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Abstract — This article examines the Dirichlet problem 

for the Monge-Ampère equation in the polydisc. It 
demonstrates that a solution exists for the Dirichlet problem 
when the boundary function is extended in a 
plurisubharmonic manner to a small neighborhood of the 
boundary of the domain. Based on the results of Walsh and 
Sadullaev, the continuity of the solution and its construction 
method are established. This study holds significant 
importance for both theoretical mathematical problems and 
applications. 
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I. INTRODUCTION 

It is known that the classical Dirichlet problem involves 
finding a function that 𝑢(𝑧) is harmonic in 𝐷 and continuous 

in ∂𝐷, such that 𝑢|∂𝐷 = 𝜑,  where 𝐷 ⊆ ℝ𝑛 is a bounded 
domain, and 𝜑(𝜉) ∈ 𝐶(∂𝐷)  is a given function. The Dirichlet 
problem arose in the process of solving physical problems and 
is considered one of the most widely applied problems in the 
plane. In the classical case, the Dirichlet problem for 
subharmonic functions has a solution for any regular domain. 
In particular, if the boundary of the domain is smooth, this 
problem has a unique solution. When considering the 
existence of a classical solution for the Dirichlet problem in 
an arbitrary bounded domain, the solution is generally based 
on the Dirichlet problem for a sphere, the maximum principle, 
and Perron's method for subharmonic functions (see [3]). For 
plurisubharmonic functions, this problem is solved under 
additional conditions. 

II. STATEMENT OF THE PROBLEM 

The foundation of pluripotential theory lies in 
plurisubharmonic (Psh) functions and their connection to the 

Monge-Ampère operator (𝑑𝑑𝑐𝑢)𝑛. Here, as usual 𝑑 = ∂ + ∂ 

and 𝑑𝑐 =
∂−∂

4𝑖
. This theory has been extensively developed 

through the pioneering works of researchers such as E. 
Bedford, A. Taylor, J. Siciak, A. Sadullaev, and others (see 
[4],[5],[7]). 

In the class of plurisubharmonic functions the Dirichlet 
problem is formulated as follows: for a domain 𝐷 ⊂ ℂ𝑛 with 
boundary ∂𝐷 and a given function 𝜑 ∈ 𝐶(∂𝐷), we need to 
find a function 𝑢 ∈ 𝑃𝑠ℎ(𝐷) such that satisfies the boundary 

condition 𝑢∗(𝜉) = 𝜑(𝜉), 𝜉 ∈ ∂𝐷 and is extremal among all 
such functions that satisfy this condition, i.e., for any other 

function 𝜐, 𝑣 ∈ 𝑃𝑠ℎ(𝐷),    𝑣|∂𝐷 ≡ 𝜑(𝜉), the inequality 

𝑣(𝑧) ≤ 𝑢(𝑧) holds in 𝐷. 

In 1959, H.J.Bremermann (see [1]), using the Perron 
method, showed that if the domain is  strictly pseudoconvex 
domain, then the problem has a solution. In 1968, J.B.Walsh 
(see [2]) demonstrated that this solution is continuous. In 
1976, E. Bedford and B. A. Taylor (see [4]) proved that for a 
strictly pseudoconvex domain, the generalized Dirichlet 
problem for a function 𝜑 ∈ 𝐶(∂𝐷) has a unique solution 𝑢 ∈

𝐶(𝐷), and this solution satisfies equation (𝑑𝑑𝑐𝑢)𝑛 = 0 in 𝐷. 
If the domain under consideration is not strictly 
pseudoconvex, then additional conditions must be imposed on 
the boundary function. 

Now we consider the following Dirichlet problem in the 
polydisc 𝑈 ⊂ ℂ𝑛 

(𝑑𝑑𝑐𝑢)𝑛 = 0, 𝑢|∂𝑈 = 𝜑(𝜉), 

where the function 𝜑(𝜉) is a continuous function defined on 
∂𝑈. A.S. Sadullaev (see [5]) showed that this problem has a 

solution 𝑢 ∈ 𝑃𝑠ℎ(𝑈)satisfying the condition lim
𝑧→𝜉,𝑧∈𝑈

𝑢(𝑧) =

𝜑(𝜉), 𝜉 ∈ ∂𝑈 and that this solution is unique and continuous. 

III. THE DIRICHLET PROBLEM  FOR THE MONGE - 

AMPÈRE EQUATION IN POLYDISC WITH 

ADDITIONAL CONDITIONS ON THE BOUNDARY 

FUNCTION 

In this article, it is shown that the Dirichlet problem also 

has a solution when the boundary values of the function are 

given not on the entire boundary of the polydisc 𝑈2 ⊂ ℂ2, but 

only on its skeleton. First, we will examine this problem. 

Theorem 1. Let 𝑈2 ⊂ ℂ2 be a unit polydisc and let 𝑇2 ⊂

𝑈2 be its sceleton. Then  for any arbitrary 𝜑(𝜉) ∈ 𝐶(𝑇2) the 

Dirichlet problem (𝑑𝑑𝑐𝑢)2 = 0, 𝑢|𝑇2 = 𝜑(𝜉) has a unique 

solution  𝑢 ∈ 𝑃𝑠ℎ(𝑈2) ∩ 𝐶(𝑈2), 𝑢|𝑇2 = 𝜑(𝜉).      

Proof:  Since 𝜑(𝜉) ∈ 𝐶(𝑇2) , we construct the following 
function on 𝑈2 using the Poisson integral  

ℎ(𝑧1, 𝑧2) = ∬𝜑(𝜉1, 𝜉2)𝑃1(𝜉1, 𝑧1)𝑃2(𝜉2, 𝑧2)𝑑𝜉1𝑑𝜉2
𝑇2

   (1) 

  This function has the following properties: 

1)  the function ℎ(𝑧1, 𝑧2) – 2-harmonic function, i.e at each 

fixed point 𝑧1 = 𝑧1
0 ∈ 𝑈  the function ℎ(𝑧1

0, 𝑧2) is harmonic 

with respect to 𝑧2  and at  each fixed point 𝑧2 = 𝑧2
0 ∈ 𝑈 the 

function ℎ(𝑧1, 𝑧2
0)  is harmonic with respect to 𝑧1 .  

2) ℎ(𝑧1, 𝑧2) ∈ 𝐶(𝑈
2). Initially, we define the function 

𝜑(𝜉) on the entire boundary ∂𝑈2.  For this purpose, we first 
fix the point 𝑧1

0 which satisfies |𝑧1
0| = 1 on the boundary ∂𝑈2 
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and take �̂�(𝑧1
0, 𝑧2) = ∫ 𝜑(𝑧1

0, 𝜉2)𝑃2|𝜉2|=1
(𝜉2, 𝑧2)𝑑𝜉2. This 

function is continuous and expresses a harmonic function with 

respect to 𝑧2 and, in addition   �̂�(𝑧1
0, 𝑧2)||𝑧2|=1 = 𝜑(𝑧1

0, 𝜉2). 

Similarly, if we fix the point 𝑧2
0 which satisfies  |𝑧2

0| = 1,  the 

function �̂�(𝑧1, 𝑧2
0) = ∫ 𝜑(𝜉1, 𝑧2

0)𝑃1|𝜉1|=1
(𝜉1, 𝑧1)𝑑𝜉1 is 

continuous and  expresses a harmonic function with respect to 

𝑧1, moreover �̂�(𝑧1, 𝑧2
0)||𝑧1|=1 = 𝜑(𝜉1, 𝑧2

0).   

As a result the function 

�̂�(𝑧1, 𝑧2) =

{
 
 

 
 ∫ 𝜑(𝜉1, 𝑧2)𝑃1
|𝜉1|=1

(𝜉1, 𝑧1)𝑑𝜉1,    |𝑧2| = 1

∫ 𝜑(𝑧1, 𝜉2)𝑃2
|𝜉2|=1

(𝜉2, 𝑧2)𝑑𝜉2,    |𝑧1| = 1
  

is defined on the entire boundary  ∂𝑈2.  

To show its contuinity on the boundary,  we  consider it  at 
the arbitrary point (𝑧1

0, 𝑧2
0)  on the subset {|𝑧1| ≤ 1, |𝑧2| =

1} of  the boundary  ∂𝑈2.  For this, we consider the difference 
of the function as following:   

|�̂�(𝑧1, 𝑧2) − �̂�(𝑧1
0, 𝑧2

0)| ≤ |�̂�(𝑧1, 𝑧2) − �̂�(𝑧1
0, 𝑧2)| 

+|�̂�(𝑧1
0, 𝑧2) − �̂�(𝑧1

0, 𝑧2
0)|. 

 Using the continuity of the function 𝜑(𝜉) on 𝑇2, we see 
that, for  any ∀𝜀 > 0 there exists ∃𝛿1 > 0  such that   

|𝜑(𝑧1, 𝜉2) − 𝜑(𝑧1
0, 𝜉2)| < 𝜀                   (2) 

is true at the points  (𝑧1, 𝜉2) ∈ 𝑇
2, which satisfy  |𝜉2| = 1  and  

|𝑧1 − 𝑧1
0| < 𝛿1, it follows that   

|�̂�(𝑧1, 𝑧2) − �̂�(𝑧1
0, 𝑧2)| = 

= | ∫ 𝜑(𝑧1, 𝜉2)𝑃2
|𝜉2|=1

(𝜉2, 𝑧2)𝑑𝜉2 − ∫ 𝜑(𝑧1
0, 𝜉2)𝑃2

|𝜉2|=1

(𝜉2, 𝑧2)𝑑𝜉2| 

≤ ∫ 𝑃2
|𝜉2|=1

(𝜉2, 𝑧2)|�̂�(𝑧1, 𝑧2) − �̂�(𝑧1
0, 𝑧2)|𝑑𝜉2 < 2𝜋𝜀. 

     By the contuinity of the Poisson Kernel with respect to 𝑧2, 
there exists  ∃𝛿2 > 0 and we take the estimation  

|�̂�(𝑧1
0, 𝑧2) − �̂�(𝑧1

0, 𝑧2
0)| = 

= | ∫ 𝜑(𝑧1
0 , 𝜉2)𝑃2

|𝜉2|=1

(𝜉2, 𝑧2)𝑑𝜉2 − ∫ 𝜑(𝑧1
0, 𝜉2)𝑃2

|𝜉2|=1

(𝜉2, 𝑧2
0)𝑑𝜉2| 

= | ∫ 𝜑(𝑧1
0, 𝜉2)

|𝜉2|=1

[𝑃2(𝜉2, 𝑧2) − 𝑃2(𝜉2, 𝑧2
0)]𝑑𝜉2| < 2𝑀𝜀 

for  𝑧2 ∈ {|𝑧2| ≤ 1} which satisfies  |𝑧2 − 𝑧2
0| < 𝛿2.  

So, if we take 𝛿 = min(𝛿1, 𝛿2), at the arbitrary points 

(𝑧1
0, 𝑧2

0) ∈ {|𝑧1| ≤ 1, |𝑧2| ≤ 1}  which satisfy  |𝑧1 − 𝑧1
0| <

𝛿1 and  |𝑧2 − 𝑧2
0| < 𝛿2 , we have 

  |�̂�(𝑧1, 𝑧2) − �̂�(𝑧1
0, 𝑧2

0)| < 2(𝜋 + 𝑀)𝜀.     (3) 

Now we show that the function �̂�(𝑧1, 𝑧2) is the limit of the 
function  ℎ(𝑧1, 𝑧2) on the boundary. In particular, we show 
that the difference  |ℎ(𝑧1, 𝑧2) − �̂�(𝑧1, 𝜂2)| converges 
uniformly to 0 at 𝑧2 → 𝜂2, 𝜂2 ∈ {|𝑧2| = 1}. Based on (2), we 
evalute 

|ℎ(𝑧1, 𝑧2) − �̂�(𝑧1, 𝜂2)| 

= | ∫ ∫ 𝜑(𝜉1, 𝜉2)𝑃1(𝜉1, 𝑧1)𝑃2(𝜉2, 𝑧2)𝑑𝜉1𝑑𝜉2
|𝜉2|=1|𝜉1|=1

− 

− ∫ 𝜑(𝜉1, 𝜂2)𝑃1
|𝜉1|=1

(𝜉1, 𝑧1)𝑑𝜉1| = 

= | ∫ 𝑃1
|𝜉1|=1

(𝜉1, 𝑧1) [ ∫ 𝜑(𝜉1, 𝜉2)𝑃2(𝜉2, 𝑧2)𝑑𝜉2 − 𝜑(𝜉1, 𝜂2)

|𝜉2|=1

] 𝑑𝜉1| 

and we rewrite the integral inside as follows: 

| ∫ 𝜑(𝜉1, 𝜉2)𝑃2(𝜉2, 𝑧2)𝑑𝜉2 − 𝜑(𝜉1, 𝜂2)

|𝜉2|=1

| = 

= | ∫ 𝜑(𝜉1, 𝜉2)𝑃2(𝜉2, 𝑧2)𝑑𝜉2 − ∫ 𝜑(𝜉1, 𝜂2)𝑃2(𝜉2, 𝑧2)𝑑𝜉2
|𝜉2|=1|𝜉2|=1

| = 

= | ∫ 𝑃2(𝜉2, 𝑧2)[𝜑(𝜉1, 𝜉2) − 𝜑(𝜉1, 𝜂2)]𝑑𝜉2
|𝜉2|=1

| . 

      Because of the continuity of the function 𝜑(𝜉) on 𝑇2, for  
∀𝜀 > 0 there exists ∃𝛿 > 0 such that  |𝜉2 − 𝜂2| < 𝛿 we have 

 |𝜑(𝜉1, 𝜉2) − 𝜑(𝜉1, 𝜂2)| < 𝜀                     (4) 

at the points  (𝜉1, 𝜉2) which satisfy  |𝜉1| = 1  and |𝜉2 − 𝜂2| <
𝛿. Based on the property of Poisson Kernel 

∫ 𝑃2(|𝜉2|=1
𝜉2, 𝑧2)𝑑𝜉2 = 1 and for 𝜉2 ≠ 𝜂2,    𝑧2 ∈ {|𝑧2 < 1|}   

we have  lim
𝑧2→𝜂2

𝑃2(𝑧2, 𝜉2) = 0. From this follows that,  for   

above 𝜀  and the points  (𝜉1, 𝜉2)  such  |𝜉2 − 𝜂2| > 𝛿, there 
exists  ∃𝛿′ > 0 such that,  the inequality  

                            |𝑃2(𝜉2, 𝑧2)| < 𝜀                               (5) 

holds if   |𝑧2 − 𝜂2| < 𝛿′. 

Now we denote the arc of the circle {|𝜉2| = 1} that 
satisfies |𝜉2 − 𝜂2| < 𝛿  with  𝛾1 and the arc that satisfies 
|𝜉2 − 𝜂2| > 𝛿 with 𝛾2. So divide the integral  
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∫ 𝑃2(𝜉2, 𝑧2)[𝜑(𝜉1, 𝜉2) − 𝜑(𝜉1, 𝜂2)]𝑑𝜉2|𝜉2|=1
 into integrals 

along arcs 𝛾1 and 𝛾2. According to (4), for the first arc ∀𝜉1 ∈
{|𝑧1| = 1}, ∀𝑧2 ∈ {|𝑧2| < 1} we have  

|∫𝑃2(𝜉2, 𝑧2)[𝜑(𝜉1, 𝜉2) − 𝜑(𝜉1, 𝜂2)]𝑑𝜉2
𝛾1

| < 𝜀 

and  based on (5) for  ∀𝑧2 ∈ {|𝑧2| < 1} and  ∀𝜉1 ∈ {|𝑧1| = 1} 
which satisfy  |𝑧2 − 𝜂2| < 𝛿′, the following estimation 

|∫𝑃2(𝜉2, 𝑧2)[𝜑(𝜉1, 𝜉2) − 𝜑(𝜉1, 𝜂2)]𝑑𝜉2
𝛾2

|

< 2𝑀 ∫𝑃2(𝜉2, 𝑧2)

𝛾2

𝑑𝜉2 ≤ 4𝑀𝜋𝜀 

is valid, here  𝑀 = max
𝜉∈𝑇2

|𝜑(𝜉)|.  

If we take above inequality into account, as a result we get 
that the inequality 

|ℎ(𝑧1, 𝑧2) − �̂�(𝑧1, 𝜂2)| < (1 + 4𝜋𝑀)𝜀 

holds uniformly in {|𝑧1| ≤ 1}. This means that 
lim
𝑧2→𝜂2

ℎ(𝑧1, 𝑧2) = �̃�(𝑧1, 𝜂2).  Like that  lim
𝑧1→𝜂1

ℎ(𝑧1, 𝑧2) =

�̂�(𝜂1, 𝑧2) can be showed. So, the function ℎ(𝑧1, 𝑧2) is 

continuous in 𝑈2. 

3) Now we show the uniqueness of the function ℎ(𝑧1, 𝑧2). 
We assume conversely, i.e let the  functions 𝑢1(𝑧) and  𝑢2(𝑧) 
be  harmonic functions defined  by Poisson’s integral (1). 
Then we consider 𝜗(𝑧) = 𝑢1(𝑧) − 𝑢2(𝑧). This function is 

also harmonic in 𝑈2 and continuous in  𝑈2 , and  𝜗(𝑧)|∂𝑈2 =
0. According to the maximum principle, this function reaches 
its maximum value in 𝑈2,  then 𝜗 = 𝑐𝑜𝑛𝑠𝑡, due to its 

continuity 𝜗 = 𝑐𝑜𝑛𝑠𝑡 is true also in 𝑈2. However, since 𝜗 ≡

0 in  𝑇2, 𝜗 ≡ 0 in 𝑈2 is followed.  If the function reaches its 
maximum value in 𝑇2,  then again we have 𝜗 ≡ 0. 

    Now we consider the following Dirichlet problem: 

(𝑑𝑑𝑐𝑢)2 = 0,  𝑢|∂𝑈2 ≡ �̂�(𝜉),     �̂�(𝜉) ∈ 𝐶(∂𝑈
2) 

As usual, we search for the solution to this problem using 
Perron’s method. We consider the class of the functions   

𝒰(�̂�, 𝑈2) = {𝑢: 𝑢 ∈ 𝑃𝑠ℎ(𝑈2) ∩ 𝐶(𝑈2), 𝑢|∂𝑈2 ≤ �̂�} 

and  take 𝜔(𝑧) = sup
𝑢∈𝒰

𝑢(𝑧) . In this case   𝜔∗(𝑧) is a maximal 

function, i.e  (𝑑𝑑𝑐𝜔∗)2 = 0.  

Now we need to show 𝜔∗|∂𝑈2 = �̂�. Instead of the above 
class  we consider the class of subharmonic functions 

𝒰1(�̂�, 𝑈
2) = {𝑢: 𝑢 ∈ 𝑠ℎ(𝑈2) ∩ 𝐶(𝑈2), 𝑢|∂𝑈2 ≤ �̂�}. 

In this case, such a harmonic function  𝐹(𝑧) is found, that   
𝛥𝐹 = 0, 𝐹|∂𝑈2 = �̂� holds. Function  𝐹(𝑧) satisfies  𝐹(𝑧) ≥
𝜔(𝑧) , from which yields           

       lim
𝑧→𝜉

 𝜔(𝑧) ≤ �̂�(𝜉).                            (6) 

On the other hand, we fix the arbitrary boundary point  
𝜉0 = (𝜉1

0, 𝜉2
0) ∈ ∂𝑈2 and without loss of  generality we 

consider 𝜉2
0 = 1. In this case, function ℎ(𝑧1, 1) is harmonic in 

|𝑧1| < 1 and continuous in  |𝑧1| ≤ 1. Using this function, we 
take following function:  

𝑣(𝑧) = ℎ(𝑧1, 1) + 𝑐Re(𝑧2 − 1) − 𝜀, 𝑐 > 0, 𝜀 > 0. 

This function belongs to the class 𝒰 at sufficiently large 𝑐. 

Moreover,  lim
𝑧→𝜉0,𝑧∈𝑈2

𝑣(𝑧) = �̂�(𝜉0) − 𝜀. Due to the 

arbitrariness of 𝜀 and  𝜉0,  

        lim
𝑧→𝜉,𝑧∈𝑈2

𝜔(𝑧) ≥ �̂�(𝜉), ∀𝜉 ∈ ∂𝑈2               (7) 

holds. So, from the relations (6) and (7) it is followed that 

lim
𝑧→𝜉,𝑧∈𝑈2

𝜔(𝑧) = �̂�(𝜉), ∀𝜉 ∈ ∂𝑈2 is true and lim
𝑧→𝜉,𝑧∈𝑈2

𝜔(𝑧) =

𝜑(𝜉), ∀𝜉 ∈ 𝑇2 holds. Since the function 𝜔∗(𝑧) is 
plurisubharmonic in  𝑈2, it holds the continuity condition                            

lim
𝑧→𝜉,𝑧∈𝑈2

𝜔∗(𝑧) = 𝜑(𝜉), ∀𝜉 ∈ 𝑇2 on the boundary.  Now we 

show the uniqueness. Assume that, the  function  𝑣(𝑧) is the 
another solution of the generalized Dirichlet problem 
(𝑑𝑑𝑐𝑣)2 = 0,   𝑣|∂𝑈2 = 𝜔

∗|∂𝑈2 . Then  𝑣(𝑧) is maximal in 𝑈2 

and so  𝑣(𝑧) ≥ 𝜔∗(𝑧) is true in  𝑈2. However,  𝜔∗ is also 
maximal in  𝑈2, i.e  𝜔∗ ≥ 𝑣. It follows that,  𝜔∗(𝑧) ≡ 𝑣(𝑧). 
The theorem is proved. 

Now we consider the Dirichlet problem for the Monge- 
Ampère equation on the unit polydisc 𝑈 ⊂ ℂ𝑛 : 

(𝑑𝑑𝑐𝑢)𝑛 = 0,       𝑢|∂𝑈 ≡ 𝜑(𝜉), 𝜉 ∈ ∂𝑈,  

where 𝜑(𝑧) ∈ 𝑃𝑠ℎ(𝐺) ∩ 𝐶(�̅�) and 𝐺 = 𝑂 ∩ 𝑈, 𝑂 − 
sufficiently small neighbourhood of ∂𝑈 .  

The main result of the article is the following theorem. 

Theorem 2. Let  𝑈 ⊂ ℂ𝑛 be a unit polydisc and 𝐺 = 𝑂 ∩
𝑈, where 𝑂 − sufficiently small neighbourhood of ∂𝑈 and 

𝜑(𝑧) ∈ 𝑃𝑠ℎ(𝐺) ∩ 𝐶(�̅�). Then the Dirichlet problem 
(𝑑𝑑𝑐𝑢)𝑛 = 0, 𝑢|∂𝑈 = 𝜑(𝜉) has a unique solution 𝑢 ∈

𝑃𝑠ℎ(𝑈) ∩ 𝐶(𝑈).  

Proof. As usual, we search for the solution to this problem 
using the Perron’s method. We consider the class of 

plurisubharmonic functions 𝒰(𝜑, 𝑈) = {𝜗 ∈ 𝑃𝑠ℎ(𝑈) ∩

𝐶(𝑈), 𝜗(𝑧)|∂𝑈 ≤ 𝜑(𝜉)} and define 𝜔(𝑧) = sup{𝜗(z): 𝜗 ∈
𝒰(𝜑, 𝑈)}. Then  𝜔∗ regularization represents the maximal 
function in 𝑈, i.e. (𝑑𝑑𝑐𝜔∗)𝑛 = 0.  
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Now we show that function satisfies the boundary 

condition 𝜔∗|
∂𝑈
= 𝜑. First, in order to show lim

z→𝜉,𝑧∈𝑈
𝜔∗(𝑧) ≤

𝜑(𝜉),    𝜉 ∈ ∂𝑈,  we compare 𝜔∗(𝑧) with the solution 𝐹(𝑧) ∈

ℎ(𝑈) ∩ 𝐶(𝑈) of  Laplace’s equation Δ𝐹 = 0 in 𝑈, which 
satisfies 𝐹|∂𝑈 = 𝜑.  There is such a solution to the Dirichlet 
problem for a regular domain 𝑈. Since 𝐹(𝑧) is subharmonic 
in 𝑈 and as the upper envelope of subharmonic functions v 
satisfying condition 𝑣|∂𝑈 ≤ 𝜑, then it satisfies 𝐹(𝑧) ≥ 𝜔∗(𝑧). 

It follows that lim
z→𝜉,

𝑧∈𝑈

𝜔∗(𝑧) ≤ 𝜑(𝜉),    𝜉 ∈  ∂𝑈. On the other 

hand, since 𝑈 is pseudoconvex, it can be covered by strictly 
pseudoconvex domains ∅ ≠ 𝐺1 ⊂⊂ 𝐺2 ⊂⊂ ⋯ ,    ∪ 𝐺𝑗 = 𝑈. 

In particular, if we take function  

𝜌(𝑧) = −ln[(1 − |𝑧1|
2)(1 − |𝑧2|

2). . . (1 − |𝑧𝑛|
2)], 

then domains 𝐺𝑗 = {𝜌(𝑧) <
1

𝑗
} are strictly pseudoconvex 

domains. According to the condition, there exists a number 

𝑗
0
∈ 𝑁 such that for any 𝑗 > 𝑗0 it holds ∂𝐺𝑗 ⊂ 𝐺 and  since 

𝜑(𝑧) ∈ 𝑃𝑠ℎ(𝐺) ∩ 𝐶(𝐺) we take a sequence 𝜑
𝑗
(𝑧) =

𝜑|∂𝐺𝑗which converges to 𝜑(𝜉), 𝜉 ∈ ∂𝑈. For  the sequence of 

domains 𝐺𝑗,𝑗 > 𝑗0we consider the classes:  

𝒰(𝜑𝑗 , 𝐺𝑗) = {𝑢(𝑧) ∈ 𝑃𝑠ℎ(𝐺𝑗) ∩ 𝐶(𝐺𝑗), 𝑢(𝑧)|∂𝐺𝑗 ≤ 𝜑𝑗} 

and  put 𝜔𝑗 = sup{𝑢(𝑧): 𝑢 ∈ 𝒰(𝜑
𝑗
, 𝐺𝑗)}. Then based on 

the fact, that the Dirichlet problem has a solution for strictly 

pceudoconvex domains, there exist solutions 𝜔 𝑗
∗ ∈ 𝑃𝑠ℎ(𝐺𝑗) ∩

𝐶(𝐺𝑗) and lim
𝑧→𝜉∈∂𝐺𝑗

𝜔𝑗
∗(𝑧) = 𝜑

𝑗
. 

 Additionally, |𝜔𝑗
∗(𝑧)| ≤ max

𝜉∈∂𝑈
|𝜑(𝜉)|. The sequence {𝜔𝑗

∗} is 

monotonically increasing and upper locally uniformly 

bounded. So there exists lim
𝑗→∞

𝜔𝑗
∗ = 𝜔0

∗  and 𝜔𝑜
∗ ∈ 𝑃𝑠ℎ(𝑈) ∩

𝐶(𝑈), in addition to that lim
𝑧→𝜉∈∂𝑈

𝜔0
∗(𝑧) = 𝜑(𝜉). Now we 

choose an arbitrary boundary point 𝜉° = (′𝜉°, 𝜉
𝑛
° ) ∈ ∂𝑈 and 

without loss of generality, assume that 𝜉
𝑛
° = 1. Define the 

function 

𝑣(𝑧) = 𝜔0
∗(′𝑧, 1) + 𝑐𝑅𝑒(𝑧𝑛 − 1) + 𝜀,  𝑐 > 0,  𝜀 > 0 . 

This function belongs to the class  𝒰(𝜑, 𝑈) for sufficiently 

large 𝑐. Moreover, lim
𝑧→𝜉0, 𝑧∈𝑈

𝑣(𝑧) = 𝜑(𝜉°) + 𝜀. Due to 

arbitrariness 𝜀 it follows that lim
𝑧→𝜉0, 𝑧∈𝑈

𝜔∗(𝑧) ≥ 𝜑(𝜉°)  and 

since 𝜉° arbitrary we have lim
𝑧→𝜉
𝜔∗(𝑧) = 𝜑(𝜉) . 

 The continuity of 𝜔∗ follows from Walsh’s result 

(see [2]). The uniqueness of the solution is demonstrated as 

in Theorem 1. The theorem is proved.  

 

 

IV. CONCLUSION 

In this article, the Dirichlet problem for the Monge-
Ampère equation in the polydisc has been thoroughly 
examined. The existence of a solution was demonstrated 
under the condition that the boundary function is extended in 
a plurisubharmonic manner to a small neighborhood of the 
boundary of the domain. Using the Perron method and the 
results of Walsh and Sadullaev, the continuity and uniqueness 
of the solution were established. 

This study contributes significantly to pluripotential 
theory by providing a robust framework for solving the 
generalized Dirichlet problem in pseudoconvex and strictly 
pseudoconvex domains. The results are not only theoretical 
but also provide tools for addressing practical problems in 
complex analysis and potential theory. Future work may focus 
on exploring more general domains, refining boundary 
conditions, or extending the method to higher-dimensional 
complex spaces. 
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