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Abstract. Teleoperation is vital in the construction industry, allowing
safe machine manipulation from a distance. However, controlling ma-
chines at a joint level requires extensive training due to their complex
degrees of freedom. Task space control offers intuitive maneuvering, but
precise control often requires dynamic models, posing challenges for hy-
draulic machines. To address this, we use a data-driven actuator model
to capture machine dynamics in real-world operations. By integrating
this model into simulation and reinforcement learning, an optimal con-
trol policy for task space control is obtained. Experiments with Brokk
170 validate the framework, comparing it to a well-known Jacobian-based
approach.

Keywords: Reinforcement Learning, Construction Robot, Teleopera-
tion

1 Introduction

Unlike the manufacturing industry, the construction sector poses unique chal-
lenges to robots due to its dynamic and diverse characteristics [1]. Construction
sites constantly undergo changes throughout different stages of development,
each presenting distinct hazardous conditions for human workers [2]. To miti-
gate these risks, teleoperation has become a crucial component of construction
machinery in today’s construction industry [3]. However, the complex nature of
these machines, which often have multiple degrees of freedom (DoF) and require
individual levers for remote control at the joint level, necessitates extensive op-
erator training. Even experienced operators may need several months of training
to effectively coordinate multiple joints and achieve the desired end-effector or
tool motion. As a result, productivity decreases, local accuracy is reduced, and
work efficiency is compromised.

Despite developing intelligent robotic systems equipped with advanced con-
trol and planning algorithms to address the challenges of unstructured construc-
tion sites and provide automation benefits, their autonomy is often constrained to
highly unstructured environments. The reason behind this limitation lies in the
impact of incomplete and inaccurate information regarding unfamiliar objects or
unforeseen situations, which can significantly affect the decision-making process
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of robots and undermine their capacity for autonomous operation. To surpass
the limitations faced by autonomous robots in unstructured environments, ongo-
ing research aims to enhance operator capabilities through teleoperation systems
that integrate automation techniques, such as virtual fixtures [5] or task space
control [6].

Task space control enables the robot to manipulate its actions and inter-
actions with the environment intuitively and efficiently, considering its multi-
DoF nature. When the robot model is accurately known, task space control is
well-established and offers various alternatives for resolution, including resolved-
motion rate control, resolved-acceleration control, and force-based control [7].
However, constructing a dynamic model of a construction machine presents sig-
nificant challenges due to various factors. The intricate mechanical structure
of the machine and the complex interactions among its numerous components,
such as hydraulic actuators, linkages, and sensors, make it difficult to model
the system’s dynamics accurately. Furthermore, the presence of nonlinearities
like friction, backlash, and hysteresis adds further complexity to the modeling
process, requiring advanced techniques to address these effects effectively [8].

To address these challenges and enable effective task space control, we pro-
pose a framework utilizing a data-driven approach based on reinforcement learn-
ing (RL). In this approach, an agent is trained in a dynamic simulator and then
directly deployed in the real-world environment. It is important to note that
during the initial training phase, the agent may exhibit unpredictable behavior,
which can raise safety concerns, particularly when dealing with heavy-duty ma-
chines. To overcome this issue, the task space control policy is learned through
simulation and can be seamlessly applied to the real machine without requiring
any parameter adjustments or post-processing. To the best of our knowledge,
the application of general learning approaches to achieve task space control with
a full scale of construction machines has not been adequately addressed.

The structure of this paper is as follows: We provide a brief description of
the construction machine, Brokk 170, which serves as the basis for evaluating
our proposed approach. Next, we introduce the RL framework, where the agent
learns the task space control policy. To bridge the gap between simulation and the
real-world, we employ a data-driven actuator model within the RL framework.
Furthermore, we present a detailed explanation of how the agent learns the task
space control policy using RL techniques by integrating the data-driven actuator
model. Finally, we demonstrate the effectiveness of our proposed framework by
deploying the trained agent on a real machine, showcasing its capabilities and
potential benefits.

2 System Description

This section presents an overview of the hardware configuration of the Brokk
170 construction machinery, which is utilized to evaluate the research work. The
Brokk 170 is a mobile construction machine employed for various tasks such
as drilling, demolition, and cutting, depending on the specific end-effector tool





4 Hyung Joo Lee and Sigrid Brell-Cokcan

(a) Velocity profiles of q5, when commanded
pwm5 values of 50 and 205 at different joint
configurations of the machine.

(b) Velocity profiles of q5 and the corre-
sponding pwm5 normalized in [0,1].

(c) Velocity profiles of q5 were compared
when actuated individually (blue) and si-
multaneously with multiple actuators (red).

Fig. 2: Primary experiment tests results.

3 Method

Reinforcement learning (RL) revolves around the iterative process of collecting
data through trial and error, automatically adjusting the control policy to opti-
mize a cost or reward function that represents the task at hand [9]. This approach
offers a fully automated means of optimizing the control policy, encompassing
everything from sensor readings to low-level control signals. It provides a flexible
framework for discovering and refining skills to solve complex tasks. However, RL
typically demands extensive interaction time with the system to learn intricate
skills, often requiring hours or even days of real-time execution [10]. Moreover,
during the training phase, machines may exhibit sudden and unpredictable be-
havior, raising safety concerns, particularly when dealing with heavy-duty tasks.

To effectively train construction machines in handling complex tasks, our
proposed methodology leverages advanced physics simulation technology. This
involves training the machines in a simulated environment and transferring the
acquired skills to human operators for real-world scenarios. By employing this
approach, we mitigate the risk of unpredictable machine behavior during initial
training stages and reduce the need for extensive real-world training data. How-
ever, the success of this methodology hinges on effectively bridging the reality
gap between the simulated and real-world systems. To address this challenge, we
incorporate the concept of a data-driven actuator model [11], which helps rec-
oncile the disparities in system dynamics between the simulation and real-world
environments.
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Inputs

Joint Positions qt−0:6s
i ,qt−0:55s

i , · · · , qt
i

Joint Velocities q̇i
t−0:6s,q̇i

t−0:55s, · · · , q̇i
t

Control Signals u̇i
t−0:6s,u̇i

t−0:55s, · · · , q̇i
t

Output

Joint Velocity q̇i
t+0:05s

Table 1: Inputs/Outputs of the data-driven actuator model

Coupled Dynamics In general, coupled dynamics occur in hydraulic actua-
tors if the fluid pump cannot deliver the requested fluid flow. In other words,
the data collection process must be designed to sufficiently capture the coupled
dynamics by simultaneously actuating multiple cylinders in the presence of the
coupled dynamics. Thus, this test was conducted to analyze whether the sys-
tem’s behavior changes when numerous joints are actuated. Through this work,
the maximum value for PWM is restricted to about 65 %, i.e., 80 and 175, re-
spectively. The reason for this is that the manipulator’s impulsive movement
with multiple joints actuation at full speeds can possibly cause the overturning
of the machine or undesired collision with the environment. Thus, for the test,
q5 was rotated along its actuator range with u5= 80. At the second time, the
q1, q3 and q4 were also simultaneously rotated with u1= 175, u3= 175 and u4=
80, respectively, while u5= 80 was applied to q5 like the first test. The result in
Fig. 2b shows that the difference is marginal and neglectable.

Past Movement BROKK 170 used in this work has a slow system reaction,
as shown in Fig 2c. As a result, the system’s previous states often influence
the next state, i.e., even if the same PWM signal is transmitted to the same
system, the resulting velocity profile varies depending on the system’s prior and
present velocity. Fig. 2c clearly shows this behavior. Here, the same PWM signal
is sent to q5 at 1s. In the first test, q5 starts from its idle state, not moving. The
response time is roughly 400ms in this case. When q5 is already moving, the
response time is faster with approximately 100ms. As this result clearly shows,
the past states play a vital role in accurately describing the correlation between
u and q̇, particularly before q̇ converges.

3.3 Methods of Training

Based on the primary experiment results from the previous section, the set of
network input and output is defined, as listed in Table 1. To collect the training
data that captures the actuator’s behavior in different directions and speeds,
PWM signals are generated in a sine waveform. Here, the sine wave’s frequency
and the amplitudes are randomly modified. The generated PWM signals are
applied until the corresponding joint reaches its minimum or maximum, where
the joint then returns back to the home configuration. Then the next sine wave
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Fig. 4: Parallel simulation environment with 256 agents to train a control policy
for task space control

be fixed. Consequently, the task space can be defined as x = (x, y, z, θ), where x
represents the position and orientation in the task space. However, when track-
ing a goal in the task space with the joint configuration q ∈ R4, the robot may
encounter challenges in accurately following the goal. Therefore, in this study,
we do not track the orientation component θ in order to demonstrate the per-
formance of the implemented task space controller. By omitting the orientation
tracking, we can focus on evaluating the performance of the task space con-
trol without additional errors arising from the limited robot configuration and
kinematics.

To address the nonlinear dynamics of the actuators and achieve optimal
control inputs, we employ RL, as it allows for learning through trial and error.
In our approach, we integrate a real-world data-driven actuator model into the
RL environment, enabling the RL agent to effectively handle input delays and
nonlinear dynamics, thereby optimizing the coordination of the joints.

States and Observation At every time step t, the agent is provided with an
observation that encompasses various details about the current state of the en-
vironment. These details include information like the present and target velocity
of the end-effector, as well as the requisite data for the actuator network, see Fig.
3. It is assumed that the kinematics of Brokk 170, specifically the joint position
and link lengths, are already known. Therefore, utilizing only the joint values is
sufficient for determining the position and velocity of the end-effector through
forward kinematics.

To expedite the training process, all observations and actions are standard-
ized by applying a normalization technique using mean and standard deviation.
In practical scenarios, the measured values of joint angles and the end-effector’s
corresponding position and velocity are susceptible to noise generated by ma-
chine vibrations. To account for this factor, we introduce uniformly sampled
white noise into the observations. This noise is controlled by a scaling fac-
tor, maintaining a consistent maximum amplitude of 5% throughout the entire
episode.

Rewards A reward function is utilized to guide the learning process and en-
courage the desired behavior in the control policy. Typically, this function incor-
porates penalties for actions that lead to undesired behaviors, such as collisions
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(a) Snapshots from the experiments, where the same sequence of control signals are
applied to the real machine (top) and the simulation (bottom)

(b) Velocity difference in the task space (c) Position difference in the task space

(d) Velocity difference in the joint space (e) Position difference in the joint space

Fig. 5: Comparison between the simulated and the measured movement.

the effectiveness of a data-driven actuator model integrated into the simulation.
Subsequently, we demonstrate the performance of the trained task space control
policy on a real-world Brokk 170 machine.
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4.1 Sim2Real Gap

The purpose of this experiment is to evaluate the disparity between the behavior
of a simulated machine and a real machine, both in terms of task space and
joint space. To achieve this, Brokk 170 was initially set to a specific pose defined
by the joint configuration vector qs = [1.5, 0.5, 0.58, 1.71, 1.24], see Fig. 5a. A
predetermined sequence of control signals, spanning a duration of 30 seconds, was
applied to the joints of the robot. This control signal sequence was intentionally
designed to induce diverse changes in joint angles and simultaneous actuation
of multiple joints. In order to assess the performance of the simulation, the
same control signal sequence was also applied to the simulated Brokk 170. The
control signals from the predefined sequence were applied at a frequency of 20 Hz
throughout the experiments. Similarly, the joint angle and velocity values, as well
as the end-effector position and velocity, were recorded at the same frequency of
20 Hz.

The experimental results are depicted in Figure 5. Notably, in the simula-
tion, the error accumulated over time due to the reliance on predicted joint angle
values for subsequent predictions. However, despite this accumulation, the dis-
crepancy between the simulation and the real machine, both in the joint and
task space, remained reasonably small. This outcome suggests that the inte-
grated data-driven actuator model effectively captures the underlying nonlinear
effects of the hydraulic system.

4.2 Task Space Control

In this experiment, we assess the effectiveness of the trained policy for task space
control by directly deploying it onto the Brokk 170 machine without any addi-
tional tuning. The control policy is designed to generate control signals based
on the desired goal velocity in task space. It operates in the background at a fre-
quency of 20 Hz and communicates with the machine control unit (MCU) respon-
sible for controlling the actuators. To evaluate the performance of the trained
policy, we compare it with a well-established method based on the pseudo-inverse
Jacobian matrix [6].

q̇t = J+(qt)(xgoal + Ket) (3)

,where J+ represents the pseudo-inverse of the Jacobian [15], K ∈ R3x3 is
a positive definite gain matrix and e ∈ R3x1 is the remained velocity error. In
this work, J+ is defined by introducing the weighted least squares method [16]
and damped least square method [17] to handle the joint limit and singularity
problem, respectively:

J+ = W−1JT (JWJT + λ2I)−1 (4)

,where the diagonal matrix W ∈ R5x5 is utilized to penalize the joint motion
when a joint approaches its hardware limit. The elements of W are adjusted
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ሶ𝒙𝑔𝑜𝑎𝑙 = ( ሶ𝒙𝑔𝑜𝑎𝑙 , 0,0)

ሶ𝒙𝑔𝑜𝑎𝑙 = (0, ሶ𝒚𝑔𝑜𝑎𝑙 , 0)

ሶ𝒙𝑔𝑜𝑎𝑙 = (0,0, ሶ𝒛𝑔𝑜𝑎𝑙)

(a) Different start configuration for the task space control test.

(b) Position profile in the task space (c) Velocity profile in the task space

(d) Velocity profile in the joint space

(e) Position profile in the task space (f) Velocity profile in the task space

(g) Position profile in the task space (h) Velocity profile in the task space

Fig. 6: Results during x-direction (b-d), y-direction (e,f) and z-direction (g,h).
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5 Conclusion

This paper introduces a reinforcement learning (RL) framework designed to
learn an effective policy for task space control in a simulation environment. The
goal is to enable direct deployment of the learned policy to a real construction
machine without any modifications. To bridge the gap between simulation and
reality, a data-driven actuator model is incorporated during training to capture
the machine-specific nonlinearities in the relationship between control inputs
and system state changes. The learned control policy takes the desired velocities
in the x-, y-, and z-directions in task space as input and directly generates
the corresponding control signals. Compared to conventional methods, the RL-
based approach has the advantage of not relying on a dynamical model, making
it suitable for hydraulic machines where such models are typically unavailable.
Additionally, the proposed method outperforms the Jacobian-based approach by
eliminating damping effects and the need for a low-level controller.

In the context of teleoperation, an assistance system is proposed, which en-
ables intuitive task space control. This system enhances safety during teleopera-
tion and minimizes errors during task execution, particularly for heavy-duty hy-
draulic machines. The effectiveness of the proposed method is evaluated through
experiments conducted on a full-scale hydraulic machine, Brokk 170. In future
work, the authors plan to further investigate the impact of the proposed method
on mental workload and task efficiency by conducting additional explorations
and evaluations involving a larger number of participants.

Acknowledgement This work has been supported by the North Rhine-Westphalia
Ministry of Economic Affairs, Innovation, Digitalisation and Energy of the Fed-
eral Republic of Germany under the research intent 5G.NAMICO: Networked,
Adaptive Mining and Construction.

References

1. Lee, H. J., C. Heuer, and S. Brell-Cokcan. ”Concept of a Robot Assisted On-Site
Deconstruction Approach for Reusing Concrete Walls.” ISARC. Proceedings of the
International Symposium on Automation and Robotics in Construction. Vol. 39.
IAARC Publications, 2022.

2. Lee, H. J., Krishnan, A., Brell-C¸ okcan, S., Knußmann, J., Brochhaus, M., Schmitt,
R.H., Emontsbotz, J.J., and Sieger, J. (2022). Importance of a 5G Network for Con-
struction Sites: Limitation of WLAN in 3D Sensing Applications. Proceedings of the
International Symposium on Automation and Robotics in Construction (IAARC).

3. S. Brell-Cokcan, Lee, H. J. (2022). Robotics in Construction. In: Ang, M.H., Khatib,
O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. doi:
10.1007/978-3-642-41610-1 218-1

4. J. Y. C. Chen, E. C. Haas and M. J. Barnes, ”Human Performance Issues and User
Interface Design for Teleoperated Robots,” in IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 6, pp. 1231-1245,
Nov. 2007



Task Space Control of Hydraulic Construction Machines using RL 15

5. Lee, H. J., and Brell-Cokcan, S. (2023). Reinforcement Learning-based Virtual
Fixtures for Teleoperation of Hydraulic Construction Machine. arXiv E-Prints,
arXiv:2306.11897. Retrieved from http://arxiv.org/abs/2306.11897

6. Khatib, O. (1987). A unified approach for motion and force control of robot manip-
ulators: the operational space formulation. IEEE Journal of Robotics and Automa-
tion, 3(1): 43–53.

7. Nakanishi, J., Cory, R., Mistry, M., Peters, J. and Schaal, S. (2005). Comparative
experiments on task space control with redundancy resolution. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Edmonton, AB.

8. Lee, H.J., Brell-Cokcan, S. Cartesian coordinate control for teleoperated construc-
tion machines. Constr Robot 5, 1–11 (2021). https://doi.org/10.1007/s41693-021-
00055-y

9. Sutton, R. S., Barto, A. G. (2018 ). Reinforcement Learning: An Introduction. The
MIT Press.

10. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D. (2018). Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data col-
lection. The International journal of robotics research, 37(4-5), 421-436.

11. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, M. Hutter,
”Learning agile and dynamic motor skills for legged robots,” ScienceRobotics 4 (26)
(2019) eaau5872.

12. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D.
Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac Gym: High Per-
formance GPU-Based Physics Simulation For Robot Learning,” 2021.

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

14. D. Makoviichuk and V. Makoviychuk, “rl-games,” 2021.
15. Buss SR (2004) Introduction to inverse kinematics with Jacobian trans- pose, pseu-

doinverse and damped least squares methods. IEEE J Robot Autom 17(1–19):16
16. Chan TF, Dubey RV (1995) A weighted least-norm solution based scheme for

avoiding joint limits for redundant joint manipulators. IEEE Trans Robot Autom
11(2):286–292

17. Nakamura Y, Hansafusa H (1986) Inverse kinematic solutions with singularity
robustness for robot manipulator control. J Dyn Syst Meas Control 108(3):163–171

18. K. K. Ahn, D. N. C. Nam and M. Jin, ”Adaptive Backstepping Control of an
Electrohydraulic Actuator”, IEEE/ASME Trans. Mechatron., Jg. 19, Nr. 3, S. 987-
995, 2014.


	Task Space Control of Hydraulic Construction Machines using Reinforcement Learning

