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Abstract. Audio-visual event localization (AVEL) has been a hot re-
search topic of computational scene analysis and machine perception,
whose aim is to forecast the precise temporal segment within a video
encompassing an audio-visual event, along with its corresponding cate-
gorical classification. A pivotal factor for achieving accurate audio-visual
event localization lies in the effective fusion of multi-modal features.
In this paper, we propose an innovative cross-modal attention network
based on the self-attention mechanism, whose primary objective revolves
around the extraction of important audio and visual features, subse-
quently fusing them effectively to yield a highly efficient representation.
Specifically, we propose a Dynamic Intra- and Inter-modality Attention
(DIIA) module, which cyclically facilitates the exchange of dynamic in-
formation within and across the domains of audio and visual modalities.
Furthermore, we utilize audio features as guidance to direct the model
to focus on the event-relevant visual regions. We validate our proposed
method on the AVE Dataset and the extensive experiments demonstrate
its superiority over state-of-the-art methods in supervised AVE settings.

Keywords: Audio-visual event localization · Cross-modal · Dynamic
attention · Intra- and Inter-modality attention.

1 Introduction

Event localization is key for intelligent agents that perceive and understand the
environment and become an increasingly important research area, whose aim is
to determine whether the input video has an event and predict what category
the event belongs to. It has a range of significant applications such as automatic
surveillance and monitoring [1–3], improved human-machine interaction [4], and
⋆ Corresponding author
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media retrieval [5, 6]. Most of the early studies mainly focus on sound event local-
ization and achieve promising performance. However, visual association can also
provide valuable clues for recognizing and understanding the acoustic activities
occurring around us. Inspired by this, Tian et al. [7] realized event localization
is a multi-modal task and first introduced the audio-visual event localization
(AVEL) task, which is addressed in this paper.

The primary objective of the AVEL task is to pinpoint the temporal bound-
aries of events within video sequences and entail categorizing these events. These
video sequences encompass both audio and visual tracks. Illustrated in Fig. 1, for
instance, when confronted with a video and the event category being "dog bark,"
the AVEL task necessitates the prediction of which specific video segments have
the pertinent audio and visual signals corresponding to the occurrence of a dog
bark.

Audio inputs 

Visual inputs 

Bacground BacgroundBark Bark
Audio-visual 

output Bark

Fig. 1. Illustration of audio-visual event localization (AVEL) task. In the case of a
video with a “dog bark” audio-visual event category, the goal of the AVEL task is to
determine which video segments contain both the auditory and visual information of
the “dog bark”. For labeling the segments, segment-wise label is assigned as “dog bark”
only when the event is both audible and visible. Otherwise, the segment is labeled as
“background”.

AVEL can be viewed as a cross-modality learning task, which aims to train a
single model by using the audio and visual modalities simultaneously. The main
problem of AVEL is how to extract and combine the information effectively car-
ried by audio and visual modalities. Recently, many works [7–12] have explored
various methods to track this task.

These works model the temporal information within the modality only con-
sidering their own modality, but some information from the other modality is not
considered. Such cases motivate us to develop a new framework called Dynamic
Intra- and Inter-modality Attention (DIIA) for precise event localization through
efficient multi-modality feature fusion. The complete architecture is depicted in
Fig.2. Our DIIA framework utilizes self-attention and cross-modal co-attention
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mechanisms to merge relevant information within and across the audio and vi-
sual modalities, resulting in effective feature fusion.

2 Related works

In recent years, notable advancements [8–15] have emerged in the field of AVEL.
To systematically investigate this task, Tian et al. [7] took a pioneering step
by curating an AVE dataset that encompasses a diverse range of events and
introduced an audio-guided visual attention mechanism, a tool designed to di-
rect the model’s focus towards informative visual regions. Furthermore, they
proposed a dual multimodal residual network for efficient fusion of audio and
visual information. Wu [8] enhanced the representation of high-level event infor-
mation across extended video durations by a dual attention matching module.
Simultaneously, the integration of a global cross-check mechanism allowed for
the extraction of local temporal details, enhancing the model’s grasp of tempo-
ral relationships. Lin [9] introduced a cross-modality co-attention network that
employed an audio-visual transformer to facilitate the exploitation of both intra-
and inter-frame information. Xu [10] proposed the utilization of an audio-guided
spatial-channel attention module and a relation-aware module. This framework
effectively captured intra- and inter-modality relations, further enriching the
model’s capacity to discern event patterns. Zhou [11] proposed a positive sample
propagation module that evaluated the relationship between audio-visual pairs
using a similarity map. Yu et al. [15] developed a multimodal parallel network, a
novel approach that leverages the power of two parallel subnetworks to indepen-
dently capture global and local semantics information to significantly amplify
both classification and localization.

Motivated by the need for more efficient multi-modality feature fusion, we
propose a novel Dynamic Intra- and Inter-modality Attention (DIIA) frame-
work, which integrates self-attention and cross-modal co-attention mechanisms.
These mechanisms work harmoniously to facilitate robust information fusion,
both within individual audio and visual modalities and across them. This novel
approach not only elevates the effectiveness of feature integration but also signif-
icantly contributes to the overarching goal of more comprehensive and accurate
multi-modal analysis. The overall architecture is illustrated in Fig. 2.

3 Method

3.1 Preliminaries

The objective of AVEL is twofold: predicting the temporal boundaries of audio-
visual events and categorizing each segment’s event type in a given video se-
quence containing both audio and visual tracks. Generally, an input video is
split into non-overlapping segments of equal duration labeled as {At, Vt}Tt=1,
with At representing audio content and Vt indicating visual content. Each video
segment is assigned an event label denoted as yt, shown as a binary vector with
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Fig. 2. Proposed framework for audio-visual event localization.

C elements. Each element indicates if a specific event is present in the segment.
Notably, C covers all distinct events in the AVE dataset, including an extra
category for background.

In the supervised AVEL task, the ground truth for each audio segment At or
visual segment Vt is known during the training phase. During the testing phase,
the event label for each segment is required to be predicted by the model.

3.2 Overall Pipeline

The proposed approach comprises three modules, as depicted in Fig. 2. Specif-
ically, the first module is responsible for feature extraction, where pre-trained
CNNs are employed to extract visual and audio features. To direct the model’s
attention towards visually relevant regions of events, we employ the audio modal-
ity to guide the extraction of visual features in spatial and channel dimensions
[7]. The second module, referred to as Dynamic Intra- and Inter-modality At-
tention (DIIA), is designed to capture the intra- and inter-modal relationships
within and between audio and visual features. The DIIA module is capable of
effectively learning these relationships. In the final classification module, the au-
dio and visual features are fused after passing through the DIIA module, which
comprises of several fully connected layers.

3.3 Dynamic Intra- and Inter-modality Attention

To capture both the correlations within each modality and between the au-
dio and visual modalities, we introduce the DIIA module that incorporates
dynamic intra-modality attention and inter-modality attention. The dynamic
intra-modality attention is implemented using a self-attention mechanism. This
allows the model to focus on different parts of the input data within each modal-
ity, identifying relevant patterns and relationships. By dynamically adjusting the
attention weights, the model can adaptively capture dependencies and correla-
tions within the audio and visual data streams. Simultaneously, inter-modality
attention facilitates the cross-modal attention mechanism. This attention mech-
anism enables the model to attend to and integrate relevant information from
both the audio and visual modalities. By doing so, the model can effectively
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Fig. 3. The structures of the Self-Attention block and the Cross-Modal Attention block

leverage complementary cues from each modality, enhancing its ability to learn
complex multimodal relationships. Fig. 3 provides a visualization of the proposed
self-attention and cross-modal attention blocks, which share some structural sim-
ilarities with those introduced in [16]. However, our DIIA module incorporates
dynamic aspects that make it particularly suited for capturing temporal and
spatial dependencies within and between modalities.

Multi-Head Attention (MHA) Our approach utilizes MHA to enable the
model to simultaneously attend to information from diverse representation sub-
spaces across different positions. In our specific context, we leverage MHA to
implement our concept. This attention mechanism involves an intricate inter-
play between queries and a collection of key-value pairs, yielding a meaningful
output. Importantly, all elements involved in queries, keys, values, and outputs
are vectors.

Att(Q,K, V ) = softmax(
QWQ(KWK)T√

dk
)VWV , (1)

where Q, K, and V denote the query, key, and value matrices respectively;
WQ, WK , WV , and dk represent learnable parameters of linear transformation
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along with a scaling factor. Notably, n represents the number of heads in MHA.
This equation is particularly pertinent in the context of intra-modality attention
where the query, keys, and values all stem from the same input.

Subsequent to the MHA, our model integrates a fully connected feed-forward
network (FFN), involving two linear transformations separated by a ReLU acti-
vation:

FFN(x) = ReLU(xW1 + b1)W2 + b2. (2)

Here, W1 and W2 signify transformation matrices, while b1 and b2 denote bias
terms.

Dynamic Intra-modality Attention The dynamic intra-modality atten-
tion module investigates methods for appropriately combining the knowledge
acquired from two modalities, aiding in the training of the AVEL model. To
accomplish this, we employ the formula below to learn the intra-relationship of
audio and visual features:

Vintra = FFN(MHA(V̂ ; V̂ ;V ), (3)

Aintra = FFN(MHA(Â; Â;A)). (4)

To better promote the learning of intra-relationship, we further design a condi-
tional gate operation denoted as G. This operation is devised to update queries
and keys, drawing inspiration from [17, 18]. The procedure is outlined as follows:

V̂ = (1 +GA)⊙ V, (5)

Â = (1 +Gv)⊙A. (6)

Here, the symbol ⊙ signifies element-wise multiplication. The conditional gate
operations, represented as GV and GA, are defined as follows:

GV = σ(Avg_pool(V )WV ), (7)
GA = σ(Avg_pool(A)WA). (8)

In these equations, σ denotes the sigmoid function, while Avgpool represents the
process of average pooling.

Inter-modality Attention In the pursuit of achieving higher quality rep-
resentations of audio and visual features, we design an inter-modality attention
module. Taking visual features as an example, visual features are utilized as
queries, and audio features play the role of both keys and values. Consequently,
what emerges is a collection of attended audio features tailored to the visual
features. The same as audio features. This process can be represented using the
following formula:

Vinter = FFN(MHA(Vintra;Aintra;Aintra)), (9)
Ainter = FFN(MHA(Aintra;Vintra;Vintra)). (10)

The resulting Vinter and Ainter provide an enriched perspective on the intricate
relationships linking audio and visual features, which significantly enhance the
model’s grasp of cross-modal interactions.
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3.4 Classification and Objective function

Before classification, we fuse audio and vision features through simple averages.
The fusion feature Fva can be obtained through:

Fva =
1

2
(VinterW

v
inter +AinterW

a
inter), (11)

where W v
inter and W a

inter represent learnable parameters in the linear layers.
Subsequently, the fused features undergo a series of transformations through

two fully connected (FC) layers, which are then followed by the application of
a softmax function. This process yields the classifier prediction, denoted as Otc,
indicating the model’s assessment of the segment event category.

In the context of evaluating the model’s prediction, the classifier’s output Otc

is compared to the ground truth label Ytc, which is used to determine how accu-
rately the model’s predictions align with the actual event categories. To quantify
this alignment, the cross-entropy loss is employed as the chosen objective func-
tion. Mathematically, the cross-entropy loss (LCE) is calculated as the negative
average of the logarithmic differences between the ground truth labels and the
classifier’s predictions. The formula for the cross-entropy loss is as follows:

LCE = − 1

TC

T∑
t=1

C∑
c=1

Ytclog(Otc), (12)

where T is the temporal segments and C is the number of the event categories.

4 Experiments

4.1 Data Description and Evaluation Metrics

Dataset. AVE dataset is a collection of videos derived from AudioSet [19],
encompassing 28 categories of events from various domains, including but not
limited to speeches by men or women, barking dogs, racing cars, guitar playing,
and church bells. Each video in the dataset lasts for 10 seconds and is temporally
labeled with event boundaries. The dataset is split into three parts for training,
validation, and testing, respectively, following the same distribution as [7].

Evaluation Metrics. The primary goal of the Audio-Visual Event Local-
ization (AVEL) task is to accurately assign each video segment to its respective
event category. Drawing from prior studies [7–9], we adopt the overall accuracy
(Acc) as a crucial performance metric to evaluate our model’s effectiveness in
this task. The overall accuracy metric provides a comprehensive assessment by
taking into consideration several factors, including true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN). The computation of
the overall accuracy is given by the following formula:

Acc =
TP + TN

TP + TN + FP + FN
. (13)
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In this equation, TP represents the count of event segments accurately identified,
TN stands for the count of non-event segments correctly identified, FP indicates
the count of non-event segments incorrectly labeled as events, and FN denotes
the count of event segments mistakenly classified.

4.2 Experimental Settings

We employ the same extraction method following the previous works[8–11].
Specifically, we use a VGG-like network [20] pre-trained on AudioSet to extract
acoustic features with 128 dimensions for each segment. For visual features, we
extract features of size 7× 7× 512 for each segment using the VGG-19 network
[21], pre-trained on ImageNet [22]. In the training phase, the Adam optimizer is
utilized with a batch size of 128. We initialize the learning rate to 7× 10−4 and
apply a gradual decay strategy at epochs 10, 20, and 30, where the learning rate
is reduced to 0.5. We implement it in PyTorch [23].

Table 1. Performance Comparison with Existing Approaches on AVE Dataset

Model Fully-Supervised Acc
Audio 59.5
Visual 55.3

Audio + visual 71.4
AVEL [7] 72.7
DAM [8] 74.5

AVFB [24] 74.8
AVSDN [25] 75.4
CMRAN [10] 77.4

PSP [11] 77.8
Ours 78.4

4.3 Experimental Results and Analysis

We evaluate our proposed approach against several recent methods that adopt
the same features for fully-supervised event detection on the AVE dataset, in-
cluding AVEL [7], DAM [8], AVFB [24], AVSDN [25], CMRAN [10], and PSP
[11]. Table 1 presents the experimental results of our method and the compared
methods.

Our proposed model achieved superior results in supervised event detection
when compared to the single-modality baselines proposed in [7], indicating the
effectiveness of capturing audio-visual interactions. The results also demonstrate
that modeling both intra- and inter-modality interactions is important for achiev-
ing better performance, as shown by the outperformance of methods that exploit
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only one of these interaction types. In particular, our proposed DIIA enables the
dynamic fusion of multi-modal features with both intra- and inter-modality infor-
mation, resulting in the highest accuracy of 78.4% among all evaluated methods
in supervised AVE settings.

5 Conclusion

This paper focuses on the problem of audio-visual event localization, and we
present a novel cross-modal attention network that utilizes the self-attention
mechanism to extract informative features from both the audio and visual modal-
ities. The core component of our model is the Dynamic Intra- and Inter-modality
(DIIA) module, which enables dynamic information flow within and across modal-
ities. Unlike existing approaches, our DIIA can flexibly adjust the intra-modal
attention and capture complex relationships within the audio or visual modality.
Experimental results demonstrate the effectiveness of our proposed method.
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