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Abstract

In the present article, we define a new subclass of pseudo-type
meromorphic bi-univalent function class of complex order, associated
with linear operator and investigate the initial coefficient estimates
|bol; |b1] and |bg|.Furthermore we mention several new or known
consequences of our result.
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1 Introduction and Definitions

Let A denote the class of all analytic functions of the form
(1.1) F&) =6+ ant",
n=2

which are univalent in the open unit disk U = {¢ : |{| < 1}. Also let S,
the class of all functions in A, univalent and normalized by the conditions
f(0)=0,f(0)=11in U.

An analytic function f; is subordinate to an analytic function fo, written by
f1(&) < f2(€), provided there is an analytic function w defined on U with
w(0) = 0 and |w(z)| < 1 satisfying fi1(§) = fa(w(£)). Ma and Mindal§]
consolidated various subclasses of starlike and convex functions for which
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is subordinate to a more general function. These classes are denoted
respectively by &% () and Ry (p). In this article, it is assumed that ¢ is
an analytic function in the unit disk U, satisfying ¢(0) = 1 and ¢'(0) > 0
and ¢(U) is symmetric with respect to the real axis. This function has a
series expansion of the form

(1.2) (&) =1+ B1€ + Bo&® + B3 + -+, (B1 > 0).

By setting ¢(&) as given
1+¢
1-¢
we have f = 20, B = 267, 3 = 20°420,
On the other hand if we take

I+ (1 -2w)
==

then 1 = B2 = B3 = 2(1 — w).
Let Y denote the class of all meromorphic univalent functions g of the form

452 + 26

3 G4+...,0<6<1

19
(1.3) go(f):< > =1+ 206 +25%€* +

(1.4) o(€) =142(1—w)é+2(1—w)e 4+, (0<w < 1)

e’} bn
(1.5) g(&) =&+bo+ Zg—n,
n=1

defined on the domain U* = {{ : 1 < |{| < co}. Since g € ¥’ is univalent it
has an inverse g~ = v that satisfy

gl (g(é)=¢, €€ U and g (g(w)) =w, M < |w| < oo, M >0

where
(1.6) gfl(w):v(w):w—i—i& M < |w| < o0
n=0 wn’

Analogous to the bi-univalent analytic functions, g € ¥’ is said to be
meromorphic bi-univalent if g=! € ¥’. Denote the class of all meromorphic
bi-univalent functions by 91yy. In literature, the coefficient estimates of
meromorphic univalent functions were widely studied, Schiffer[13] obtained
the estimate |bs| < 2 for meromorphic univalent functions g € ¥’ with by = 0

and Duren[3] gave proof |b,| < (nil) on the coefficient of meromorphic
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univalent functions g € X’ with b (0) = 0 for 1 <k < Z.. For the coefficient
of the inverse of meromorphic univalent functions h € My , Sg)rm
[15] proved |C3] < 1;|C5 + 2C%| < 4 and conjectured |Cop—1] < 2
(n=1,2,---).

Kubota[7] has proved the Springer’s conjecture true for n = 3,4,5 and
Schober[12] obtained the coefficient bounds Cs,—1, 1 < n < 7 for the inverse
of meromorphic univalent functions in U* and proved the sharpness. Kapoor
and Mishra [6] found the coefficient estimates for a class consisting of inverses
of meromorphic starlike univalent functions of order § in U*.

For g € ¥ as given in (1.5), linear differential operator is defined as
follows[10, 14]:

nl(n— 1)

rig(é) = g(é),

(1.7) Fég(€) = (1—Q)s(€) +¢g'(€) = F () (¢>0)

(1.8) Fes(e) = Fe(r{'e) (veNn={1,23,---})

Then from (1.7) and (1.8) we get,

(1.9)

F{g() = &+(1-C) ”b0+z (n+1)¢]V b ™" (veN=1{0,1,2,3,--1).

Babalola [1] defined a new subclass p - pseudo starlike function of order
(0 <9 < 1) satisfying the analytic conditions

(1.10) Re<W)>ﬁ,er,p21eR

and denoted by £,(¢). Babalola[l] remarked that for 1 > 1, these classes of
pu— pseudo starlike functions reperesnt the analytic starlike functions. Also,
when p = 1, we have the class of starlike functions of order ¥ (1-pseudo
starlike functions of order 1) and for u = 2, we get the class of functions,
which is a product combination of geometric expressions for bounded turning
and starlike functions.

Motivated by the earlier works [2, 4, 9, 10, 17, 18], we define a new
subclass of pseudo type meromorphic bi-univalent functions class X/ of
complex order v € C\{0} and the coefficient estimates |bo|, |b1| and |bg]
are determined when associated with the linear operator as defined in (1.9).
Several new consequences of the new results are discussed.



Definition 1.1. For 0 < n < 1 and p > 1, a function g(¢) € ¥’ given by
(1.5) is said to be in the class B, (1, 1, ¢, ¢, v) if the following conditions

are satisfied:
v I vl (£))H
(- <F<g<5)> 1 (W) - 1] < (©)

1
(1.11) 1+ -
gt

3 F¢g(&)
and
1 F{u(w)\* w(F ¢’ (w))H
(1.12) 1+; (1—mn) (w) +n <FZU(U))> —1] =< p(w)

where £, w € U*, v € C\{0} and the function v is given by (1.6).

By suitably specializing the parameter 7, we state new subclass of mero-
morphic pseudo bi-univalent functions of complex order By, (1, 1, ¢, ¢, ) as
illustrated in the following Examples.

Example 1.2. For n = 1, a function g € ¥/ given by (1.5) is said to be
in the class ‘Blz,(l,u, 0, C,v) = Py (p, @, ¢, v) if it satisfies the following
conditions:

1 (E(FLg )
F¢g(é)

1 [ w(F ' (w))*
~y
where £, w € U*, u > 1, v € C\{0} and the function v is given by (1.6).

_ 1) < (&) and 1+; Foo(w) - 1) < p(w)

Remark 1.3. We note that P (1,1, ¢,(,v) = 64,(¢)

Example 1.4. For n = 1 and v = 1, a function g € ¥’ given by (1.5) is
said to be in the class ‘Blz,(l,,u, 0, ¢, v) = Py (w, o, ¢, v) if it satisfies the
following conditions :
E(Feeg(9)F
F¢g(8)

where £, w € U*, u > 1 and the function v is given by (1.6).

w(F g (w))*

< (¢ and FZU(w)

< ¢(w)

Example 1.5. For = 0 a function g € >’ given by (1.5) is said to be in the
class B, (1, 1, o, ¢, v) = RE (1, ¢, ¢, v) if it satisfies the following conditions:

(e (o

where £, w € U*, u > 1 and the function v is given by (1.6).

i 1
) - 1] <€) and 1+ —
~

1+

1
~y



2 Coefficient Estimates

In this section, we obtain the coefficient estimates |bg|, |bi| and |bs]
for ‘13%, (n, , ¢, ¢, v), a new subclass of meromorphic pseudo bi-univalent
functions class ¥’ of complex order v € C\{0}. We recall the following
lemma, to prove our result.

Lemma 2.1. [11] If ® € B, the class of all functions with R (P(£)) > 0,

(& € U) then
lex| < 2, for each k,

where

&) =1+cé+ e+ - forfel.
Define the functions p and ¢ in § given by

_ ) o P2
O e tet
and Lt s(w)
o lds(w) @ @
Q(w)_l—s(w)_1+a+ﬁ+”"
It follows that
_p@-1_1[pm AN
T“)‘p(£>+1‘2[£+<m 2)5” ]
and (w)-1 1 N
Cqw) -1 1[q q
S<“’>—q<m+1—z{w+<q—£>z+ ]

Note that for the functions p(§),¢(§) € B, we have
Ipil <2 and |¢;| <2 for each i.

Theorem 2.2. Let g be given by (1.5) in the class B, (1, i1, ¢, ¢, v). Then

1v]151]
. b
1) lbof < I — pm —nl|(1 =)

Y

(2.2)

o (4105 — 8?1 + 418 + 8181 (51 — o)

|b1] <
2| —n —2pn|[(1 = 2¢)Y|
1
N (e —1)(1 —n) + 277|2\'Y|2\51\4> 2
| — pm —




and

(2.3)
v
o] < 5 g =gy (2Bl + 48 — Bl + 206 — 262+
L e =D =2)(1 —n) - 677!7\251!3>
3[n|?

where v € C\{0},0 <n <1,u>1 and &w € U*.
Proof. 1t follows from (1.11) and (1.12) that

v n v/ o
1(1—m<F5@v +n<“F@“®>)—1]=¢w@»

24 1+3 ¢ F 7g(€)
and
1 Py (e ) ]
25 1+ |a-n (S0 +U<H@w0)—4—¢@W»

Using (1.5), (1.6), (1.11) and (1.12), we have
1, (PN (reg'O)ry
.| ¢ m( : )”(  78(0) ) 1]

2
=1+ 51171215 + [;51 <p2 - ]321) + 4ﬁ2pl] ;2

3 . B
+ [621 <p3 — p1p2 +]11> + Pz <p1p2 - > +53] ;3
1

F{o(w)\* w(F v (w))H
7(1_m< v > +”< Fo(w) )‘4

2
= 1+51€I1i+ [151< Q@ — (]2> + 52%} wi

7 ¢
+ [ﬁ; <Q3—Q1Q2+ 4> +% <CIIQQ_2> + 832 } %

Equating the coefficients of 71,672 ¢73 ... and w™t, w2, w™3,--- in (2.6)
and (2.7), we get

(26) 1+

and

(2.7) 1+

(= pm —n)(1 =)

(2.8) .

1
by = 551;01,



(2.9)
2
217 [(u(u—l)(l—n)Jr?n)(1—C)2”b3+2(u—n—2nu)(1—20”61] = %ﬁl (Pz—?)—i—iﬁzpi

(2.10)

617 [(M(H‘U(M‘Q)(l—"?)—@'?)(1—03’/58‘*‘6(M(M—l)(l—"?)‘f'???‘i‘?w)(1—C)V(1—2C)Vbobl

3 3 3
+6(N—77—37IM)(1—3C)V52] = [ﬁ; (]03 —pip2 + ]11) + % <p1p2 - le> + ﬂspﬂ ,

(2.11) W(l —()"bo = éﬁl‘ha

(2.12)

2
o | (D A= 20) 108201 20 (12601 | = 351 (2= )

and

(2.13) 61,Y (65 — i — D) — 2)(1 — (1 — ()

+6 (e —1)(1 —n) — (L —n) + 30+ 3nu) (1 — ) (1 — 2¢)bob1 + 6(n — 1+ 3npu) (1 — 3¢)"be]

[’ @\ | P g} g
[2 q3 CI1CI2+4 +2 N2 — 5 +538

From (2.8) and (2.11), we get

(2.14) P =—a
and

252
(2.15) b= 1A (02 + 2).

8(p—pn —n)*(1 = ¢)*
Applying Lemma 2.1 for the coefficients p; and ¢1, we have

Iv[181]
b .
lbof < I — pm —nl|(1 =)




In order to find the bound on |b;| from (2.9), (2.12), (2.14) and (2.15),
we obtain

(2.16)
2
2~ — 2nu>2<1 o) fj;+ (e — 1)(1— ) + 2021 — O™

Bl
4

b
22

2 2
B 02 4 a2) + (B — py)PAPR T 01R)

= (61— 52) = 1

Using (2.15) and Lemma 2.1 again for the coefficients p1, p2 and g2, we get

|b1|2 ’72| %
A —n —2npf?|(1 - 2¢)%|

_ _ 2 2 4
(4161 — 871+ 460 + 815061 — ) + L= DU =D L 2PDIALY,
[ — pn —

That is,

el
bl S X
L T Yo

\/4|<51 B + 4B + 8161 (B — )| + IELE

— 1)(1 —n) + 2n2|y[? \61\4
| — pm —

To find the estimate |ba|, consider the sum of (2.10) and (2.13) with
p1 = —q1, we have
(2.17)

L Bilps + 3] + (B2 — Bi)pi[p2 — 2
~ oY1 —

22p(p — 1)(1 = n) — (1 = n)p + 50 + 4nu](1 — Q) (1 — 20)»°

Subtracting (2.13) from (2.10) and using p; = —q1 we have

(218) 2= 7= 31— 30)" 2

- 3n) (10" (120 1) -2 (1) -0l 20+ 2 )
+62;61(p2+q2)p1+w&’-



3
Substituting for % and %0 in (2.18), further computation yields,

by —b <N—377—477M—M(M—1)(1—77)p3
v 2(p—n—=3np)(1 =30 \2u(p—1)(1 —n) — p+5n+5nu
2n+np + p(p —1)(1 —n) )
20— 1)(L —n) — -+ 51 + 5™
N (B2 = B1)m <u—3n—4nu—u(u—1)(1—n)
2(u —n — 3nu)(1 = 3¢)" \2u( — 1)(1 — ) — p+ 5y + 5’
2t mptp(p—1)(1—n) >
20— 1) (1 —n) — p+5n +5np"
Br — 22+ fBs 5 (e =1)(p—=2)0 —n) =6 57 ;
8(i—n — 3 (1 — 3¢)""! 18(u—n—3np)(1— 30>

Applying Lemma 2.1 in the above equation yields,

_|_

Y]
2.19 bo| < X
(2:19) 1l < o g =50

(20811 + 4182 = 1] + 2181 — 282 + s

(n=D)(p—-2)1—-n) - 677Hvl2\51\3) _

|1
_l’_
3In3

O
By taking n = 1, we state the following results.

Theorem 2.3. Let g be given by (1.5) in the class B, (i, ¢, ¢, v). Then

I 184

2.20 bo| < 1AL

(220 = T =g

(2.21)

el

o < (8 — 80+ 1681+ 2061 (51— )l + o [
and

(2.22)

Iby] < il (181] + 2185 — Bal + 181 — 26 + Bl + W 181/7)

11+ 2p[ (1 = 3¢)"|
where v € C\{0},u > 1 and &, w € U*.



By taking n = 1 and v = 1, we state the following results.
Theorem 2.4. Let g be given by (1.5) in the class By (u, p,(,v). Then

|51]
b et
ol @
1
|b1] < T+l (1= 20)] \/’(51 — B2)2 +167] +2[81(B1 — B2)| + |Ar]4
and
1 3
|ba| < 5 201 =30 (1B81] + 2|82 — B1| + 181 — 262 + B3| + [B1]°)

where p > 1, &, w € U*.

3 Corollaries and concluding Remarks

For functions g be given by (1.5) and g € By, <77 2 (%) 6 ) =
‘l%,(n w,9,¢,v) by setting 51 = 26, [2 = 262 and By = % and

Slmllarl}’a for g € m’yl (77 H, Lt 1_20-) vCa ) = m%/(nvﬂawac’ V) by Setting
p1 = P2 = P3 = 2(1 —w), analogously, we can derive the results of Theorems
2.2, 2.3 and 2.4.

Corollary 3.1. Let g be given by (1.5) in the class B, (n, i, 6,¢,v) . Then

2|7|6
3.1 0| =
(3.1) L T ok
(3.2)
by < 2|0 5 2)2 —1)(1— )+277|2\72!
= p—n =21 —20)Y| | — pm —

and

2|v|6 < <4—6(5+252>
3) b 3954 (22070
(3:8) el < [ T =30y s
N 2|y |20% | — 1) (u — 2)(1 — ) — 677|>
3[n[3

where v € C\{0},0 <n <1,u>1 and &w € U*
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Corollary 3.2. Let g be given by (1.5) in the class B, (0, p,w,,v). Then

21|(1 = w)

4 b
(34) ol < L — i =0T
(3.5)
2|v[(1 - w) )(1 =) + 2122

b 2

o} < [ —n = 2np||(1 - 2¢)” \\/ \u pn — |t (1=w)
and
(3.6)
bo| < 2|7](1 — w) <1+2|7|2(1—w)2!u(u—1)(#—2)(1—77)—677|>

= n = 3nul|(1 - 3¢)"| 3[n[3

where v € C\{0},0<n<1,u>1 and & w € U".

Concluding Remarks: We remark that, when n = 1 and u = 1, we
can obtain the coefficient estimates by, b1 and by for 6;,(%{ ,v), leads to
the results discussed in Theorem 2.3 of [9]. Also, we can obtain the initial
coefficient estimates for function g given by (1.5) in the subclass &1, (¢, ¢, v)
by taking (&) given in (1.3) and (1.4) respectively.
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