of neurons j in present layer and neurons i in the previous layer, 
( )lb is the bias of j  neuron and f  as activation function. 

The final output layers derived from fully connected layers which are located at the 
end of convolution blocks, output layer fed input from previous these layers take the 
output from the hidden layers and process it such that for each data file a pre-defined 
class is predicted by the network. Classification probability. The classification proba-
bility of the image is calculated by the CNN's softmax layer, which is formulated as 
follows: 

1

( )
i

k

x

i K
x

K

e
p x

e





                     (7) 

where ix represents the output of the fully connected layer for class i , K  is the total 

number of classification categories, and p represents the classification probability the 

outputs from multiple neurons mapped to (0,1) interval. SoftMax outcome will be clas-
sification probability for each category and assigns the maximum classification proba-
bility value and corresponding category as the final outputs. 
 
3.3 Performance Evaluation  

The proposed sunspot prediction model with binary classification strategy to classify 
input data as Sunspot or Quiet sun via DCNN model. Performance evaluation is carried 
out with Accuracy, Precision, Recall, F-measure and Specificity are expressed in following 
equations 8-12.      

Precision =  
TN

TN + FP
 (8) 

AZ =  
TP + TN

TP + FN + TN + FP
 (9) 

F1 − score  =  
2 ∙ TP

2 ∙ TP + FP + FN
 (10) 

Recall =  
TP

TP + FP
 (11) 

SE =  
TP

TP + FN
 (12) 

Where TP, TN, FP, and FN were defined to represent the number of true positive, 
true negative, false positive, and false negative respectively. 
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4 Results and Discussion 

The proposed work deals with the classification of sunspot images into sunspot or quite  
sun with the help of 5fold cross validation technique is used to identify the sunspot. 

Table 1. Results. 

 Accuracy Precision Recall F-measure Specificity 

1st fold 100 100 100 100 100 

2nd fold 97.83 95.84 100 97.87 95.6 

3rd fold 100 100 100 100 100 

4th fold  99.71 100 100 100 88.4 

5th fold  91.46 85.43 100 92.14 82.89 

Average 97.80 96.254 100 98.00 93.37 
 
Table 1 present classification models to classify sunspot were evaluated on a com-
pletely new unseen testing dataset. The data has been collected from different resources. 
The training dataset, as described in section 1. The performances of the proposed mod-
els in terms of accuracy, F1 score, precision, and recall.  From the table 1, we can see 
that the proposed model has got good result using VGG16 model achieved good results 
with respect to all evaluation metrics.  

 
 
Fig. 3. Performance measures for sunspot classification  

The proposed DL approach achieved improved classification results and model has 
shown the improved results with HMI data set which is equal to 97.8%, 96.25% 100%, 
98%, and 93.37% for accuracy, precision, recall, F-score and specificity respectively. 

5 Conclusions 

Sunspots are known as key object of astrophysics and sunspots are the most prominent 
feature for assessing space weather and are located in solar photosphere. In this work, 
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we have implemented a deep learning model which automatically detects sunspots from 
HMI image datasets. Data divided into training, testing and validation subset and passed 
to classification pipeline. The proposed work focus classification of sunspot via DCNN 
based approaches has shown average of 97.8% of overall accuracy K-fold cross valida-
tion method. The performance is evaluated with Accuracy, Recall, Precision, F-meas-
ure and specificity. Based on the experimental setup we conclude that proposed DCNN 
based model efficient to classify the HMI images into sunspot or quite sun. Realtime 
detection and tracking could be addressed as future work with the help of various object 
tracking algorithms.   
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