ﬁ EasyChair Preprint

Ne 8535

Upgrading Marvell Switch EEPROM and
SPI-Flash Version on Line Card

Karthik A Patil and Sowmya K Nag

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 25, 2022

Upgrading Marvell Switch EEPROM and SPI-Flash
Version on Line Card

Karthik Patil A
Department of Electronics and Communications
R V College of Engineering
Bengaluru, India
karthikpatila.ec18 @rvce.edu.in

Abstract—In a router, the version of the firmware needs to
be upgraded on timely basis. Upgrading the version of Marvell
switch EEPROM and SPI-Flash on the line card of the router.
If the greater version is available then the current version the
upgrade has to be done automatically. In order to auto upgrade
the version, there should be a code to detect the available version
which is grater then current version. Developing the working
script that will successfully upgrade the version of the EEPROM
and SPI-Flash. The script should be able to read the current
version from the system and can able to compare it with available
version. Before that, working script that is used for upgrading
the version should be built, the system file needs to be updated
with name and specifications of the memory units, tag values
are assigned to the EEPROM and SPI-flash.The upgrade file, on
which code for version upgrade written is tested on hardware
lab devices and its verified that version of the EEPROM and
SPI-flash has upgraded and it should reflect when checked for
system version.In this whole process there are changes has to be
brought into related files so that these files helps auto upgrading
the version on CLI. If the unit testing of the code is passed then its
further proceeded for testing code through CLI. After successful
testing and validation finally the script needs to be committed for
reviewing. The outcome of the PCT are, the committing speed is
increased for EVO about 5% and decreased about 4% to Junos.
The toxic PR of the Junos has been resolved. The multi touch
commits are increased about 2% fot EVO and about 10% for
Junos. The build infra failure rate has been decreased about 1%
to EVO and 6.0% for Junos. Due to changes made the sandbox
buildtime has increased. The test time decreased for EVO about
0.6% and increased for Junos about 0.4%.

Index Terms—EEPROM - Electrically Erasable Programmable
Read only Memory, SPI-flash - Serial Peripheral Interface Flash,
CLI - Command Line Interface

I. INTRODUCTION

Software versioning is a way to categorize the unique states
of computer software as it is developed and released. The
version identifier is usually a word, a number, or both. Flash
memory is an Electronically Erasable and Re-Programmable
memory chip. The Flash memory contains the full Operating
System Image (IOS, Internetwork Operating System). This
allows you to upgrade the OS without removing chips. Flash
memory retains content when router is powered down or
restarted. Routers use flash memory, rather than disks, for
storing information. Flash storage media is significantly more
expensive and slower than disk storage, but the amount of
storage needed to run a router is relatively small compared to

Mrs. Sowmya Nag K
Department of Electronics and Communications
R V College of Engineering
Bengaluru, India
sowmyanagk @rvce.edu.in

the amount needed to run a general-purpose computer. Flash
also has the important benefit that it tends to be more reliable
than disk storage.

EEPROM which is Electrically Erasable Programmable
Read-Only Memory, is a type of memory in which data is
read, written, and erased at the byte level. Flash memory, on
the other hand, which is a type of EEPROM, is architecturally
arranged in blocks where data is erased at the block level and
can be read or written at the byte level. SPI flash memory
and EEPROMs are both considered non-volatile memory.
Non-volatile memory means that the device is able to retain
data without requiring a constant power supply, allowing
devices to store information even when powered off. They
are both electronically writable and erasable memories and
are microcontroller-based applications, meaning they are used
either on-chip or off-chip to store information.

While flash memory and EEPROM devices are both capa-
ble of storing information used in embedded devices, their
architecture and operations for reading, writing and erasing
data differ slightly. SPI flash memory, also known as flash
memory, has become widely used in the embedded industry
and is commonly used for storage and data transfer in portable
devices. Common devices include phones, tablets, and media
players, as well as industrial devices such as security systems
and medical products. Flash memory is particularly useful for
static data applications such as USB flash drives.

II. BACKGROUND

The upgradation process has taken manually before devel-
oping the script for firmware upgradation which will upgrade
the firmware of the ethernet switches automatically. Where the
new version image is built and one of our Engineer should visit
the site and perform the upgradation of the firmware manually.
This process has to take weeks, time and cost are wasted to do
the same. And the router will be unavailable until the upgrada-
tion finish. Now, the whole upgradation process will complete
just in minutes and with one CLI command. Developing the
code which will upgrade the firmware of memory elements
like EEPROM and SPI-Flash to the latest available version.
Testing the script in the hardware lab devices. Verifying the
results and getting approval from the review team. Achieving
successful system testing for implementation of the script.

The main objectives of the project are: To build a sandbox of
latest version on both Junos OS and EVO OS. Adding required
repositories where files that need to be changed are present.
Changes are brought on respective repositories. To build a
working script that will upgrade EEPROM and SPI-Flash to
the higher version. Additional script are written to support
upgrade. Building the final image on Junos OS and EVO OS
for testing on RE CLI. To unit test the script and analysing
the results. Testing complete modification on the CLI. Getting
approval form the review team. Committing the script for
system testing and final shipping for final implementation.

III. IMPLEMENTATION

To develop a code and test its working, first one should build
an environment where the code can be written and tested.
Here the environment is BaaS server and Linux Operating
system. Creating sandbox which will work on Junos and EVO
operating system of latest version. Developing the code for
upgrading the firmware version of the EEPROM and Serial
Peripheral Interface Flash (SPI-FLASH). Adding repositories
to the sandbox where the script files needs to be updated
to support the version upgradation. And these changes are
brought on both Junos and EVO OS. After the script is
developed and changes are updated, the images consisting of
all the modifications are built independently on junos and EVO
sandbox which will be subjected for unit testing on router.
Verifying the results of unit test and further testing script on
Command Line Interface (CLI) of the router engine. Once
the testing is successful, code is submitted for reviewing and
review team will verify the changes and approve it for further
commit.The code will be implemented after passing the system
testing. The unit test results and the steps that are used to
upgrade are sent to systest team. And script will be approved
for implementation

| Creating .bin files H Upload image I_.I Complce‘r‘:r::ryﬁle

Upload to line card

|lmplcmcnla(mn H Hardware test HTeslandRevlewscnle Run the script

Fig. 1. Design Methodology

Build as a Service (BaaS) is a next generation container-
based virtual build envi- ronment for development-based work-
flows. It is more of an on-demand workload driven envi-
ronment rather than a static VM. This means that hardware
resources are allocated to you when in use and they are
returned when not in use. It uses a high-end storage solution
with container on Kubernetes.

A. Creating Volume and Sandbox

To checkout code from the source code repository, one need
to create a sandbox. One can either create a new sandbox or

checkout a prebuild sandbox. The prebuild sandbox contains
precompiled objects and therefore, the builds will be faster. To
create a new sandbox in the volume, run a traditional mksb
command if you are checking out code from the Junos-2009
repository. This will take about 10 minutes.

As prebuild sandboxes are already built and available on the
cloud. One need to first checkout a prebuild sandbox to your
sandbox. This will clone volume from the prebuild sandbox to
your volume. As prebuild sandboxes are pre-compiled objects,
it makes builds faster and also ensures that the code that
one checked out will build without errors. Building means
compiling the code. The baas build command is used to create
a build.

B. Code Design

The code is written on the specific repositories where on can
access the code. The script for version upgrade is written on
the file bugatti_switch_upgrade.sh this file is built on specific
repository called platform_utiles on which this script file can
be accessed. On Evo sandbox script for upgrade is developed,
the code for compare the current version and available version
is build on capdb repository. On hardware d repository the
code is built to call the files for get the current version and
check the available version. It also pass the parameters for
those files which are called to get the version. This file has the
greater usage when it comes to auto upgrade. All the changes
which are brought on these repositories will supports the
auto upgrade the firmware version. Because once the chassis
handled over daemon, manually passing of the parameters
won’t be possible.

The code required for upgrade the EEPROM and SPIFlash
version using the bin files should be developed in such a way
that it should copy the bin files from the router standard folder
to the present working path. The data has to be written byte
by byte to the EEPROM and can be written in bulk for flash.
Since, there are available script that will do the upgrade can be
called here in the script so the upgrade is done. The specific
parameters should be passed to the script to upgrade particular
units like EEPROM and SPIFlash these are ethernet switches
and upgraded separately by calling bugatti_switch_upgrade.sh
file. The code is written in such a way that the current
version can be accessed using the same file only by passing
the different parameters. The parameters passed to check the
verion are "FRU”,’version”, “eeprom/spiflash” and for up-
grade the parameters should be passed are "FRU”, "upgrade”,
“eeprom/spiflash”, “path to image files”. The data of the
image file is shown in Figure 3.1. Meanwhile size of EEPROM
.bin image file is 6kb and size of the SPIFlash file is ablout
683kb. Where these files are passed with upgrade script for
version upgrade.

Same parameters will be present in fdt.h file. Which
will take care of passing parameters and calling
bugatti_switch_upgrade.sh ~ file with these parameters.
Which will helps the upgradation when daemon are taken
it. On Junos sandbox there jfirmware_data file needs to be
updated so that the router will detect the EEPROM and

SPIFlash and their specifications like available version which
is taken from here. And EEPROM and SPIFlash systems will
be reflected when user whats to see the system present in
router along with their specifications.

C. Final Image Building

Once the complete code is developed and script are
modified for support the upgrade. The independent images
are built on junnos and evo platforms. tese images are
consisting of all the changes and are zipped in .tgz fromate
which should be unzipped on the router. The sample of
the image from junos are junos-vmhost-install-mx-x86-
64-22.3120220526_0838_kpatila.tgz, and for evo side is
Jjunos-evo-install-ulc-mx-x86-64-22.3120220526102452-
EVO_kpatila.tgz. These images are copied onto the router for
testing the changes. Good image must be build in order to
proper working on the router or else the router components
will crash and it will be recovered manually. These images
are built to test the code change for CLI testing.

IV. TESTING THE SCRIPT
A. Unit testing

The main objective of unit testing is to isolate written code
to test and determine if it works as intended. Unit testing is
an important step in the development process, because if done
correctly, it can help detect early flaws in code which may be
more difficult to find in later testing stages.

A unit test typically comprises of three stages: plan, cases
and scripting and the unit test itself. In the first step, the unit
test is prepared and reviewed. The next step is for the test
cases and scripts to be made, then the code is tested. Test-
driven development requires that developers first write failing
unit tests. Then they write code and refactor the application
until the test passes.

root@sw-bugatti-g-fpce: /var/tmp# ./bugatti_switch_upgrade.sh fpc version spiflash
2020-11-27

root@sw-bugatti-g-fpce:/var/tmp# ./bugatti_switch_upgrade.sh fpc version eeprom
20200225

Fig. 2. Versions before upgrading

Here the bugatti_switch_upgrade.sh file along with .bin
image files of EEPROM and SPIFlash are tested manually
and the errors are debugged. The code is written in a way if
the image files are not found on the line card it is copied from
the router directory where it is available. And the parameters
are also passed manually to test the upgrade. Debugging the
errors and developing the complete working script are main
objectives of the unit testing. Here in this section the version
upgrade is tested.

Taking note of the versions of the EEPROM and SPI-
FLASH before upgrade. The Figure 2. shows the version of
EEPROM and SPI-FLASH before upgrading. The version of
EEPROM is 20200225 and 2020-11-27. In which where the
major and minor version are year and month, so the version
that will printed on the CLI console are 2020.2.0 for EEPROM

and 2020.11.0 for SPIFlash. Figure 2 shows the current version
of the ethernet switch’s before upgrading.

c_eeprom_up

(1 use
tmp# i

Fig. 3. EEPROM version Upgrading

In the Figure 3, EEPROM upgradation is processed. The
upgradation file along with suitable parameters are passed for
upgrading EEPROM. The data erased and rewritten byte by
byte and not as whole block. The code will check for the
image bin file which is necessary for version upgrade, and the
i2c master and slave busses are selected. Here the available
version is 20220229 where current version is 20200225. The
upgrade will only continue if the available version is higher
than current version. After the upgrade is complete the upgrade
successful message will be printed. The GPIO pins are toggled
before upgrading the GPIO pins are set to high, so that the
data can be written on EEPROM. After upgrade the GPIO pin
will be value back to 0. So that data cannot be interpreted on
the EEPROM.

B. Unit Testing Results

The SPIFlash can be upgraded by executing the main file
marvell-spi-flash with the upgrading image file as a parameter.
Here, the current version of the SPIFlash is erased and the
version that is passed while executing the command are
programmed. After the completion SPIFlash upgrade, one
should check that the line card should reboot properly. The
new version will be processed only after one should do power
cycle, that is line card should be turned off and then on. Then
the new version will be accepted. While doing power cycle if
there is any anomaly in the script then the old version will be
there are backup it will erase the upgraded version by installing
old version.

For EEPROM upgrade is shown in Figure 2, the size of the
image file is 8184 bytes where its written by taking 255 bytes
at a time. In upgrading the EEPROM only upgrading version
to the higher version is only possible, the script is built in
such a way that downgrading the version is not possible. Once
the EEPROM is upgraded it cannot be downgraded using this
script.

After the Unit Testing of the code is successfully the
changes and script are tested in CLI. The entire changes are
taken note. The auto upgradation is tested.

root@sw-bugatti-lab-b-fpc@:/var/tmp# marvell-spi-flash -i
Device Info 3:0:9

res2 (pysical PP bar 2 addr): 7fcfeoeoeee

res4 (pysical PP bar 2 addr): 7fcf4000000

resource@ mapped to @x7ff2d5d2deee, size=0x100000

Read SPI Flash address ©x40038

Flash Version 2022-06-27

root@sw-bugatti-lab-b-fpc@:/# lc_marvel_eeprom_upgrade.sh version
i2cid(exeds8f) Fetch Successfull

GPIO ETHSW_EPROM_PRG_EN : 3810

Control of GPIO to userspace already exported

Setting direction of GPIO as out

current value of GPIO = 1

value of GPIO =1

i2c bus corresponding to master: 15

i2c bus corresponding to ethsw eeprom: 16

Current version of the EEPROM is 20228329
EEPROM_VERSION-20220329

root@sw-bugatti-lab-b-fpco:/#

Fig. 4. Upgraded Version of the Ethernet switches

Figure 4, shows that the version of the EEPROM and
SPIFLASH firmware version after the upgradation. To find
the current version of the Ethernet switch like EEPROM
and SPIFLASH execute bugatti_switch_upgrade.sh file along
with the parameters “FRU”, “version”, "eeprom/spiflash”
the version will be printed on the console. Another method
is to execute the command marvell-spi-flash -i which will
give the Flash version. Here, the Flash version is 2022-06-27.
Meanwhile, for EEPROM also there are generic script where
like lc_marvel_eeprom_upgrade.sh executing this script along
with parameter “version” it will give the EEPROM version
which is 20220329. By this the UT test results are verified that
the upgrade script bugatti_switch_upgrade.sh works correctly.
And now the complementary changes that are made to support
the auto upgradation of the script are tested on CLI of the
router engine.

C. CLI Testing

The daemon will handle every procedure, where the upgra-
dation also taken care by daemon. So the auto upgradation
should be tested and verified before the changes made are
implemented. For CLI testing the .tgz image should be built
independently on junos and evo platform.

The images will look like junos-vmhost-install-mx-x86-
64-22.3120220527_0829_kpatila.tgz for junos and junos-evo-
install-ulc-mx-x86-64-22.3120220527111852-EVO_kpatila.tgz
for evo side. The changes that are made in junos and evo
are captured in those image. The junos vmhost image are
installed onto the router for support the working condition and
to apply the changes on the junos side. It will take some time
to install the junos image and reboot the router. The changes
are visible in the directory on the router. Mainly checking
that the SPIFlash and EEPROM changes in jfirmware_data
file where the current and available version tag value and the
image file to upgrade are modified. The available version is
taken from jfirmware_data.

Once the evo image is updated on the line cards, the changes
that are made in jfirmware_data file are now visible on the

Fig. 5. CLI console output after updating evo image

CLI console. Figure 5, which show that the changes that are
brought. The MARVELL SW EEPROM and MARVELL SW
SPIFLASH which are present on FPC 0 linecard along which
that the tag value, current version, available version and the
status of the system units are printed on the console. One
can see that current version of the SPIFlash and EEPROM
are 2020.11.0 and 2020.2.0 respectively. Available version
are 2022.1.0 and 2022.1.0 for both units. These available
version are modified manually during the time of upgrade in
Jfirmware_data file.

The upgrade will only happen when the available version
is greater than current version during auto upgrade or CLI
upgrade. If the available version is equal or lower than current
version the upgrade won’t happen it will give daemon timeout
error, where the daemon could not able proceed for upgrade.

Fig. 6. CLI console output after upgrading

After the user executes the command “request system
firmware upgrade fpc slot 0” command on router engine
CLI, which will starts checking every component present on
FPC 0 line card for version available for upgrade. And it
will proceed for upgrade if the upgrade is available. The
status will change according to the outcome. The status will
change from "OK” to "UPGRADED SUCCESSFULLY” for
successful upgrade and "UPGRADE FAILED” if any errors
occurred while upgrading.

V. RESULTS

The results of the firmware upgradtion will be available
after the Pre commit tool completes its job. The Job consists
of complete testing of the script, adaptability of the script and
the effects caused be script on other components of the router.
From the Figure 7, shows the outcome of the pre commit tool.
Where the committing speed is increased for EVO about 5%

and decreased about 4% to Junos. The toxic PR of the Junos
has been resolved. The multi touch commits are increased
about 2% fot EVO and about 10% for Junos. The build infra
failure rate has been decreased about 1% to EVO and 6.0%
for Junos. Due to changes made the sandbox buildtime has
increased. The test time decreased for EVO about 0.6% and
increased for Junos about 0.4%. The overall result is the script
for ethernet switch upgradation is accepted and shipped in
upcoming releases to MX304 router.

. Documents | Contact Us |

0 Home | Pipeline | PCT Pipeline | Executive Metrics | Operational Metrics | CD Health | Time Profile | BAAS | Pre-Comit ~Transfor

Today
Cl Health Commit Health Pre-Commit Health Pre-Commit Efficiency

AVG LGGRNS Commit Velocity Job Failure Rate Job Time in Hrs

unos o nos evo nos evo aunos
8 1 33 36 29% 28% 12 8

Toxic PRs Avoidable Multi Touch Commits Build Infra Failure Rate Build Time in Hrs

15% 3% 1.4% 06% 21

1 Build Time (Hrs) Commit Time in Days Test Infra Failure Rate Test Time in Hrs

unos

unos unos £uo unos £
3 5 0.6 0.4 5.8%

4:5% 3.4 18
Fig. 7. Pre Commit Tool Results

VI. CONCLUSION

In most cases, EEPROM was used to allow software up-
grades to installed devices. EEPROM download was generally
accomplished through a local serial port. A CPU is needed,
along with memory for storage of both the management
code and the MIB data structures. The code store is usually
implemented in nonvolatile, memory; EEPROM or Flash ROM
is typically used. This allows the management capability to
be available upon device initialization, without the need for
either code download or a local mass storage device (i.e. disk),
while still allowing code modifications, bug fixes, and minor
upgrades without a hardware change.

The main objective is to build a suitable script to upgrade the
Mravell Switch EEPROM and SPIFlash. And make the switch
visible on CLI console window. For that, the separate script is
built for upgrading. So that the firmware upgradation will be
done with one command. The changes and modification are
brought in linked files which will support the auto upgradation.
And the code is tested in various steps like Unit Test, CLI
testing, verification and Pre Commit Testing. After the code
successfully tested and the results are validated the code
will be released for customer. The EEPROM and SPIFlash
firmware auto upgradation script has proven to be efficient in
saving time and resources.

REFERENCES

[1] M. Ziehensack and M. Kunz, “Smart ethernet switch architecture,” IEEE
Standards Asso. Ethernet IP@ Automot. Technol. Day, 2017.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

D. Valencic, “Vendors’ implementation of netconf standard on routers
and switches,” in 2020 43rd International Convention on Information,
Communication and Elec- tronic Technology (MIPRO), IEEE, 2020, pp.
536-541.

A. Astarloa, J. L azaro, U. Bidarte, J. A. Araujo, and N. Moreira, “Fpga
imple- mented cut-through vs store-and-forward switches for reliable
ethernet networks,” in Design of Circuits and Integrated Systems, IEEE,
2014, pp. 1-6.

T. Docquier, Y.-Q. Song, V. Chevrier, L. Pontnau, and A. Ahmed-Nacer,
“Deter- mining a tight worst-case delay of switched ethernet network
in iec 61850 architec- tures,” in 2020 IEEE 45th Conference on Local
Computer Networks (LCN), IEEE, 2020, pp. 184-194.

M. Davies, A. Lines, J. Dama, et al., “A 72-port 10g ethernet
switch/router us- ing quasi-delay-insensitive asynchronous design,” in
2014 20th IEEE International Symposium on Asynchronous Circuits
and Systems, IEEE, 2014, pp. 103—-104.

K. Solanki et al., “Design of efficient noc router for chip multiprocessor,”
in 2016 International Conference on Inventive Computation Technolo-
gies (ICICT), IEEE, vol. 3, 2016, pp. 1-4.

M. P. Daf and B. B. Saynkar, “Performance and evaluation of loopback
virtual channel router with heterogeneous router for on-chip network,”
in 2014 Fourth International Conference on Communication Systems
and Network Technologies, IEEE, 2014, pp. 1065-1069.

B. Ramanathan, “Deadlock free hardware router with dynamic arbiter,”
in 2018 8th International Conference on Intelligent Systems, Modelling
and Simulation (ISMS), IEEE, 2018, pp. 110-113.

B. Dec and A. Pfitzner, “Feasibility studies of eeprom memory imple-
mentations in vestic technology,” in 2018 25th International Conference”
Mixed Design of Inte- grated Circuits and System”(MIXDES), IEEE,
2018, pp. 275-279.

V. R. Banala, C. Hao, and C. Hutchens, “Secure interface architecture
for charge trap transistor (ctt) based eeprom,” in 2019 IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS),
IEEE, 2019, pp. 219-222.

A. Pervaiz, M. Younas, A. G. Hashmi, and H. W. Malik, “An economical
distributed design of a hardware based router,” in Student Conference
On Engineering, Sciences and Technology, IEEE, 2004, pp. 86-92.

Y. Sekiyama, Y. Fujihara, T. Hayashi, et al., “Timing-oriented routers for
peb layout design of high-performance computers,” in 1991 IEEE Inter-
national Con- ference on Computer-Aided Design Digest of Technical
Papers, IEEE Computer Society, 1991, pp. 332-333.

T. Lee and Y.-Y. Huang, “Analysis and synthesis techniques of router
circuits,” in 2015 4th International Conference on Computer Science and
Network Technology (ICCSNT), IEEE, vol. 1, 2015, pp. 838-841.

A. A. Mulajkar, S. K. Sinha, and G. S. Patel, “Tcmp and chipper router
design for power efficient network on chips,” in 2021 International
Conference on Computer Communication and Informatics (ICCCI),
IEEE, 2021, pp. 1-4.

W. Hou, L. Guo, Q. Cai, and L. Zhu, “3d torus onoc: Topology
design, router modeling and adaptive routing algorithm,” in 2014 13th
International Conference on Optical Communications and Networks
(ICOCN), IEEE, 2014, pp. 1-4.

X. Zhao, G. Shen, W. Shao, and S. K. Bose, “Energy efficient and
bandwidth guaranteed design for optical network with mixed sleep-
enabled and non-sleep- enabled router cards,” Journal of Lightwave
Technology, vol. 34, no. 4, pp. 1072— 1085, 2015.

C. H. Ng, “A symbolic-interconnect router for custom ic design,” in 21st
Design Automation Conference Proceedings, IEEE, 1984, pp. 52-58.
T. Datta and C. Muralidharan, “Definition, design development of the
ixe2424 network switch/router asic,” in Proceedings of ASP-DAC/VLSI
Design 2002. 7th Asia and South Pacific Design Automation Conference
and 15h International Con- ference on VLSI Design, IEEE, 2002, p. 801
P. Yao, H. Wang, Y. Liu, J. Niu, Z. Zhu, and L. Lin, “Integrated railway
smart grid architecture based on energy routers,” Chinese Journal of
Electrical Engineering, vol. 7, no. 4, pp. 93—-106, 2021.

M. D. Moffitt, “Maizerouter: Engineering an effective global router,”
IEEE Transac- tions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 11, pp. 2017-2026, 2008.

A Kamaraj, S Ramya, et al., “Design of router using reversible logic
in quantum cel- lular automata,” in 2014 International Conference on
Communication and Network Technologies, IEEE, 2014, pp. 249-253

