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Abstract. Histopathology is the diagnosis and study of tissue diseases,
and staining is a crucial part of its analysis. However, differences in
laboratory protocols and scanning devices can often result in signifi-
cant variations in the appearance of images, imposing obstacles to the
diagnosis process. To address this issue, we propose a method called
EG-DUNet, which is a GAN-based dual UNet network combined with
edge enhancement information. The EG-DUNet network is able to obtain
multi-scale feature fusion, which helps capture the shape and structure
of cells in tissue sample images. To optimize color consistency, a style
loss constraint is incorporated into the proposed network. Compared
with current mainstream methods, our experimental results show that
the EG-DUNet achieves more competitive performance on the MITOS-
ATYPIS-14 contest dataset.

Keywords: Histology Images · Staining Normalization · UNet · Style
Loss · Deep Learning.

1 Introduction

Digitized histopathology section images provide a rich source of data for computer-
aided diagnosis (CAD) systems.CAD systems empower physicians in pathology
diagnosis through automation and intelligence, driving the field of pathology in
a more modern and intelligent direction [1–3]. Staining is a crucial step in the
preparation process of obtaining Whole Slide Images (WSI) of tissues, as illus-
trated in Fig. 1, where different physiological tissues are stained with distinct
colors for differentiation. During the biochemical staining process, steps such as
staining batch, slice thickness, and staining method lead to variations in the
physical color of the WSI, while variations in the color of the WSI are also af-
fected by factors such as focusing, imaging resolution, and other imaging digital
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parameters [4, 5]. This results in batches of these slides collected from different
groups or laboratories showing different staining styles [6].

However, due to the limited generalization ability of existing CAD systems
when handling such data, staining deviations significantly decrease the accu-
racy of these systems [7]. Staining normalization technique can effectively solve
the problem of color variation in digital pathology and histopathology section
images in CAD systems [8]. Traditional staining normalization methods adjust

Fig. 1. Nuclei, cytoplasm and collagen fibers staining

color space, luminance distribution, and color correction to make digital pathol-
ogy section images comparable under various conditions. Reinhard et al [9] pro-
posed a method matching the mean and standard deviation of each channel in
the Lab color space. However, this may not completely preserve the background
brightness, potentially reducing the source image contrast. Aswathy et al. [10]
introduced a two-stage normalization, combining light source and staining nor-
malization to address color fidelity issues. Stain Color Adaptive Normalization
(SCAN) [11] enhances tissue-background contrast without altering color and pre-
serves local structure. Conventional color normalization relies on domain experts
for reference templates, while deep neural networks, especially generative models,
offer a novel approach. Macenko et al. [12] use supervised pixel-level color sep-
aration, requiring prior information in the training set. Unsupervised methods
like global color normalization Vahadane [13] and structure-preserving color nor-
malization (SPCN) don’t guarantee full color information. Deep learning, e.g.,
CycleGAN [14], addresses these challenges, but CycleGAN masks stained tissue
features, limiting model generalization. GANs offer a distinct strategy, with Mul-
tiPathGAN [15] proposing a structure-preserving color normalization method
based on unsupervised multidomain adversarial networks, using a generator and
discriminator for adversarial training to achieve image coloring normalization.

In this work, we design a generative adversarial network based dual Unet
network (EG-DUNet) to improve cellular morphology in tissue samples by in-
corporating edge features. Our method also utilizes a style loss to preserve fine
anatomical structures and minimize the perceptual distance between real and
generated images. The main contributions are:
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– The classic Laplace edge detection operator is used to obtain edge images.
Based on H&E (Hematoxylin and Eosin) staining principles, we analyzed
the different edge characteristics in the R, G, and B channels to construct
an enhanced edge map. Then, the original image fuses with the edge map
during encoding.

– A dual UNet architecture fused the original and edge images. One UNet
branch downsampled the original image while the other processed the edge
image, thereby fusing semantic and edge features.

– We devised a loss function incorporating style loss and an edge feature extrac-
tion module to address structural, fidelity and stylistic concerns in medical
image normalization.

2 RELATED WORK

2.1 Models Employed in Medical Imaging

MultiPathGAN addresses staining differences in tissue section images arising
from factors like diverse laboratories, staining protocols, and scanning devices.
Through adversarial training with a generator and discriminator network, Mul-
tiPathGAN normalizes image staining by learning mapping relationships across
multiple domains. It incorporates an information flow branch and a feature ex-
traction network to optimize perceptual loss and preserve image structural char-
acteristics. While existing models focus on transforming across multiple domains,
the staining performance within a single domain is not optimal.

UNet stands as a prominent model extensively applied in the domain of med-
ical imaging. Its distinctive feature, characterized by multi-level down-sampling
convolution, aligns well with the high-resolution demands inherent in medical im-
ages. The model’s heightened convolutional depth, coupled with skip-connection
layers, facilitates superior preservation of intricate details within medical images.
Employed as a generator, UNet contributes to elevated image quality, thereby
facilitating precise pathological assessments by medical practitioners. Further-
more, UNet exhibits a reduced parameter count, leading to expedited training
and runtime processes.

2.2 Loss function in staining normalization

The L1 loss LossL1 in pathology slice image normalization helps the generator to
produce an output that more closely resembles the target image, ensuring that
the generated image is consistent with the real image in terms of detail, structure,
and color, and providing a more reliable data base for subsequent pathology
analysis. For the generated image fake_B and the target image real_B, their
pixel values are Pfake_Bi

and Preal_Bi
, respectively. L1 loss is calculated as the

absolute difference between them:

LossL1 = L1penalty ·
1

N

N∑
i=1

∣∣Pfake_Bi − Preal_Bi

∣∣ (1)
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Where N is the number of pixels in the image and L1 loss is the pixel level
difference between the generated image and the target image. It helps to generate
an output closer to the target image. The L1 loss focuses only on the differences
between pixel values without taking into account the high-level semantic infor-
mation and texture details of the image. As a result, it cannot effectively preserve
the subtle features and stylistic characteristics of the target image, making it dif-
ficult for the generated image to be stylistically identical to the target image in
some cases.

Fig. 2. EG-DUNet network and the specific Dual UNet module

3 METHOD

3.1 Architecture of EG-DUNet

In this paper, to address issues such as inconsistent staining and structural in-
consistencies in medical pathology images, we design an EG-DUNet for normal-
ization of digital histopathology slides. As shown in Fig. 2, we incorporated a
customized Laplacian edge extraction module, coupled with a dual UNet archi-
tecture, and a stylistic loss function tailored for stain normalization.

Xreal is the original input, which, after using the Edge operator, outputs a
single-channel edge image XE . After concatenated XE with Xreal , it passed
through the generator. Simultaneously, XE undergoes the same downsampling
process. The generator outputs Xf after extracting and merging semantic and
structural features. The target image y and Xf will be put into the feature ex-
traction network F. The Gram matrices of the feature maps are used to calculate
the Style Loss. The discriminator is responsible for distinguishing between real
and fake images.
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3.2 Extraction of edge features

We evaluated EG-DUNet using both test and training data from the MITOS-
ATYPIA ICPR’14. The dataset consisted of 1000 histopathology images with
16 standard Hematoxylin and Eosin stained (H&E stained) slides. These images
were divided into 11 for training and 5 for testing. All aligned images are from
the same slide, but two different slide scanners were used: the Aperio and the
Hamamatsu.

Fig. 3. Edge extraction with different channels and methods

H&E staining method is commonly employed in medical pathology images,
distinguishing different structural components through color. The cell nucleus
appears blue, the cytoplasm usually appears light red, and the extracellular col-
lagen fibers appear red, facilitating the observation of microstructures. Edge
features aid in locating the edges of the nucleus and cytoplasm in pathology
section images, thereby enhancing the interpretability of the image and the ac-
curacy of doctors’ diagnoses, playing a crucial role in pathology section images.
Therefore, because of the characteristics of H&E staining, the edge features in
the RGB channels are distinct, as shown in (d)-(f) of Fig. 3.

Traditional edge extraction methods involve converting RGB images to grayscale
and then applying different kernels, such as the Laplacian kernel, for computa-
tion. For medical stained images, the grayscale conversion method results in the
loss of some edge structural features, as depicted in (b) of Fig. 3, leading to less
pronounced edge features. In response to this, we analyzed the feature distribu-
tion in RGB channels and proposed conducting edge detection in each channel,
followed by combining the RGB pixel distributions. Verified by experiment, the
combination in a 4:4:2 ratio proves to be more effective in clearly extracting
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edges. Additionally, we proposed a new-sized Laplacian convolution kernel to
effectively preserve edge features, the result is shown in Fig. 3(c).

The generator of the model in this paper first extracts the edge features of
the input slice image using Laplace kernel to obtain the edge features of a single
channel of the input slice image. Highlight the details and edge information of
pathology slice images and improve the perception of cell and tissue structures.
Next, single-channel edge features are connected with RGB three-channel to
obtain spliced data. The single-channel edge features are spliced with the three-
channel raw image to further enhance the presentation of the data. This allows
the generator to focus on both the color information and edge details of the
original image. This combination helps to preserve the overall appearance and
color of the image while highlighting the edge information. Stitching edge fea-
tures with RGB images to obtain stitched data helps to improve the robustness
of the generator.

3.3 Dual UNet structure for translating images

The current model structure used by generators in GAN is usually resnet. The
residual blocks in its structure are mainly focused on the deep representation
of features, and for the coloring normalization task, this structure may focus on
more abstract features in general and ignore some local details. And for spliced
data, which contains both RGB channel information of the original image and
edge features. ResNet does not explicitly model multi-scale information, which
lead to some limitations in the fusion of structural and semantic features.In med-
ical imaging, the UNet model, due to its incorporation of both upsampling and
downsampling processes, is capable of producing images with higher resolution.

In this paper, a dual UNet network is designed to learn the correlation be-
tween edge localization and overall image structure for edge features as well as
spliced data. As shown in Fig. 2(b) , After inputting XE and Xr, they undergo
concurrent downsampling using 3×3 convolutional kernels, BN layers, ReLU ac-
tivation functions, and pooling operations within two identical downsamplers. In
the fifth layer, a 16× 16 convolutional layer is achieved, followed by upsampling
to reconstruct the image. Skip connections are employed at each downsampling
layer for both XE and Xr. The Xf is restored to a size of 256× 256 pixels.

Additionally, the discriminator as shown in Fig. 2(a) , Xreal and Xf are
fed into a pre-trained deep convolutional classifier feature to obtain the feature
maps, and the mean-square distance between these activations [16]. This distance
is used in the subsequent perceptual loss function to help preserve subtle salient
structural content when the input image is transformed to the output domain
[17]. In the next subsections, we describe in detail all the loss functions used to
train the network, based on which makes it possible for the method of ours to
efficiently perform the task of sliced image normalization.



Edge Enhancement And Dual UNet Fusion Based GAN 7

3.4 Loss Function

In the context of staining tasks, the commonly used loss function is L1 loss.
However, it primarily focuses on the differences between pixel values, leading
to color inconsistencies and biases, especially in edge staining. Therefore, we
propose the utilization of multiple loss functions in combination to enhance
overall performance.

The computation of the adversarial loss Losscheat is based on the discrim-
inator’s estimate of the realism of the generated image. Binary cross-entropy
loss not only focuses on the overall image distribution, but also on fine-grained
feature matching, as it computes the difference between the generated and real
images at the pixel level. In pathology, this helps to ensure that the generated
images are not only similar overall, but also match the real image in terms of
detail and structure.

Losscheat = − 1
K

K∑
i=1

(yreal · log(σ(fake_D_logitsi))

+(1− yreal) · log(1− σ(fake_D_logitsi)))
(2)

K is the number of samples. The σ is a sigmoid function that maps logits to
the range (0,1). fake_D_logitsi is the logits of the ith sample generated by the
generator. yreal is the label, which is usually 0 (for false) for images generated
by the generator, so the (1 − yreal) part corresponds to the log(1 − D(G(x)))
of the image generated by the log(1 −D(G(x))) of the image generated by the
generator, where D(G(x)) is the output of the discriminator to the generated
image.

The perceptual loss function LossAfB helps to ensure that the generated
image is similar to the target image in terms of specific details and structure,
providing an effective loss metric for normalization of pathology slice images.
The perceptual loss function is in essence a feature-based Mean Squared Error
(MSE). The loss math is specified as follows: suppose we have two feature vectors
representing the features featfakeB of the generated image and the features
featrealB of the target image. The elements of these two feature vectors are
ffakeBi

and frealBi
. The mean square error loss at the feature level is computed

as:

LossAfB =
1

M

M∑
i=1

(frealBi
− ffakeBi

)
2 (3)

Where M is the dimension of the feature vector, this loss calculates the
squared difference between the features of the generated image and the features
of the target image, averaged to obtain the overall loss.

The style loss is calculated using the Gram matrix, which is a correlation
matrix between different channels in the feature map to capture the texture
and style information of the image. Here is how the style loss calculation is
represented in a mathematical formula. Suppose featfakeB is the feature map
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of the generated image and featrealB is the feature map of the target image.
The Gram matrix is calculated as follows:

GfakeB(i, j) =
∑
k

featfakeB(i, k) · featfake(j, k) (4)

For the feature map featrealB, the elements of its Gram matrix GrealB(i, j)
are computed as above. Style Loss Lossstyle can be used to measure the stylistic
difference between the generated image and the target image by calculating the
MSE between two Gram matrices:

Lossstyle =
1

N2

∑
i,j

(GfakeB(i, j)−GrealB(i, j))
2 (5)

The final overall loss (Loss) is a linear combination of these above four com-
ponents. Some of the weights are controlled by corresponding hyperparameters
that can be tuned to the specific task and dataset.

Loss = Losscheat + δ · LossL1 + λ · LossAfB + Lossstyle (6)

δ, λ are the weight adjustment factors for LossL1 and LossAfB , respec-
tively, which are used to adjust the contribution of LossL1 and LossAfB to the
overall loss. The final loss function combines feature-level similarity, pixel-level
differences, adversarial, and stylistic consistency. For example, LossL1 helps to
maintain the structural consistency of the image, while Lossstyle helps to ensure
that the generated image is stylistically consistent with the target image, thus
making the generated image more natural and close to the target. The use of ad-
versarial loss helps the generator to learn a more realistic image, thus improving
the realism of the generated image. This enables the model to integrate multiple
aspects of image quality and consistency, providing a new solution to effectively
address the problems of structure, fidelity and stylistic consistency in medical
image normalization.

4 EXPERIMENTAL

4.1 Implementation Details

The experimental setup includes Ubuntu 18.04, NVIDIA GeForce GTX 2080Ti
x1, Intel Core i7-4790k quad-core CPU running @ 4.00 GHz. The experiments
are conducted using the deep learning framework of Python 3.6 and Pytorch
1.6.0.We employed the Adam optimizer with an initial learning rate of e-4. The
number of training epochs was set to 100. All models were implemented using
PyTorch.
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4.2 Evaluation Metrics

In order to quantify the extent to which different methods preserve the salient
structure of the original slice images, we used the Structural Similarity Index
(SSIM) , Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE),
Mean Square Error (MSE) and Universal Quality Image Index (UQI). We also
used Multi-Scale Structural Similarity (MS-SSIM) to enhance the flexibility of
image evaluation[18] and Learned Perceptual Image Patch Similarity (LPIPS),
a learning-based perceptual similarity metric that aligns better with human per-
ception[19] . These metrics evaluate the generated results from multiple per-
spectives, such as brightness, contrast, signal-to-noise ratio, structural, pixel-
level differences, human perception, etc., in order to fully validate the excellent
performance of this paper’s method[20].

4.3 Experimental Results

Ablation Experiments Conducting ablation experiments in the pathology
slice image normalization task helps to understand the contribution of generator
architecture, loss function to performance. The ablation experiments results in
Table 1 provide insight into the performance of different components and design
choices for normalizing pathology slice images.

Table 1. The evaluation metric values of the ablation experimental results.

Metrics UNet UNet
+loss

Dual-
UNet

Ours

SSIM↑ 0.7264 0.7687 0.7558 0.7783
PSNR↑ 23.3793 24.5169 23.8259 24.6224
MS-SSIM↑ 0.8989 0.9145 0.9101 0.9174
RMSE↓ 0.0702 0.0625 0.0677 0.0627
MSE↓ 0.0053 0.0044 0.0051 0.0045
LPIPS↓ 0.1301 0.1365 0.1175 0.1269
UQI↑ 0.9875 0.9896 0.9881 0.9892

As a benchmark combination, Unet exhibits relatively low values in evalua-
tion metrics such as SSIM, PSNR, MS-SSIM, and RMSE. This suggests certain
limitations in image quality and structure preservation when using a generator
based solely on the Unet network. In the absence of a designed loss function,
dual UNet shows a marginal improvement across all metrics compared to Unet,
indicating that the introduction of the dual UNet model with edge extraction
contributes to enhanced performance. Upon the introduction of the designed loss
function, UNet+loss significantly improves across most of metrics, particularly
in SSIM, PSNR, MS-SSIM, RMSE, and MSE. This validates the effectiveness
of the designed loss function in enhancing both image quality and structure
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preservation.Continuing with the dual UNet model that incorporates the edge
extraction module and using the style loss function further, EG-DUNet achieves
optimal performance in terms of SSIM, PSNR, and MS-SSIM, while exhibiting
suboptimal performance in RMSE, MSE, LPIPS, and UQI, with only minimal
differences from the optimal values. This further emphasizes the synergistic effect
between the edge extraction strategy and the designed loss function, providing
the model with improved overall performance. In conclusion, by gradually intro-
ducing the edge extraction strategy and the designed loss function, our proposed
method, EG-DUNet , attains the best performance in the task of pathology slice
image normalization. These experimental results once again demonstrate the
effectiveness of our approach in maintaining both the structural and stylistic
aspects of slice images during the normalization task, providing crucial insights
into the contributions of individual components to the overall performance.

Table 2. The evaluation metric values of the compared experimental results.

Metrics Troditional Methods Deep Learning Methods Ours

Reinhard Macenko Vahadane StainGAN StainNet MultiPathGAN

SSIM↑ 0.62952 0.66371 0.67802 0.70209 0.69090 0.73796 0.77834
PSNR↑ 19.95075 21.70460 21.17302 22.39701 22.50131 23.00714 24.62241
MS-SSIM↑ 0.47529 0.50146 0.52039 0.88334 0.88034 0.88421 0.91741
RMSE↓ 0.30928 0.27850 0.26849 0.12363 0.11856 0.08018 0.06269
MSE↓ 0.09574 0.07724 0.07174 0.01528 0.01415 0.00903 0.00454
LPIPS↓ 0.56773 0.54584 0.54028 0.24411 0.20419 0.17802 0.12692
UQI↑ 0.73569 0.75802 0.76031 0.97350 0.93538 0.97823 0.98921

Experiments comparing to existing methods In this study, we provide a
comprehensive comparison of the proposed EG-DUNet methods, drawing on
three traditional methods Reinhard, Macenko,and Vahadane and three deep
learning-based methods StainGAN, StainNet, and MultiPathGAN as controls.
This extensive comparison framework aims to provide insight into the perfor-
mance of EG-DUNet relative to methods from different paradigms in the task of
sliced image normalization. Meanwhile, a series of evaluation metrics in Section
4.2 are used to comprehensively measure the effectiveness of the methods. Table
2 shows the performance of each method on different metrics in detail.

4.4 Visualization of Experiment

Fig. 4 shows the original and the target image on the leftmost side, and the
others are the six methods and the experimental results of our method. the
Reinhard method is consistent with the target image in terms of color tone, but
its contrast is low. the Vahadan and Macenko method results are more consistent
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with the target image in terms of structure, but the overall style is more different
from the target image. The results of the three deep learning-based methods are
basically consistent with the target image in structure, but there is a large gap
between them and the target image in details such as the edges, and they are also
far from each other in the overall style. The image generated by our proposed
method is not only consistent with the target image in the localization of the
edges, structure, and details, but also highly uniform with the target image in
the overall contrast, color, and style.

Fig. 4. Visualization comparison of staining result of different algorithms on the
MITOS-ATYPIA ICPR’14 sample

5 CONCLUSION

In this paper, we propose the EG-DUNet model, which enhances color consis-
tency and edge features in staining by using a dual Unet network with a custom
edge extraction module and the incorporation of style loss through GAN. To
address significant variations in image color caused by differences in laboratory
reagents and scanning devices, we add style loss to mitigate color distortions.
Additionally, we design a novel channel-wise proportional edge extraction mod-
ule to address the issue of unclear edges in stained images. Our network demon-
strates superior performance compared to other models on the publicly available
MITOS-ATYPIA ICPR’14 dataset.
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