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ABSTRACT. Let R be a semiprime ring of characteristic # 2 .
Earlier the properties of Lie rings of derivations in commutative
differentially prime rings R was investigated by many authors. In
recent manuscript we find the conditions on semiprime rings R,
when the left (0, ¢)-derivations is acting on Lie ideal of R. In
particular we prove that if A is a nonzero Lie ideal and a subring
of a characteristic # 2 of a semiprime ring R and d is a (6, ¢)-
derivation of R satisfaiying the condition d(ab) = d(ba)Va,b € A,
then A C Z(R) and [R,R] C Z(R).
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1. INTRODUCTION

Let R be an associative ring with identity (with respect to the addi-
tion “4” and the multiplication “”) and

Z(R) ={z € R: zz = x2Vx € R} denotes the center of R.

Recall that R is prime if aRb = 0 implies that a = 0 or b = 0. A ring
R is said to be semiprime if aRa = 0 implies that a = 0 . The ring R
is 2-torsion free if whenever 2a = 0, with @ € R, then a = 0.

An additive mapp d : R — R is called a derivation of R if

d(ab) = d(a)b+ ad(b)Va,b € R.

The set of all derivations of R denoted by Der R, [a,b] = ab — ba is
called a Lie commutator of a,b € R, [R, R] the commutator subgroup,

annT = {r € R :rT = 0 = Tr} the annihilator of " C R.

An additive map d is called (0, ) derivation if

d(ab) = d(a)f(b) + ¢(a)d(b)Va,b € R

such that 6,90 : R — R are two maps of R. An additive map
0 : R — R is called a left derivation if

d(ab) = aod(b) + bé(a)Va,b € R.

In the same manner the additive maps (0, ) of R is called a left
0, p-derivation if d(ab) = 6(a)d(b) + ¢(b)d(a)Va,b € R.

All other definitions are standard and it can be found in [?, 7, 7, ?]
and [?].

Recall that an additive subgroup A of R™ is called a Lie ideal of R
if [a,r] € A.

In [?] H.E. Bell and L.C. Kappe proved that if d is a derivation on
a semiprime ring, such that d is endomorphism or anti-endomorphism
on R, then the derivation d must equal zero.

Further, if a derivation d is acting as a homomorphism or anti-
homomorphism on a nonzero right ideal of a prime ring R, then the
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derivation d must equal zero also. In addition, many authors have ex-
tended results of [?].

In this way Yengul and Argac [?] proved that these results is true for
a-derivations of prime rings and semiprime rings and O. Golbasi and
N. Aydin [?] have extended these results which such that ifd is (0, )-
derivations which acts as a homomorphism or an anti-homomorphism
on a prime ring R, then d = 0 on R.

Therefore, M. Asharf [?] concering (6, ¢)-derivations d which is act-
ing as a homomorphism or an anti-homomorphism on a nonzero ideal
A of a prime ring R. Also in [?] M. Ashraf, N. Rehman studied this
result for a left (0, ¢)- derivation d which is acting as a homomorphism
or an anti-homomorphism on a nonzero ideal A of a prime ring R.

There are different results related to the property of commutativity
of a ring and the existence specific types of derivations of a ring R.

In [?] proved for a semiprime ring R if there exists a nonzero ideal A
of R and d is derivation satisfying the condition d(ab) = d(ba)Va,b € A,
then A C Z(R).

Furthermore, in[?] proved that if d is (0, p)-derivation acting as a
homomorphism or an anti-homomorphism on a nonzero left ideal A of
a semiprime ring R, then d = 0.

Finally, this problem has been activety studied by many authors as
[7,2,?7, 7,7, 7] and others

2. PRELIMINARIES

we will state some lemmas, which helps us to prove the main results,
also we will prove that if A is a nonzero Lie ideal and a subring of a
characteristic # 2 of a semiprime ring R and d is a (6, ¢)- derivation
of R satisfaiying the condition d(ab) = d(ba)Va,b € A, then A C Z(R)
and (R, R] C Z(R).

Lemma 2.1. [7]
Let R be a prime ring of a characteristic # 2. Let 0, be two au-

tomorphisms of R and d is a nonzero (0, p)-derivation of R such that
d(ab) = d(ba)Va,b € R, then R is commutative.
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Lemma 2.2. [?, Lemma 2]
If A¢ Z(R) is a Lie ideal of a prime ring R of a characteristic # 2
and a,b € R such that aAb=0 , thena=0 orb=0 .

Lemma 2.3. [?, Lemma 1.3]
If R is a 2-torsion-free semiprime ring and A is a commutative Lie

ideal of R, then A C Z(R).

Lemma 2.4 ([?]). If R is a 2-torsion-free prime ring and A a nonzero
Lie ideal of R. Assume that 6 and ¢ are two automorphisms of R and
(0,¢)- derivation of R satisfaiying the condition d(A) = {0}, then
d=0on R or AC Z(R).

Lemma 2.5. Let R be a prime ring and A a nonzero Lie ideal of R.
If r € R such that Ar =0, then r = 0.

Proof.

Let A be an ideal of a prime ring R. and let [a,7] € A,Va € A and
Vr € R. Then xar = 0Va € A, Vr € R. This means that xRr = 0.
Since R is a prime ring, so x = 0 or r = 0,Va € A. Using that A is a
nonzero Lie ideal of R, hence r = 0. U

3. DERIVATION ON IDEALS

Lemma 3.1. [?]
Let R be a semiprime ring and A a right ideal of R, then Z(A) C
Z(R).

Now we can get the same result in lemma (2 -1), when we apply the
condition d(ab) = d(ba)Va,b € A a nonzero ideal of R.

Proposition 3.2.

Let R be a semiprime ring of a characteristic # 2 and A a nonzero
tdeal of R. Let 0, ¢ be two automorphisms of R and d be a nonzero
(0, )-derivation of R satisfying the condition d(ab) = d(ba)Va,b € A,
then R is commutative.

Proof.
Suppose that s € A such that d(s) = 0. Now let s = [a,b], then
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d(t)0(s) = d(ts) = d(st) = ¢(s)d(t),Vt € A.

Hence

[d(t), s]p., = 0¥t € A. (3-1)

From d(s) = 0 and A is an ideal of R, then by [?] [Theorem 1], we
have s € Z(A)Vs € A, since [a,b] € Z(A)Va,b € A, we get

[r, [a,b] = OVa,b,r € A. (3-2)
Now replacing b by ab in (3 -2), we have

[, [a, ab]] = [r, d][a, b] = OVa,b,r € A. (3—-3)
Further, replacing b by ba in (3 -3), we get

[r,a][r,br] = [r, a]bla, r] = OVa,b,r € A.
Then
[r,a]Ala,r] = {0}Va,r € A.
Since A is an ideal of R, we have

[r,a]RAJa,r] = {0}Va,r € A . Since R is prime, then
[r,a] =0 or Ala,r] = 0Va,r € A.

Now if Afa,r] = 0Va,r € A and since A is a nonzero ideal of R, we
have [a,r] = OVa,r € A. Hence A is commutative. Then by Lemma (3
-2), we have Z(A) C Z(R). So A C Z(R), hence by Lemma (3 -2) R
is commutative.

O

4. DERIVATION ON LIE IDEALS

Let R be a semiprime ring of a characteristic # 2. We will extend
Lemma (2 - 1) for a non zero Lie Ideal and a subring A of R.

Theorem 4.1.

Let R be a semiprime ring of a characteristic # 2, and let A be
a non zero Lie ideal and subring of R. Assume that (0,¢) are two
automorphisms of R and Let § : R — R is (0, ¢)-derevation of R such
that 6(ab) = §(ba)Va,b € A, then A C Z(R) and [R, R] C Z(R).
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Proof.
Assume that 6(c) = 0,c¢ € A. Now, if ¢ = [a,b], then d(a)f(c) =
d(ab) = d§(ca) = ¢(c)d(a),Ya € A. Then
[6(a), clg,, = OVa € A.
From §(c) = 0 and using [?, Theorem 1]], we have ¢ € Z(A),Vc € A.
Since [a,b] € Z(A)Va,b € A, then for all a,b,d € A we have

[d, [a,b]] = 0. (4-1)
Further, replacing b by ab in (4 -1), we have for all a,b,d € A we
have

[d7 [CL, ab] = [da CL] [aa b] = 0. (4 - 2)
Now, replacing b by bd in (4 -2), we have for all a,b,d € A

[d, a][a, bd] = [d, a]bla, d] = 0. (4-3)
Since for all a,d € A, |a,d] € Z(A) and for all a,d € A and from (4
-3) we have b[d, a]* = 0.
Further, replacing b by [¢t,r],t € A,r € R then we get Va,d,t € A
and r € R.

[t,r][d, a]2 = 0.
Then

0 = tr[d, a)* — rt[d, a)* = tr[d, a]*Va,t,d € AVr € R.
Hence for all a,d € A we write AR[d, a]* = 0.
Since R is a prime ring, then Va,d € A, we have A = 0 or [d, a]? = 0.
On the other hand A is a nonzero Lie ideal of R, then [d,a]* = 0
for all a,d € A. Also, since A is a semiprime, then Va,d € A we have
[d,a] = 0, hence A is commutative. Now from Lemma (2.4) we have

that A C Z(R). Since A C Z(R)Va € A,r € R, then we have [a, 7] = 0.
Further, replace a by [a,u],Vu € R, we have Ya € A,r,u € R.

0 = [[a,u],r] = [au, r] — [ua,r] = alu,r] — [u,r]a = |a, [u,r]].
Thus Va € A,r,u € R we have
la,[R, R]] = 0.
Hence [R, R] C Z(R).
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Lemma 4.2. [?]

Let R be a prime ring and A be a nonzero ideal of R. Assume that
0,p are two automorphisms of R and § : R — R is a left (0,¢)-
derivation of R. Then

1) If 6 acts as a homomorphism on A, then § =0 on R.

2) If 6 acts as an-antihomomorphism on A, then 6 =0 on R.

Lemma 4.3. [?, Lemma 4]

Let R be a prime ring of a characteristic # 2, and if A is a Lie ideal
of R such that A ¢ Z(R) and a,b € R such that aAb = {0}. Then
a=0o0rb=0.

Lemma 4.4. Let R be a prime ring of a characteristic # 2 and A is
a Lie ideal of R such that A ¢ Z(R). Then there exists an ideal B of
R with [B,R) C A, but [B,R] ¢ Z(R)

Proof.

Since A ¢ Z(R) and charR # 2, then from [?] [A, A] # 0 and we
get [B,R] € A where B = R[A, A]R # 0 is the ideal of R. Thus it
is follows [B, R] C Z(G), since if we suppose that [B, R] ¢ Z(R) then
[B[B,R] = 0. Hence B C Z(G). From B # 0 is an ideal of R hence
R =Z(R).

U

Lemma 4.5. Let R be a prime ring of a characteristic # 2 and A is a
Lie ideal of R such that A C Z(R). If cAd=0. Then c=0 ord=0.

Proof.
Let B an deal of R with [B,R] € Z(R), bu
that a € A, bEBanerR[bcar] [ R]

t [B,R] C A. Suppose
C A . Then
0 = c[bca,r|d = clbe, r|ad + cbela, r|d = c¢(ber — rbe)ad = cberad.

Since c[a,r|d € cAd = 0. Hence cBcRAd = 0.
If ¢ # 0 and since R is a prime then, we have Ad = 0. Now if t € R
and a € A, then

(at —ta) € A,
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whence (at — ta)d = 0. Hence atd = 0, this means aRd = 0. Since
A # 0 we have d = 0. U

Theorem 4.6.

Let R be a prime ring of a characteristic # 2. Let A be a nonzero
Lie ideal of R such that a®> € A Va € A.

Suppose that 6, ¢ are two automorphisms of R and 6 : R — R is a
left (0, ¢)-derivation of R satisfies the following conditions.

1) If § acts as a homomorphism on A. Then 6 =0 or A C Z(R).

2) If 0 acts as an anti-homomorphism on A. Then § = 0 or A C
Z(R).

Proof.
1) Suppose that A € Z(R). Now If § acts as a homomorphism on
A, then Va,b € A we have

d(ab) = 6(a)d(b) = 0(a)d(b) = p(b)d(a). (4—4)
Further, replacing a by 2ab in (4 -4) and since charR # 2, then,
Va,b € A we have

(0(a)d(b) + ¢ (b)d(a)) = 0(a)d(b)d(b) + p(b)d(a)d(b).
Hence, Va,b € A we get

Then Va,b € A.

O(a)(0(b) — 6(b)d(b)) = 0. (4-05)
Replacing a by 2ac, where ¢ € A in (4 -5) and since charR # 2, then,
Va,b,c € A we have

O(ac)(5(b) — 0(b))6(b)) = 0.
Thus Va,b,c € A we get

ach1((6(b) — 6(b))d(b)) = 0.
Then Va,b € A we have

a A9~ ((8(b) — 0(b)3(b)) = 0.



ON (6, 9)-DERIVATIONS ON LIE IDEAL OF SEMIPRIME RINGS

Using Lemma (2 -2) we have Va,b € A

a=0or (6(b) —6(b))d(b) = 0.
Notice that A is a nonzero ideal of R, then Vb € a we have

0%(b) = 60(b))a(b).
since ¢ is a left (0, 0)-derivation of R, then Vb € A we have

S0
©(b)d(b) = 0,V¥b € A. (4-6)
On Linearizing (4 -6) we get

0=@b+a)d(b+a)
= (#(b) + ¢(a))(5(b) + d(a))
= @(b)3(b) + @(b)d(a) + (a)d(b) + ¢(a)d(a)

= p(b)o(a) + ¢(a)d(b)Va,b € A. (4-1)
Now substitute a by 2ab in (4 -7) and using that char R # 2, we have

0 = @(b)d(b)d(a) + ¢(b)p(a)d(b)

= ¢(b)¢(a)d(b).
This means that bap ' (6(b)) = 0Va,b € A. That is bAp~1(5(b)) = 0.
By Lemma (2 -2), we get b =0 or §(b) = 0Vb € A = 0.
Since A is a nonzero Lie ideal of R, we get

d(b) =0,Vb € A. (4-78)
Now replacing b by [b,r],r € R in (4 -8) we will get

0=0([b,7r]) = d(br —rb) = 6(br) — d(rb)

= 0(b)3(r) + (r)3(b) — 0(r)3(b) — (b)d(r)
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So
(0(A) — p(A))d(r) =0,Vr € R.

Since 6, ¢ are two automorphisims of R and A is a nonzero Lie ideal
of R, we see that 0(A),p(A) are a nonzero Lie ideal of R. Then
0(A) — ¢(A) is a nonzero Lie ideal of R. Now using Lemma (2 -1),
we have 0(r) = 0, this means 6 = 0 on R.

2) Suppose that 0 acts as an anti-homomorphism on A, then for all
a,b € A we have

d(ab) = §(b)d(a) = 0(a)d(b) + p(b)d(a). (4-9)
Substituating b by 2ab in (4-9) and from that charR # 2 we have
Ya,b € A, then we get

d(ab)o(a) = 8(a)d(b)d(a) + ¢(b)d(a)d(a)

= 0(a)d(b)d(a) + (a)p(b)d(a).
Then
w(a)d(b)d(a) = p(a)p(b)d(a),Va,b e A. (4 —10)

Replacing in (4 -10) with b by 2sb, s € A and using charR # 2, we
have for all a,b,s € A,

p(5)p(b)0(a)d(b) = p(a)p(s)e(b)d(a). (4—11)
Using (4 -10) in (4 -11) we have for all a,b,s € A,

[p(a) , ¢(s)]e(b)d(a) = 0.
Thus for all a,b, s € A, we get

[a, s]bp™"(d(a)) = 0,
equivalently,

0, 5] Ap™(5(a)) = 0.
From Lemma (2 -2) we have = [a,7] = 0 or d(a) = 0. Suppose that

B={a€ A la,s]=0Vs e A},

and
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C={a€ A da)=0}.

Then B, C are proper subgroups of A and A = BUC, hence A = B
or A=C.

Now if A = B, then for all a,s € A, [a,s] = 0.

This means that A is commutative. Using lemma (2 -3) we have
A C Z(R) and we get a contradiction.

Then for all a € A,0(a) = 0.

Replacing a by [a,r] we have for all « € A and r € R,

0=10([a,r]) =d(ar —ra)
= 0(a)d(r) + ¢(r)d(a) = 0(r)d(a) — p(a)d(r)

0(a)o(r) + ¢(a)d(r) — (0(a) — ¢(a))d(r).
Eqivalently

(6(A) = (A))o(r) = 0.
Now using the same technique as in part (1) we get the required.
O
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