
EasyChair Preprint
№ 2476

Deadlock Detection in Distributed System

Sabir Hussain, Adeel Sajjad and Zeeshan Javed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 28, 2020



Deadlock Detection in Distributed System

Sabir Hussain, Adeel, Zeeshan

December 5, 2019

1 Abstract

The parallelism on multicore systems is a very crucial challenge in modern
technology where Deadlocks are overseen for distributed systems. If a system
has no deadlock management system, then immense infinite results may occur in
the systems. Without a deadlock mechanism, the system can go in a reject state.
Therefore Distributed deadlock models are needed extremely to handle such
types of issues and that is exhibited for resource and communication deadlocks.
In a multiprogramming time, most threads are utilized to handle a limited
number of assets. A thread demand resources; if the resource are not accessible
around then, the thread enters a holding up state. Now and again, a holding
up thread can never again change state, on the grounds that the resource it has
mentioned are held by other holding up threads. This circumstance is known
as a Deadlock. The state wherein two procedures or threads are stuck hanging
tight for an occasion that must be brought about by one of the procedures or
threads.

]

2 BACKGROUND

In the centralized system, it is easy to
detect the deadlock but because the
central agent has complete information
about every process. If there is no
such central agent and processes may
communicate directly with one another
then it will be difficult to handle the
deadlock. We can say that the thread
in the set is waiting for an event when
a set of threads is in a deadlocked state
that is because of another thread in
the set. The events with which we are
mainly concerned here are resource ac-

quisition and release. The resources
are typically logical; however, other
types of events may result in deadlock,
including from a network interface or
the IPC facilities. We can resolve the
deadlock issue in the ways:

• We can overlook the issue by and
large and imagine that deadlocks
never happen in the system.

• We can utilize a convention to
avert or stay away from halts,
guaranteeing that the framework
will never enter a deadlocked
state.

• We can enable the system to en-
ter a halted state, distinguish it,

1



Distributed Deadlock Detection System UOL

and recoup.

Various strategies are utilized to deal
with the deadlock. Which are given
underneath:

• Deadlock avoidance

– In this strategy the request
for any resource will be
given if there is no dead-
lock in the aftereffect state.
The state of the system will
continuously be checked for
safe and unsafe states.then
the state will be moni-
tored for both danger and
not in danger situations.

• Deadlock prevention

– In deadlock evasion way to
deal with distributed sys-
tems, a source of supply
is allowed to a operation
if the coming after global
system state is sheltered
(keep in mind that a global
state incorporates every one
of the procedures and re-
sources of the appropriated
framework)

• Deadlock detection

– In a distributed system,
deadlock avoidance and
deadlock prevention are not

useful to deal with dead-
lock and it is difficult to do
as such. In this way, just
deadlock identification can
be executed. The strate-
gies of deadlock recognition
in the disseminated frame-
work require the following

∗ Progress The technique
ought to have the op-
tion to identify every
one of the stops in the
system.

∗ Safety The technique
ought to have the op-
tion to identify every
one of the stops in the
system.

Be that as it may, in this article the
Deadlock Detection is engaged and at-
tempted to identify the stop in dis-
persed System.

3 Introduction

The writer introduced deadlock de-
tection for systems of procedures in
which there is no single focal opera-
tor and in which message delays are
subjective yet limited. The main pre-
sumption they made is that messages
sent by process A to procedure B, are
gotten by B in the request in which
they were sent by A. The direct re-
lationship medium may convey mes-
sages out of request, messages might be
missed confused or copied because of
breaking and re-transmission, proces-
sors may come up short and correspon-
dence connections may go down. They
make the accompanying suspicions:

• The systems may capable of be-
ing used again resources.

Page 2



Distributed Deadlock Detection System UOL

• Processes are permitted to create
only access to resources without
sharing the data.

• There is only one set of each re-
source.

They used WFG in which the models
of the state of the system are made by
directed graph. In a WFG, processes
show the nodes and from node P1 to
node P2 there is a directed edge if P1
is blocked and is waiting for P2 to dis-
charge some resource. Figure 1 shows a
WFG, where some processes are wait-
ing for some resources and some pro-
cesses are releasing the resources.

4 PROBLEM STATEMENT

To handle Deadlock utilizing halt
recognition is very challenging task
which includes tending to two essen-
tial issues: one is a location of existing
Deadlock and second goals of identified
Deadlock. In this taking care of tech-
nique, the Maintenance of the WFG
and scanning of the WFG for the near-
ness of cycles (or bunches) are likewise
talked about.

5 IMPLEMENTATION

5.1 Models of deadlock

There are many kinds of resource re-
quest. A network consists of a set of
processes which communicate with one
another exclusively by messages. In
this model, there is at most one best
request to take single resource. when-
ever the single resource model could be
one, the deadlock will be there during
the cycle in the WFG.and other types
of models are discussed by Authors
in detail in this article. Like, in the
AND model he extends the strategy to
detect the deadlock where more than
one resource can be requested and are
given to the process. But, In The OR
model, the writer added some exten-
sions in this model by making numer-
ous resources’ uses for a process. In ad-
dition, the writer generalized the pre-
vious two models as AND-OR model.
In this model,any combination of AND
and OR might be specified by a re-
quest.

5.2 Knapp’s Classification

There are four classes of Distributed
deadlock detection algorithms which
the writer classified in the following:

• Path-Pushing

• Edge-Chasing

Page 3



Distributed Deadlock Detection System UOL

• Diffusion computation

• Global state detection

According to the author, In Path-
Pushing, an explicit global WFG is
maintained to detect the distributed
deadlocks.The graph structure is be
identified by giving special messages
called probes. But the request and
reply messages are easy than these
probe messages. Whereas,In Diffu-
sion computation, deadlock detection
is diffused by the WFG where echo
algorithms used to detect the dead-
locks. At last, In Global State Detec-
tion Based Algorithms, A snapshot is
used to detect the distributed deadlock
and determine the type of a deadlock.

5.3 Chandy-Misra-Haas
Algorithm for the AND
Model

In this section, the author ex-
plained, how can we detect the
blocked process is deadlocked.
The algorithm is given below:

has not replied to all requests

Pj

Page 4



Distributed Deadlock Detection System UOL

5.4 Performance Analysis

5.5 Chandy-Misra-Haas
Algorithm for the OR
Model

5.6 Performance Analysis

5.7 Kshemkalyani-Singhal
Algorithm for P-out-of-
Q Model

5.8 Examples

In other parts, the writer solved the
termination detection problem by us-
ing local snapshot. Some functions
are used to tackle this issues, the
are FLOOD RECEIVE, ECHO RE-
CEIVE and SHORT RECEIVE. At
last the author has shown an exam-
ple to demonstrate the operation of
the algorithm. In the below diagram
1, deadlock detection is shown by
node A and second diagram is shown
the state after node D is minimized.

Page 5



Distributed Deadlock Detection System UOL

6 References

1. CHANDY, K.M., AND MISRA,
J. A distributed algorithm for de-
tecting resource deadlocks in dis-
tributed systems. In Proc. A
CM SIGA CT-SIGOPS Syrup.
Principles of Distributed Com-
puting (Ottawa, Canada, August
18-20, 1982), ACM, New York,
1982, pp. 157-164.

2. DIJKSTRA, n.w., AND
SCHOLTEN, C.S. Termination
detection for diffusing computa-
tions. Inf. Process. Lett. 11, 1
(Aug. 1980), 1-4.

3. Kshemkalyani and Mukesh Sing-
hal, Deadlock Detection in Dis-
tributed Systems.

4. MENASCE, D., AND MUNTZ,
R. Locking and deadlock de-
tection in distributed databases.
IEEE Trans. Softw. Eng. SE-5,
3 (May 1979), 195-202.

5. CHANDY, K.M., AND MISRA,
J. Deadlock absence proofs for
networks of communicating pro-
cesses.Inf. Process. Lett. 9, 4
(Nov. 1979), 185-189.

Page 6


