
EasyChair Preprint
№ 15549

Petri Net Tools: a Comparative Analysis

Abhilash and Rajendra Prasad Mahapatra

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 9, 2024

Petri Net Tools: A Comparative Analysis
Abhilash1*, Rajendra Prasad Mahapatra2

1*,2Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and

Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India,

Tel.: +91- 79068 49434

Corresponding author: Abhilash
mail id: abhilashsharma@gmail.com

Abstract— This survey paper explores Petri Net tools
relevant to concurrent, non-deterministic, stochastic, and
parallel systems. It begins with a brief introduction to Petri
Nets, discussing their formalism, properties, and variants. The
paper then examines several Petri Net tools, including the Oris
Tool, Tapaal Tool, and Color Petri Net (CPN) Tool, detailing
their modeling capabilities and presenting the results obtained
from the problems addressed.

Keywords—Petri Net; Repairman; Petri Net Tools :Oris,
Tapaal, Color Petri Net(CPN)

I. INTRODUCTION

In 1962, Carl Adam Petri presented Petri Nets as part of his
PhD thesis, introducing a mathematical model that can be
visually represented to illustrate the dynamic behavior of
systems. This graphical representation facilitates the
understanding of parallel execution within a system, which is a
key achievement of Petri Nets. This tool allows for system
performance monitoring, enabling users to utilize it as a
graphical editor, code generator, and model simulation. Petri
Nets find applications across various engineering domains,
including office automation, networking protocols,
performance assessment, defense systems,
telecommunications, e-commerce, railway networks,
programming languages, flexible manufacturing, hardware
architectures, research operations, and the Internet.

II. PETRI NETS

A Petri Net is characterized as a directed graph in which
places are depicted as circles, representing various states
within the system. Transitions are illustrated as rectangular
boxes that become activated under specific conditions,
facilitating the movement of tokens to subsequent states. The
arcs in the graph indicate the flow of tokens, with their
weights determining the number of tokens transferred to the
next state; however, unit tokens are not explicitly shown on
the arcs and are instead represented as directed connections.
Arcs can connect places to transitions or transitions to places.
The configuration of tokens within the places of a Petri Net
model is denoted by 'M', indicating the current number of
tokens. Throughout the execution of a Petri Net model, both

the quantity and distribution of tokens may vary. A Petri Net
can be defined as: N= (p, t, i, o, M0), where

1. p = p1,p2,….,pm , where p is a place’s finite set ;
2. t = t1,t2,….,tm, where t is a transition’s finite set, such

that p ∪ t ≠ Ø, and p ∩ t ≠ Ø;
3. I :p × t → N, where i is an input function that shows

directed arcs from places to transitions, where N is a
set of non-negative integers;

4. o: t × p → N, where o is an output function that
shows directed arcs from transitions to places;

5. M0 : p → N , where M0 is defined as initial marking

Example 1:

A. Transition Firing
A Petri Net is executed by the event causing the firing of a
transition, which occurs when the number of tokens in the
various places of a Petri Net model changes due to the
occurrence of an event.

Enabling Rule: A transition can only be enabled when each
input place has a minimum number of tokens equal to the
weight of the arc.
Firing Rule: Only the enabled transition can be fired which
means it follows the enabling rule. From input places, several
tokens are moved to the transition and lastly to the output place
equal to the weight of the arc.
After the firing of the transition, each place always contains
non-negative tokens. A source transition is defined where no
input place is there, which is enabled and the sink transition is
the one without the output place, which implies that no tokens
can be generated after the firing of the transition.

Example 2: Transition Firing

B. Modeling Power

1. Sequential Execution - In a sequential execution,

transition Acc can only be fired after transition AR,
which shows the precedence sequencing.

2. Conflict - In this execution, transitions RR1 and RR2
are enabled, but the processing of one’s request leads
to the denial of the other transition. By assigning the
probabilities to the transitions in the conflict state,
conflict can be resolved.

3. Concurrency – In this execution, tokens can be
distributed to one of the output places D1 or F which
are in concurrency, after the firing of transition FR1.

4. Synchronization – In this execution, the firing of
transition NPR1 depends on the places Q and Idle1
which leads to the synchronized behavior of a system.

5. Mutually Exclusive – Whenever two concurrent
processes are running, where a single resource has to
be shared, then the processes are in a mutually
exclusive stage, i.e. a resource can be shared one by
one by both the processes. As shown in the figure, RM
is the resource that needs to be shared mutually by the
transitions RR1 and RR2.

6. Priorities – By introducing the inhibitor arc, priorities
can be obtained, which is graphically represented by
an arc with a black dot connected to it. A transition t1
can only fire when place p1 has a minimum number of
tokens equal to the weight of the arc and no token in
place p2 where the inhibitor arc is connected, which
makes the change in enabling rule to the firing of
transition.

C. Petri Net Properties

 2 types of properties are:

1. Behavioral Property – This property depends on the
initial state or marking of a Petri Net.

2. Structural Property – This property depends on the net

structure or topology of a Petri Net.

Behavioural Properties:

1. Reachability – It is defined in terms of places

whether, in a Petri Net model, a place can be reached
from one to another, and can perform certain
behavioral properties accordingly as required by the
system. It is important to identify the sequence of the
transition’s firing which can turn a marking from M0
to Mi, where Mi can be represented as a particular
state to be defined as the destination after a transition
is fired. If so, such a marking would be termed as
reachable with a marking M1, if firing of enabled
transition results from M0.

2. Safeness – It is referred to be safe if the boundedness
is 1, i.e. if the number of tokens in place is less than or
equal to j(a non–negative integer) which is defined as
j-bounded. If any marking M is reachable from the
initial marking M0, a Petri Net is said to be j-bounded
if each place is j-bounded (safe).

3. Liveness – A system is said to be live if, for any

marking M that is reachable, a transition in the model
can be fired by some firing sequences.

D. Variants

1. Time Petri Nets (TPN) – TPN is defined as the time
allocated with the transition (transition is always fired
in real-time) i.e. when a transition is fired, a token in
one place has to move to another place, but the token
remains in transition during the firing sequence
execution.
For constructive solutions, state space and linear
equations should be finite for bounded and
unbounded PN.

 For firing a transition, a time delay is associated
with it to hold the transition for a time delay (Delays
are non-deterministic chosen) before the firing is
executed, as in every case, transition firing
immediately couldn’t be possible. So, a time delay is
referred to as tmin and tmax, where tmin is the time
interval which is the minimum waiting time and tmax
is the maximum waiting time allowed for the firing of
a transition. A hierarchical and object-oriented net
was introduced at the time of the TPN study, known
as the General Hierarchical Enhanced Net System
(GHENeSys).

2. Stochastic Petri Nets (SPN) – The extended version

of the simple PN is SPN. A random transition firing
delays, and the firing of a transition is atomic, i.e. the
movement of tokens from one place to another is in
one go. In the Performance Evaluation, SPN is
defined, which can be:

a. One, the actual behavior of the system is

monitored under certain situations, whereas the
model needs more requirements than the obvious
when the system isn’t accessible then a prototype
of a system can be obtained, in any form –
digital or physical.

b. Another one is, introduced in the planning phase
of system modeling, which has the simulation
models and detailed model. In the case of the
simulation model, the model is generated by
computer software, and in a detailed model, the
model is in mathematical form.

3. High-Level Petri Nets (HLPNs) – HLPNs are used
for the simulation of complex structures. Another
form of HLPN is the Colored Petri Nets (CPNs), as
the name suggests the important feature of CPNs is
that the colors are involved with the data types to
identify the tokens attached with the places, and the
expressions to the arcs, so that each token is
associated with its color.
CPN can be created in a hierarchical manner where a
net can be associated with the other net by using the
toolset for larger models.

Color Petri Nets (CPNs): CPNs are used in models
where parallel systems, intelligence, and simultaneity
are important. It is a graphical tool for the
construction, accuracy, and authorization of systems.
A combination of Petri Net and high-level PN forms
the CPN, where PN helps in representing the model
graphically for parallelism, simultaneity, and
intelligence of a system, with high-level PN it helps
in model creation, and alteration, with data types
such as UNIT, REAL, STRING, etc. Here the model
is created the same as PN by simply drag and drop
process but with the data types assigned to it with the

arcs, expressions are allocated to identify the
transitions associated with the arc. Multiple
transitions can be activated at the same time,
transitions activated will be highlighted on their own,
but transition is only activated when the color
assigned to the arcs is in sync with the tokens
assigned to the places. The important aspect of this
tool is that the results are shown on the panel itself by
simply clicking on the simulator button from the
toolset defined as a play button, CPNs can be created
in a hierarchical form which connects the net to the
other nets in exact position to have a clearer view of
the model defined.

Properties –

1. Reachability: This can be defined as the

movement from initial marking to a particular
state.

2. Deadlock: If a system doesn’t have the binding
elements, then a system can be in a deadlock
condition.

3. Livelock: For better performance of a system, it
should be livelock-free, which implies that if a
system enters into the process and can’t reach a
different state.

E. Problem Taken:

In this paper, the study of three Petri Net tools: Oris Tool,
Tapaal Tool, and Color Petri Net (CPN) Tool; are made
based on the model described below:

Model: A repairable multi-processor system is in use,
where finite jobs are arriving at a defined rate into the
system which is then stored in a queue. The queue
allocates the jobs to the processor available.
When the processor is assigned the job then it may result
in successful execution, which adds to the throughput, or
may result in failure which is repaired by the repairman
followed by the queue maintained on the basis of First-
Come-First-Serve (FCFS) scheduling. After repair, the
processor can again be allocated with the jobs to perform
the task.

Tools:

1. ORIS Tool - Oris is a well-defined tool where by

simply clicking on the options in the panel, a model
can be evaluated, and verified graphically to
understand the mechanics in real-time. Places are
defined as circles, transitions as rectangular boxes,
and arcs by the arrow. An inhibitor arc is also used

for priority which is defined as the arrow ending with
a small circle.
In this tool, transitions can be defined in different
forms:

a. Simple Transition (t), transition fires on enabling

condition
b. Time Transition (n), EFT & LFT can be denoted

as [1, 2].
c. Stochastic Immediate Transition (IMM), where

the default weight is 1.
d. Stochastic Uniform Transition (UNI), where a

simple condition of uniform probability is defined
between EFT and LFT.

e. Stochastic Deterministic Transition (1), where
value & weight is 1.

f. Stochastic Exponential Transition (λ), where
transition can be defined at a particular rate.

g. Stochastic Expolinomyal Transition (expo),
where an expression to the transition can be
defined.

To run the tool, the Show Token Game View
button is defined in the toolbar with the symbol
‘T’ and to check the log, graphs, and details of the
system, click on the Show Engine view button.
Analysis of the system can be made with the
following, by clicking on the play button in the
panel:

i. Regenerative transient analysis
ii. Regenerative steady-state analysis

iii. Forward transient analysis
iv. Transient analysis of GSPN
v. Steady state analysis of GSPN

vi. Enabling restriction transient analysis
vii. Non – Non-Deterministic Analysis

viii. Transient simulation

Let's look at Figure -1 and Figure -2 below to
understand the working of Oris Tool on a model
described earlier.

Figure–1 depicts the working, where ten
incoming jobs can arrive at an ‘AR’ rate, which is
being accepted by ‘Q’, and allocation of jobs to
the processors is made on a random basis, if the
job is executed then it will count the job in ‘TP’,
and if the processor fails then it will move to
repairman’s queue ‘F’ which is based on FCFS
scheduling. After repair, the processor will be re-
aligned with the job to their initial position.

 Figure - 1

 Figure – 2
In Figure –2, the execution of the model is shown, where
incoming jobs at ‘S’ are three and at ‘TP’ six which means out
of ten jobs six are executed and one job is in processor 3 which

failed and is in repairman’s queue, to get the processor repaired
by following FCFS scheduling.

Abbreviations:

S – Source
AR – Arrival Rate
Dec - Decision
Acc – Accept
Rej – Reject
Q – Queue
Idle1 – Idle State 1
Idle2 – Idle State 2
Idle3– Idle State 3
W1- Working State 1
W2 – Working State 2
W3 – Working State 3
NPR1 – Normal Processing Rate 1
NPR2 – Normal Processing Rate 2
NPR3 – Normal Processing Rate 3
TPR1 – Throughput Rate 1
TPR2 – Throughput Rate 2
TPR3 – Throughput Rate 3
FR1 - Failure Rate 1
FR2 - Failure Rate 2
FR3 - Failure Rate 3
D1 – Dead State 1
D2 – Dead State 2
D3 – Dead State 3
F – Repairman’s Queue
RR1 – Repair Rate 1
RR2 – Repair Rate 2
RR3 – Repair Rate 3
RM - Repairman

Output: Regenerative Transient Analysis

This output shows the Regenerative Transient Analysis of
Figure – 2, where the Y-axis shows the ‘Time’ and the X-axis
shows the Probability where the discretization value is 0.1.

Output: Regenerative Steady State Analysis

This output shows the Regenerative Steady State Analysis of
Figure 2, where marking at places is shown with the steady-
state probability.
Example – 10S RM Idle1 Idle2 Idle3 means there are 10 tokens
at Source, 1 at Repairman, 1 each at Idle1, Idle2, and Idle3; and
steady-state probability 0.026 means the possible outcome to
the marking defined at a point.

2. TAPAAL Tool – TAPAAL was developed at Aalborg
University in Denmark. TAP stands for Timed-Arc
Petri Nets.
Here, places are represented as circles, transitions as
rectangular boxes, and arcs by an arrow, inhibitor arc
is enabled when no token is present in the input place
with the place having a token in it, only then a
transition would fire.
To insert or remove a token in the places, separate
icons are present in the toolbar and to run a model a
simulator button is specified in the form of a ‘flag’
symbol. In case, where two transitions are enabled at
the same time, we can specifically execute a transition
by a simple click.

 Figure – 3

3. Color Petri Net (CPN) Tool – The name itself defines
the characteristics of this tool, where places,
transitions, and arcs can be given different colors to
analyze the work. The CPN tool can be downloaded
from http://cpntools.org/.

While building a net, the token game can be easily
analyzed by just watching the token movement on
every transition firing, where places can be given
different color sets.

Different tool sets are provided in the toolbar:

a. Net - A new net can be created, saved, closed, and
open saved nets.

b. Create – By simply dragging and dropping an icon
from the net, a place, transition, arc, inhibitor arc,
clone, delete, or horizontal/vertical guideline can
be created.

c. Style - Different colors to places can be defined to
identify the token game.

d. View is a toolset from where a net can be zoomed
in/out, a new group can be created, can also toggle

the elements to identify whether it belongs to a
group or not.

e. Simulation is a toolset from which a model can be
simulated one by one by pressing the play button
or multiple movements at one go by pressing the
play button which indicates the number of moves.
The backward button is to reach the initial stage.

f. Standard Declaration is a toolset where pre-
defined declaration sets are available, also we can
define our declaration set as per the requirement.

To assign the token to the places, press the Tab key
once to define the declaration set and twice to initiate
the marking. An expression to the arc is defined by
clicking onto the arc once.

Figure – 4 shows the binder available in the Color Petri
net tool and Figure – 5 shows the model described
earlier in this paper.

 Figure - 4

 Figure - 5

References

[1] Jiacun Wang, Petri Nets for Dynamic Event-Driven
System Modeling, Monmouth University, West Long
Branch, NJ 07764.

[2] Van der Aalst, Wil, and Kees van Hee, Workflow
Management: Models, Methods, and Systems,
Massachusetts: MIT Press.

[3] Ajmone Marsan, M., M. G. Balbo and G. Conte. 1986.
Performance Models of Multiprocessor Systems,
Massachusetts: The MIT Press.

[4] Desrochers, A., and R. Ai-Jaar. 1995. Applications of
Petri Nets in Manufacturing Systems: Modeling,
Control and Performance Analysis. IEEE Press.

[5] Murata, T. 1989. Petri nets: properties, analysis and
applications. Proceedings of the IEEE 77(4): 541-580.

[6] Peterson, J. L. 1981. Petri Net Theory and the Modeling
of Systems. N.J.: Prentice-Hall.

[7] Petri, C.A. 1962.Communication with Automata,
Kommunikation mit Automaten. Technical Report
RADC-TR-65-377, Rome Air Dev. Center, New York.

[8] Marco Biagi, Laura Carnevali, Enrico Vicario;
University of Florence, Italy

[9] Jonas F. Jensen, Thomas Nielsen, Lars K Oestergaard
and Jiˇr´ı Srba; AALborg University, Denmark

[10] Lars M. Kristensen, Bergen University College,
Norway

[11] Abhilash, Ram Chakka, Rama Krishna Challa,
"Numerical Performance Evaluation of Heterogeneous
Multi-Server Models With Breakdowns and FCFS,
LCFS-PR, LCFS-NPR Repair Strategies", Advance
Computing Conference (IACC), Volume: pp. 566-570,
2013, 2013-02-22.

