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Abstract—Reducing the bitstream size is important to lower ex-
ternal storage requirements and to speed-up the reconfiguration
of field-programmable gate arrays (FPGAs). The most common
methods for bitstream size reduction are based on dedicated
hardware elements or dynamic partial reconfiguration. All of
these properties are usually missing in low-cost FPGAs such as
the Lattice iCE40 device family.

In this paper we propose a lightweight compaction approach
for iCE40 FPGAs. We present five methods for bitstream com-
paction: two adapted and three new. The methods work directly
on the bitstream by removing unnecessary data and redundant
commands. They are applicable independent of the synthesis
toolchain and require neither repetition of synthesis steps nor
modifications of the target system. Although our focus is on iCE40
devices, we additionally discuss the conditions for applying our
approach to other targets.

All five methods were implemented in an open-source com-
paction tool. We evaluate our approach with an iCE40 HX8K
FPGA by synthesizing and compacting various projects. As a re-
sult, we achieve a reduction in bitstream size and reconfiguration
time by up to 79 %.

I. INTRODUCTION

The bitstream of a field-programmable gate array (FPGA)
contains the configuration data of the internal fabric. Its size is
a crucial factor for the cost and the performance of a system.

The amount of necessary external storage and with it the
cost for additional hardware components are influenced by the
bitstream size. The importance is especially high for applica-
tions that employ multiple configurations, like the system with
dynamically self-selected coprocessors presented by Gonzalez
et al. [1]. Numerous large bitstreams can necessitate a larger
flash memory chip and increase the cost of the system.

Furthermore, the bitstream size determines the amount of
data transferred and the time needed to reconfigure the FPGA.
This is also crucial in the research field of Evolvable Hardware
(EHW) [2], where 250 000 reconfigurations can be required
for a single experiment [3]. Consequently, short reconfigura-
tion times are paramount, even if simple low-cost FPGAs such
as the Lattice iCE40 are used [4].

Most common approaches for bitstream size reduction ap-
ply compression algorithms [5]–[7]. Such approaches can be
classified by whether the bitstream is decompressed on-chip
or off-chip.

On-chip approaches require additional properties of the
FPGA. Yan et al. [5] evaluated several device-independent
compression algorithms. Their on-chip variants, however, re-
quire dynamic partial reconfiguration. Many Xilinx FPGAs

(e.g. Spartan 3 and the 7 Series) reduce their bitstream size by
applying the same configuration data to multiple parts of the
FPGA [8]. This, however, requires dedicated hardware in form
of the multiple frame write register. Intel Stratix 10 includes
the decompression directly in the hardware that manages the
device configuration [9].

Dedicated decompression hardware and dynamic partial
reconfiguration are common for high-end and mid-end FPGAs,
but are usually missing in low-cost FPGAs.

Off-chip approaches do not depend on the properties of the
target FPGA. As a result they are also feasible for low-cost
FPGAs. Unfortunately, off-chip approaches cannot reduce the
reconfiguration time since the uncompressed bitstream still has
to be transmitted to the FPGA. A simple off-chip approach is
the application of general-purpose data compression programs
like gzip [10]. Koch et al. [6] as well as Yan et al. [5]
have shown that it reduces the bitstream size more than on-
chip methods in nearly all cases. Wolf and Lasser, on the
other hand, encode the length between set bits to provide a
lightweight bitstream compression algorithm for Lattice iCE40
FPGAs [7].

iCE40 devices are low-cost and low-power FPGAs produced
by Lattice. Shah et al. presented a completely open-source
synthesis toolchain for all iCE40 devices [11]. This enables
a level of transparency and reproducibility that make iCE40
FPGAs highly suited for scientific research [4], [12], [13] and
security sensitive applications [14].

This paper introduces methods to reduce the bitstream
size and the reconfiguration time for low-cost Lattice iCE40
FPGAs. They require neither the repetition of synthesis steps
nor special properties of the target FPGA or its environment.

Our main contributions are:
• Two adapted and three new methods to reduce the bit-

stream size of Lattice iCE40 FPGAs. The methods are
independent of the synthesis toolchain and do not require
any modification of the target system.

• Implementation of the five methods for iCE40 HX8K,
HX1K, and LP1K devices in an open-source tool, that
is available at https://github.com/nmi-leipzig/compact
bitstream.

• Evaluation of the size reduction capability of the five
compaction methods with five example projects in com-
bination with the vendor toolchain and the open-source
toolchain. We also measured the effect of the size reduc-
tion on the reconfiguration time.

https://github.com/nmi-leipzig/compact_bitstream
https://github.com/nmi-leipzig/compact_bitstream


II. BACKGROUND ICE40

Lattice iCE40 FPGAs provide between 384 and 7680
lookup tables (LUTs) for logic design. In addition, they offer
up to 16 KiB of block RAM (BRAM) that can be used for
memory cells. Most devices also contain one or two phase-
locked loops. Only the Ultra Plus subfamily offers more hard
blocks, like digital signal processors, internal oscillators, or an
I²C block.

Like most modern FPGAs, iCE40 devices are based on
SRAM cells. The SRAM, in turn, is split between configu-
ration memory (CRAM) and block RAM. BRAM represents
only the contents of the embedded memory, while CRAM
represents every other aspect of the configuration. CRAM and
BRAM are each split in four banks. Each of which correspond
to a quadrant of the iCE40 physical chip.

During the configuration process, the chip clears the whole
CRAM while the BRAM is left unchanged [15]. Afterwards
the bitstream is loaded into the FPGA.

The bitstream for iCE40 FPGAs consists of two sections:
a comment section and a series of commands [15]. Only the
commands affect the configuration.

To write CRAM data, a couple of selection commands
followed by the actual write command are necessary. The
selection commands set the bank number, width, offset, and
height. Bank number, width, and offset select the actual chip
resources while the height defines the number of rows to
be written. The subsequent write command starts the writing
process and is followed by the actual data. Writing block RAM
data follows the same sequence of commands but replaces the
final command with a BRAM write command.

III. COMPACTION METHODS

Our approach to reduce the bitstream size consists of five
methods. Two of them are options that are built into the
proprietary vendor toolchain. We have reimplemented them
so that they can be used independently of the toolchain. The
remaining three methods are particular to our approach. In
short, they take advantage of the flexible bitstream format of
iCE40 FPGAs and exploit the fact that the CRAM is cleared
during the configuration process.

All five methods belong in the category of compaction
rather than compression since no explicit reversal of the size
reduction is required. The resulting bitstreams can be used
directly, do not require any additional processing steps, and
pose no further requirements on the target system.

A. Adapted Built-in Options

The synthesis toolchain provided by Lattice is called
iCEcube2. It provides two applicable options: one to skip the
comment section and one to skip selected BRAM banks. The
two options are not strictly intended for the purpose of size
reduction, but can lead to savings, as shown in Section V.

The comment section at the beginning has no influence on
the configuration and can safely be left out in order to reduce
the bitstream size.
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(a) Value persistence: Omit redundant selection commands.

height = 4

offset = 0

write CRAM
1100010000
0000000000
1110011001
0111010001

-109

height = 1

offset = 0

write CRAM
1100010000

height = 2

offset = 2

write CRAM
1110011001
0111010001

+3
+3
+4

(b) Zero row skipping: Exclude zero rows by splitting write
commands. The bank width of 109 bytes is specific for iCE40
HX8K FPGAs.
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(c) Chunk sorting: Group writes of the same size and apply value
persistence (see a).

Fig. 1. Examples for the newly proposed compaction methods. The left side
shows the selection commands and write commands before applying the
respective method. The right side shows the result. The deleted respectively
inserted parts are bold. Their sizes in bytes are indicated next to them.

The second option to skip BRAM banks is more interesting.
It is used for cases where either the initial content is not
relevant or the content is to be reused. The latter is the case, if
a configuration is subsequently replaced by another. Since the
BRAM banks are not cleared during reconfiguration, data can
be transferred from one configuration to the next. iCEcube2
facilitates this by skipping the BRAM write commands for
selected banks. Although it is possible to determine from the



bitstream alone whether a BRAM bank is being accessed, it
cannot be determined without further information whether the
access is based on the initial or transferred BRAM content.
Therefore, BRAM banks still have to be selected manually.

B. Utilization of Value Persistence

Our first novel method takes advantage of the fact that
previously set selection values are kept. The values set for bank
number, width, height, and offset are valid until a command
explicitly sets a new value. Hence, it is only necessary to set
a new value if the next write command requires a value that
differs from the current one (Fig.1a). This persistence of values
is already used in bistreams created by iCEcube2, although it
is not applied in every possible situation. We therefore use this
property more consistently in our approach to skip unnecessary
commands and to reduce the bitstream size.

C. Zero Row Skipping

CRAM can be written in chunks by manipulating height
and offset values. Due to the clearing of CRAM during
configuration, a not explicitly written CRAM row will have all
values set to zero. Consequently, all zero rows can be skipped
without changing the configuration (Fig.1b). Zero rows are
skipped by not including them in any chunk.

The skipping of rows introduces a small overhead for the
additional selection and write commands. Fortunately, the
overhead1 is always less than the data in one row. As a result,
the bitstream size is always reduced by skipping zero rows.

Although BRAM can also be written in chunks, there is no
practical advantage over skipping whole BRAM banks (see
Section III-A). Memory blocks within the BRAM are written
in columns. Therefore, it is necessary to write every single
row, i. e. the whole bank, in order to store the values of a
single block. While it is possible that only a part of a memory
block is used, the information about that has to be provided
manually. The reason is the same as for the manual selection
in BRAM bank skipping. The manual provision of memory
regions is labor-intensive, error-prone, and not practical.

Attempts to write only the first part of BRAM rows by
manipulating the bank width value resulted in unusable BRAM
content. Consequently, sub row granularity was not further
investigated, neither for BRAM nor CRAM.

D. Chunk Sorting

CRAM chunks can be written in an arbitrary order regarding
their offset. This allows to write the chunks of a single CRAM
bank ordered by their height. Due to the persistence of the
selection values, set height commands with the same value
can be skipped (Fig.1c). Consequently, only one set height
command per unique height value is required instead of one
per chunk. That way some overhead caused by zero row
skipping is mitigated.

1The overhead is 10 bytes or 80 bits for the additional CRAM write
command and setting new height and offset values, compared to the minimal
CRAM bank width of 182 bits for iCE40 LP384.

E. Implementation

All five compaction methods were implemented in a Python
application. This compaction tool takes an existing bitstream
file, applies the compaction methods, and writes the resulting
bitstream to an output file. As the tool works directly on
an existing bitstream file, it is independent from the used
synthesis toolchain and does not require the repetition of any
synthesis steps.

Currently, bitstreams for iCE40 HX8K, HX1K, and LP1K
FPGAs can be compacted by the tool. The selection stems
from the availability of suitable test device to the authors at
the time of the tool creation. Even so, the Python code was
written with the aim of extensibility to simplify the addition
of further iCE40 devices.

F. Applicability

The implementation of all five compaction methods relies on
the iCE40 bitstream format. All devices from the iCE40 family
share the bitstream format, therefore the five compaction meth-
ods can fundamentally be applied to them. The implementation
of each method has to still be checked for each device. iCE40
LP384 for example has a CRAM bank width of 182 bits.
Hence, each chunk has to contain a multiple of four rows.
Furthermore, iCE40 LP384 has no BRAM. Therefore, BRAM
skipping will not reduce the bitstream size.

The successful application of the five compaction methods
to other FPGA device families heavily depends on their
bitstream format. The bitstream format needs to meet the
following conditions:

• Comment skipping
– Bitstream contains comment
– Comment can be excluded from bitstream
– No influence of the comment on the configuration

• BRAM skipping
– Bitstream contains BRAM data
– BRAM data can be excluded from bitstream

• Utilization of value persistence
– Usage of selection commands
– Persistence of selection values
– No enforcement of explicit selection commands be-

fore a write command
• Zero row skipping

– Clearing of CRAM during configuration
– CRAM can be written partially

• Chunk sorting
– Utilization of value persistence possible
– Order of write commands can be chosen

A promising candidate for adaption is the Anlogic Ea-
gle device family. Its bitstream format is reasonably well
documented in Project Tang [16]. The bitstream contains a
comment and the CRAM is cleared during configuration [17,
p. 59].



IV. EXPERIMENTAL SETUP

To evaluate the proposed methods, five example projects
were chosen:

• blinky: A simple example design that is included in the
open-source toolchain.

• ehw: An evolved design to show the applicability to
Evolvable Hardware.

• attosoc: A minimal RISC-V system on a chip, that is used
for tests in the open-source toolchain.

• updater: A design that receives a new configuration,
decrypts it (AES) and writes it to flash. This represents
a typical secondary configuration.

• picosoc: A complete RISC-V system on a chip [18] with
high resource utilization to find the limitations of our
methods.

All projects were synthesized by the vendor toolchain iCE-
cube2 and the open-source toolchain presented by Shah et al.
[11].

For each original bitstream, two compacted variants were
created with our compaction tool. The built-in variant only
employed the two built-in options, while the compact variant
used all five proposed compaction methods. This serves to
differentiate between the effect of the existing built-in options
and the three newly proposed methods. The generation of the
compacted bitstreams always took less than 0.3 s on an Intel
i5-7200U CPU.

For time measurements, an iCE40 HX8K breakout board
(ICE40HX8K-B-EVN) was used. The breakout board is
equipped with an FTDI USB interface which was connected to
a PC system. The configuration process and its measurement
were executed directly by the compaction tool. Each configura-
tion process for each of the 30 bitstreams was repeated 10 000
times to compensate for interference by the operating system
or the like. The opening and closing of the USB connection
was not included in the time measurement. Practical applica-
tions commonly connect to the FPGA directly so the exclusion
of the USB overhead produces more applicable results.

Finally, the five original bitstreams were compressed with
the icecompr tool by Wolf and Lasser [7] and with gzip2

[10]. The off-chip compression tool icecompr is the only other
available size reduction method for iCE40 bitstreams, while
gzip had shown great size reduction capabilities for bitstreams
in previous work [5], [6].

V. EXPERIMENTAL RESULTS

The bitstream size was reduced for every example project
and with both toolchains. Table I shows the sizes for all 30
bitstreams and the used lookup table and BRAM resources.

The built-in options as well as all five methods together
lead to a reduction of the bitstream size. The built-in options
generate distinct bitstream sizes depending on the number of
skipped BRAM banks. This leads to a lower limit of 119 kB.

The size of the compact bitstream depends heavily on the
project and the toolchain. As shown in Table I, ehw was

2Version 1.9, compression level --best

TABLE I
BITSTREAM SIZES AS SYNTHESIZED BY ICECUBE2 (IC) AND THE

OPEN-SOURCE TOOLCHAIN (OS) IN COMPARISON TO THE COMPACTED
VARIANTS, SUPPLEMENTED BY THE USED FPGA RESOURCES.

Project Tool- Size (bytes) LUT BRAM
chain original built-in compact (7680) (32)

blinky IC 135180 118642 11071 35 0
OS 135100 118642 23489 38 0

ehw IC 135180 118642 27402 462 0
OS 135100 118642 36765 463 0

attosoc IC 135180 126872 93865 1776 4
OS 135100 122760 57149 1686 4

updater IC 135180 118642 94674 2474 1
OS 135100 122760 74322 2579 2

picosoc IC 135180 130984 128947 5219 6
OS 135100 126872 126293 5153 6
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Fig. 2. Reconfiguration time as a function of bitstream size. The time value
is the arithmetic mean over all measured reconfiguration times of bitstreams
of that size. The colors encode the compact, built-in, and original variants.
The compact variants are labeled with project and toolchain.

reduced substantially by 79.7 % and 72.8 % for iCEcube2
and the open-source toolchain respectively. In contrast, only
a small, albeit reasonable reduction was achieved for picosoc.
This is caused by the high resource utilization of this project.

Beside LUT and BRAM utilization, the choice of rout-
ing resources also influences the bitstream size. The open-
source toolchain uses global distribution network for blinky
while iCEcube2 uses only local connections. Since the global
distribution network requires further and more distributed
configuration bits, the compact size more than doubles.

Fig.2 shows the linear relation between reconfiguration time
and bitstream size. There is only a very small fraction of the
reconfiguration time that is independent from the bitstream
size. Consequently, statements for the bitstream sizes are also
applicable to the reconfiguration times.

Although the Python interpreter and the USB connection
had a large potential for interference, the measured reconfigu-
ration times for each bitstream deviate less than 1.4 ms from
the mean.



TABLE II
SIZES OF COMPACTED AND COMPRESSED BITSTREAMS RELATIVE TO

THE ORIGINAL SIZE AS SYNTHESIZED BY ICECUBE2 (IC) AND THE
OPEN-SOURCE TOOLCHAIN (OS), SUPPLEMENTED BY THE FPGA

RESOURCES UTILIZATION.

Project Tool- Ratio to original size (%) LUT BRAM
chain compact icecompr gzip (%) (%)

blinky IC 8.2 0.6 0.6 0.5 0
OS 17.4 1.7 0.6 0.5 0

ehw IC 20.3 4.0 3.0 6.0 0.0
OS 27.2 5.1 3.6 6.0 0.0

attosoc IC 69.4 21.2 20.3 23.1 12.5
OS 55.0 16.6 15.3 22.0 12.5

updater IC 70.0 26.3 24.9 32.2 3.1
OS 55.0 23.7 23.1 33.6 6.3

picosoc IC 95.4 49.5 46.7 68.0 18.8
OS 93.5 46.3 43.7 67.1 18.8

The size relative to the original size is shown in Table II
for the compact bitstreams and the compressed versions. Both
compression algorithms achieve better size reductions than the
compaction methods. They can reduce picosoc by more than
50 % and blinky even by 99.4 %. While gzip is always better
than icecompr, the difference is small in relation to the overall
size reduction.

VI. DISCUSSION

Our results show that both the bitstream size and recon-
figuration time were reduced for all projects, in most cases
significantly. As expected, bitstream size and reconfiguration
time are almost directly proportional. Therefore, our method
to reduce the bitstream size is a very effective approach for
decreasing the reconfiguration time.

When comparing the compact bitstream size and the re-
source utilization in Table I, a direct, but not linear relation
becomes evident. The missing aspect is the distribution of
used resources between the respective CRAM and BRAM
banks. Updater synthesized with iCEcube2 uses less resources,
nevertheless its compact size is larger than updater synthesized
with the open-source toolchain. The open-source toolchain
spreads the resources over less CRAM and BRAM banks, thus
the proposed compaction methods are more effective.

Especially, applications that use multiple configurations
profit from our compaction methods. While the most re-
source intensive configurations of the application can be com-
pacted only slightly, smaller, secondary configurations benefit
strongly. Original picosoc and updater cannot fit in a 256 kB
flash memory together. The compact versions, however, have
even enough memory left to add ehw.

In addition, applications that require numerous reconfigura-
tions can benefit. The duration of Evolvable Hardware experi-
ments with 250 000 reconfigurations (e.g. [3]) is shortened by
more than 11 h.

The off-chip compression by icecompr and gzip achieve
better size reduction. Nevertheless, they increase the recon-
figuration time and cost for additional hardware, because the
bitstream has to be decompressed externally. The lightweight
icecompr reduces the bitstream sizes nearly as well as the

more resource intensive gzip. This suggests, that lightweight
hardware decompression support would result in the best
compromise between cost and size reduction. Additionally, the
compressed sizes increase if the compact sizes increase. This
indicates that the harder to compact bitstreams indeed contain
more information and are not just unfortunate cases.

As Yan et al. [5] point out, better size reduction at the cost
of low throughput is undesirable for productive systems. Our
compaction methods do never impede on the throughput of the
configuration data since they do not require a decompression
step. In the absence of hardware decompression, they are the
best solution for bitstream size reduction and speed-up of
reconfiguration times.

VII. CONCLUSION

In this work we proposed two adapted and three new meth-
ods to compact the configuration bitstream of iCE40 FPGAs
which lack the requirements for sophisticated compression
methods. We have implemented these methods for iCE40
HX8K, HX1K, and LP1K devices. The methods and our tool
can be used independently from the synthesis toolchain.

The results show that the bitstream size is reduced substan-
tially in most cases. This also significantly reduces the time
needed to reconfigure the device.

Our methods requires neither repetition of synthesis steps
nor modification of the target device. The compaction methods
can easily be integrated in existing productive workflows.

Future work will characterize the relationship between re-
source utilization, bitstream entropy, and compaction results.
This can be combined with modifications of the synthesis
toolchain to improve the effect of compaction. One possibility
is the inclusion of resource distribution metrics into the place
and route algorithms.

Furthermore, the applicability to other low-cost FPGAs, like
the Anlogic Eagle device family, will be evaluated.

DATA AVAILABILITY

The time measurements and the bitstreams that support
Table I, Table II, and Fig.2 are openly available at https:
//zenodo.org/record/6735068.
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