
EasyChair Preprint
№ 9087

Engineering of Hand Recognition and Control
Co-Design Using Real Time Processing

Abdelhalim Hazzem, Lahcene Ziet, Rafik Torche and
Fayçal Radjah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2022

2nd International Conference on Engineering and

Applied Natural Sciences

https://www.iceans.org/ October 15-18, 2022, Konya, Turkey

Engineering of Hand Recognition and Control Co-Design Using Real-Time

Processing

Hazzem Abelhalim*1, Ziet Lahcene1, Torche Rafik 1, and Radjah Fayça11

1Electronics department/technology faculty, Ferhat Abbas Setif1 University, Algeria

*(abdelhalim.hazzem@univ-setif.dz) Email of the corresponding author

Abstract – Gestures are a powerful communication channel that is an important part of information transfer

in our daily life.With co-design hybrid systems engineering containing CPU and FPGA components is an

exciting new development that offers customized, compact, lightweight and low-power (c-swap) solutions

for the realization of control and control by hand becomes more exciting.

engineering reusable components (c-swap) in a wide range of real-time and embedded applications,

particularly in real-time computer vision, is a challenge, in part because it requires the simultaneous

satisfaction of a or more and sometimes the contradiction of one or more aspects, such as execution speed,

completion time, cost price and c-swap.

Keywords – Co-design Fpga Pynq-ZU Zynq Recognition Hand Python Computer-Vision

I. İNTRODUCTİON

 Gestures are a powerful communication channel

that forms an important part of information transfer

in our everyday life. Compared to traditional

devices, gestures are less intrusive, simpler, more

comfortable and natural way for users to interact.

 Nevertheless, the expressiveness of gestures

remains little studied to solve the problem of

human-computer interaction. Modern real-time

systems offer an opportunity to achieve these. With

the rise of hybrid processors and the development of

embedded systems engineering; Control by hand

gestures offers an answer to various problems in all

areas of everyday life.

 In this work we made an overview of the

technique used with a work platform of which we

made a small illustration example.

II. CO-DESIGN HYBRID ARCHITECTURE

 Co-design hybrid systems engineering

containing CPU and FPGA components are an

exciting new development that offers customized,

compact small low-weight low-power (c-swap)

solutions while supporting hardware customization.

 Real-time computer vision and embedded

systems engineers are continually challenged to

deliver increased computing capabilities to meet the

most stringent requirements with ever-improving

performance-to-time ratios. Best practices have

long encouraged the use of components (c-swaps) to

provide significantly efficient solutions while

controlling design costs and lead times.

 The engineering of reusable components (c-

swap) in a wide range of real-time and embedded

applications, in particular in real-time computed

vision, is a challenge, partly because it requires the

simultaneous satisfaction of one or more and

sometimes contradiction of one or more aspects,

Özkaya et al., Paper Title, ICEANS 2022, Konya, Turkey

such as execution speed, completion time, cost price

and c-swap.

FIG. 1 CO-DESIGN HYBRID DIAGRAM

 (FPGA) are an exciting new development

momentum that promises economies of scale (c-

swap), while offering significant hardware

customization.For instance.

Zynq® ultrascale+™ mpsoc devices offer 64-bit

processor scalability while combining real-time

control with software and hardware engines for

graphics, video, waveform and packet processing.

Built on a common real-time processor and

programmable logic-equipped platform, three

distinct variants include dual application processor

(cg) devices, quad application processor and gpu

(eg) devices and video codec (ev) devices, creating

limitless possibilities for applications such as 5g

wireless, next-generation adas, and ındustrial

ınternet of things.

 designers can program the free fpga gates with an

expanded range of standard fpga i a intellectual

property (IP) system library components, including

serial and parallel ı/o interfaces, bus arbiters,

controllers, and controllers. İnterrupt priority and

dram controllers.Now have the freedom to select a

set of ıp fpga components to create a specialized

system-on-chip (SOC) solution.

FIG. 2 ZYNQ-EG BLOCK DIAGRAM

 Quad arm cortex-a53

 Dual arm cortex-r5f

 16nm finfet+ programmable logic

 Arm mali™-400mp2

III. FPGA (C-SWAP) AND VISION PROCESSING

ENGINEERING :

In this part we see the final layout of the

application that demonstrates the efficiency of high

performance FPGAs. This design, which uses an

FPGA-based vision processing application, because

video engineering critically depends on the ability

of human beings to analyse complex visual scenes.

However, as humans are prone to errors. These

critical tasks can be handled effectively if computer

vision techniques are used. It is an established fact

that computer vision is potentially capable of

meeting the needs of a wide variety control tasks,

remote monitoring and contactless command.

However, in these modern applications, "embedded

vision" is more relevant than existing vision

systems. Embedded vision systems must be very

compact (c-swap) and operate in very harsh and

unstructured environments while providing high

quality images. It should be mentioned that

embedded vision is still an emerging technology, to

date there are generally two main types of

processors used in embedded systems -

programmable gate arrays (FPGAs) and graphics

processing units (GPUs). In recent years, FPGAs

have gained in popularity as embedded vision

processors compared to GPUs or general purpose

processors. FPGAs are much faster than CPUs and

hence they are gaining popularity due to their

extremely low latency levels.

Özkaya et al., Paper Title, ICEANS 2022, Konya, Turkey

 Similarly(c-swap) are also much more

processing potential with much lower power

consumption, size, occupied space, and they can

speed up multiple portions of a computer vision

pipeline.

A. High performance vision processing using the

ZYNQ-ZY FPGA:

Architecture the new ZYNQ-ZU FPGA from

Xilinx is based on the ZUNQ architecture, is a SOC

designed by Xilinx. ZYNQ devices include a

processing system (PS) and programmable logic

(PL), the PL being equivalent to that of a field-

programmable pre-broadcast array (FPGA), and the

PS side contains quad core high-performance arm

cortex A53 processor, 2 R5 as shown in figure 3.

FIG. 3 SIMPLIFIED ZYNQ EG BLOCK DIAGRAM

We use PYNQ-ZU board as shown in figure 04

FIG. 4 PYNQ-ZU BOARD

PYNQ-ZU FPGA offers a tool to create and

develop applications using python programming. It

is designed on ZYNQ-EG FPGA. The name PYNQ

is derived from python productivity for ZYNQ-EG.

Three-layer PYNQ framework. The bottom layer

represents the basic hardware design. This is

normally created in VIVADO using IP integrator

and related design tools and then output to a bit-

stream (bit) file. The middle layers of the PYNQ-

ZU consist of python software, the operating

system, and low-level software drivers that can

access low-level hardware. At the top level, user

interaction is facilitated by the python development

framework like JUPYTER. This framework is

shown in figure 5.

FIG. 5 PYNQ-ZU FRAMEWORK

B. real-time video processing:

Real-time video processing is used in a wide

variety of applications ranging from remote

monitoring and traffic management to medical

imaging applications. These operations generally

require very high computing power. However, the

PYNQ-ZU used provides the performance needed

for real-time processing.

Edge detection is a fundamental tool used in most

image processing applications to obtain information

from images as a preliminary step for feature

extraction and object segmentation. This process

detects the edges of an object and the boundaries

between objects and the image background. An edge

detection filter can also be used to improve the

appearance of blurry or anti-aliased video streams.

The basic edge detection operator is a matrix surface

gradient operation that determines the level of

variance between different pixels. This therefore

requires intensive calculations.

Possible application hand recognition and control,

this image acquisition and processing system will

aid in hand identification and symbol recognition.

More precisely, the image stream of the video in

real time. When the controller's hand appears the

system detects the area of interest (roi); then it

launches the process of detecting the symbol

expressed by this one. This systems will be detailed

in the third part.

C. Pynq-zu based hardware design :

In PYNQ, hardware system designs are referred

to as overlays. They can be used in a manner

Özkaya et al., Paper Title, ICEANS 2022, Konya, Turkey

analogous to software libraries. Specifically,

overlay represents complete hardware system that

will be programmed onto the PL (fpga side), and it

represents part of the hardware/ bottom layer of the

pynq-zu framework. In this design we have used

two overlays:

1. The pynq-zu base overlays for basic I/O

communication and video interface.

2. The computer vision overlays to carry out video

processing. This overlays are created using vivado

hls software. The CV overlay is shown in figure 6.

FIG. 6 PYNQ-ZU OVERLAY

Each vivado block of this design (as shown in

figure 7) represents each computer vision functions.

This functions are written in high level language and

corresponding hardware version has been generated

using vivado hls.

FIG. 7 CORE CREATED WITH VIVADO HLS

D. Pynq-zu based software design :

As a software development, the video processing

is carried out using python. It has to be noted that

the python coding is not used for hardware

description and verification, i.e., to generate circuits

for implementation in the pl. Section. Python is used

for programming on the PS only, which includes

interaction with hardware via the PS-PL interfaces.

This means that the python interface executed on PS

side and it communicates with PL. In the PL side,

computation intensive processing is carried out.

E. Using FPGAs and CPUs together

Fpgas are very well suited for image processing

due to their ability to exploit parallelism. They are

capable of achieving real-time performance in many

applications. Often, image processing algorithms on

fpgas are implemented as unique designs designed

to speed up a particular task. Additionally, edge and

corner detection are two very popular operations to

perform on fpgas. There have been many

implementations of edge and corner detection on

fpgas, but very few offer comparisons with other

architectures. One of the few that makes this

comparison is by possa, et al. They compared canny

edge detection implementations on a CPU, gpu, and

fpga. The results of the work are presented in the

following two tables. This work shows an order of

magnitude increase in frame rate from the CPU to

the fpga, and a three orders of magnitude reduction

in power consumption for the fpga below the CPU

or GPU. The authors report a 544x speedup for an

fpga implementation of the canny edge detection

algorithm, as well as 9.72x and 1.57x speedup for

two image registration algorithms. This is an

exemplary study of how fpgas can dramatically

increase performance, but only in certain situations.

Table 1. Canny edge result performance

Resolution

H*W
Cpu

mS

Gpu

mS

Fpga

mS

512*512 30 2.11 1.1

1024*1024 101 6.08 4.37

1476*1680 267 13.9 10.31

3936*3936 1497 59.94 64.16

Table 2. Energy usage for canny edge in mJ

Resolution Cpu Gpu Fpga

512*512 4200 500 1.6

1024*1024 14800 1500 6.4

1476*1680 39800 3400 15

3936*3936 229000 15000 64.16

An alternative method to using fpgas is to use

them as accelerators in tandem with at CPU. Using

an fpga together with a CPU is a useful way to

decrease the time cost of developing fpga firmware

while still getting some of the benefits. In general,

new algorithms and methods are developed first for

CPUs, so it is relatively easy to find an existing CPU

implementation of a method. Fpga implementations

Özkaya et al., Paper Title, ICEANS 2022, Konya, Turkey

of image processing algorithms, on the other hand,

are very difficult and time consuming to develop. To

Alleviate the challenge of building an entire fpga

image processing pipeline, a CPU and fpga can be

used together. This allows the system to be built and

deployed quickly, while time is spent to develop

fpga modules only for the specific pieces of the

algorithm that are most in need of acceleration.

IV. HAND RECOGNITION AND CONTROL

In this example, we use the Haar classifier to

detect the hand applied to a real-time vision source.

Hand segmentation offers the means to apply the

algorithm in the region of interest and save time

during treatment.

The algorithm sequence for the detection of the

symbol is illustrated in order in all of the following

figures.

FIG. 8 HAND DETECT USING HAAR CLASSIFIER

FIG. 9 HAND IMAGE SEGMENT BINARIZATION

FIG. 10 CONTOUR AREA OF IMAGE SEGMENT

FIG. 11 CONVEX HULL AROUND MAX COUNTOUR

FIG. 12SYMBOL DETECT BY GEOMETRIC PROCESS

FIG. 13 DISPLAY OF SYMBOL CORRESPONDENCE

V. CONCLUSION

In this work we have seen control by hand in a

hybrid environment. the new performances of co-

design open up a new way of development. as a

perspective for this work we propose the

Özkaya et al., Paper Title, ICEANS 2022, Konya, Turkey

exploitation of npu and cnn models in order to

brings improvements.

REFERENCES

[1] Spinola CG, Canero J, Moreno-Aranda G,

Bonelo JM, Martin-Vazquez M. Real-time

image processing for edge inspection and

defect detection in stainless steel production

lines. In2011 IEEE International Conference on

Imaging Systems and Techniques 2011 May 17

(pp. 170-175) IEEE

[2] JY Mon, 1. Arias-Garcia, C Sánchez-Ferreira,

D. M. Muñoz, CH. Llanos, and J

[3] MS. T. Motta, "An FPGA-Based

Omnidirectional Vision Sensor for Motion:

[4] Detection on Mobile Robots," Int. J.

Reconfigurable Comput. pp. 1-16, 2012. J.

Nikobe, J. Rehder, M. Bumn, P. Gohl, S.

Leutenegger, P. T. Furgale, and R. Siegwart, "A

synchronized visual-inertial sensor system with

FPGA pre-processing for accurate real-time

SLAM," in 2014 IEEE International

Conference on Robotics .

[5] and Automation (ICRA), 2014, pp. 431-437.

M. Russell and S. Fischaber, "OpenCV based

road sign recognition on Zynq." in 2013 11th

IEEE International Conference on Industrial

Informatics (INDIN), 2013, pp. 596-601.

[6] S. Neuendorifer, T. Li, and D. Wang,

"Accelerating OpenCV Applications with

[7] Zynq-7000 All Programmable SoC using

Vivado HLS Video Librarie," is W vol. 1167,

p. 1, 2013.

[8] F. M. Siddiqui, M. Russell, B. Bardak, R.

Woods, and K. Rafferty. "IPPro FPGA based

image processing processor," in 2014 IEEE

Workshop on Signal Processing Systema

(SPS), 2014, pp. 1-6..

[9] Crockett, Louise, David Northcote, Craig

Ramsay, Fraser Robinson, and Robert Stewart.

"Exploring Zynq MPSoC: With PYNQ and

Machine Learning Applications" (2019)

[10] Y.-S. Cheng, Z.-Y. Chen, and P.-C. Chang, "An

H.264 spatio-temporal hierarchical fast motion

estimation algorithm for high-definition video

in 2009 IEEE International Symposium on

Circuits and Systems, 2009, pp. 880-883.

[11] E Lee "Overview of the Ptolemy Project tech

memo Mar 2001, http ptolemy on of FPGA eecs

erkeley.edu.

[12] P. Alexander and C. Kong "Rosetta e

scheduling Semantic Support for Model

Centered Linux kernel, Systems Level Design,"

Computer, vol. 34. computational no. 11, Nov.

2001. pp. 64-70

