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Abstract—In the intelligent cloud setting, distributed learning
encounters privacy and straggler challenges. Lagrange coded
computing offers partial relief. Yet, if the number of inquis-
itive but honest nodes surpasses a threshold or if there are
external eavesdroppers, system privacy becomes compromised.
To tackle this issue, we introduce a novel approach called
DPLE (Differentially Private Lagrange Encoding). Additionally,
we provide theoretical analysis to determine the artificial noise
variance necessary for achieving desired privacy levels within this
framework. Through experimentation, we evaluate how different
system parameters affect accuracy.

I. INTRODUCTION

Cloud computing [1] offers powerful computing and stor-
age resources, making distributed learning more feasible and
practical. However, there are privacy and straggler issues in
distributed learning [2], [3]. Yet, persistent challenges hinder
the advancement of distributed learning within smart cloud
environments. These challenges encompass issues concerning
performance, fault tolerance, adaptability, and privacy con-
siderations. Our study predominantly addresses the privacy
concerns inherent in distributed learning, particularly crucial
in cloud setups where physical resources are shared among
multiple users, segregated by virtual machines.

Recently, the integration of coding methodologies with dis-
tributed learning has garnered increased attention as a means to
uphold system privacy [4], [S]. Lagrange coded computing [6],
[7] (LCC) uses interpolation polynomials for data encoding,
balancing privacy, security, and resilience. Yet, it’s limited
to handling polynomial functions. CodedPrivateML enhances
LCC with sigmoid function approximation for logistic regres-
sion within its framework. However, relying only on interpo-
lation polynomials provides modest privacy safeguards. This
paper advances privacy safeguards by integrating differential
privacy (DP) [8]-[11] into the LCC framework.

II. SYSTEM MODEL OF DPLE

In Fig. 1, we depict a master-worker setup consisting of
a master and N workers. The master holds the dataset X
and label vector y. The model weight w is obtained by
minimizing the cross-entropy loss function. Fig. 2 depicts the
system architecture of DPLE. Initially, the master normalizes
dataset X into X. Then X is divided into K shares X =
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Fig. 2. System architecture.

XT,.. XT] and the encoded dataset X; (i = 1,..., N)
is denoted as X; = g,(m;) with
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In Eq.(1), Z: is a redundancy matrix and T signifies the
maximum tolerable number of honest but curious nodes.
Up,. ., ug 4 and {m;}, are distinct numbers selected by
the master. Similarly, the master uses the same set {m;} Y ;
to encode w(®). The i-th encoded weight vector is vAvZ-t =
gw(m;), where
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The elements in v; are randomly selected from [—¢,¢&] for
some real &.

After encoding, the master assigns X; and v?/gt) to the i-th
worker abd each worker computes the local function
(t)y

P W) =X 8(X; - wi). (3)



S(z) = > ga;z" is the r-th order approximation of the
sigmoid function and a; is estimated using least squares
estimation.
After the i-th worker finishes computation, artificial noise
( ) is added to f(X;, % (t))

the perturbed result fi R

to meet DP requirements. Hence,
is given by

£ =XT- 8K - ") +nf". (4)

Upon receiving D = (2r+1) (K+T—1)+1 results (D denotes the

set of the first worker~s who have finished their computations),
the new polynomial () is crafted by the master as

h(ms) 2 FO = (X, &)+, 5)

Note that N > |D| + Ss, where S represents the maximum

number of stragglers. Hence the function values at u, (o=

1,..., K) can be expressed as
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Once the master obtains & (uy) fora =1,. ..
these results

K K
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, K, it aggregates

and updates the gradient based on

wltD) = w® - LR [(§(Xw) - +Znt>} ®)

III. ANALYSIS OF ARTIFICIAL NOISE VARIANCE

This section explores the conditions necessary for the vari-
ance of the artificial Gaussian noise ngt) ~N(0, 0'2t) ).

We define a matrix R £ XT @ (14 - [S(X W) )
for the i-th worker. Then we find that f(X; (t)) =
Zm/ K R(t , where R( )i denotes the ¢-th column of R(M-4,

Assuming R( )% is bounded by B( )" and according to Eq.
(3), we obtain AGau = QBét)’ . Thus, for the i-th worker in
the t-th iteration, ensuring the (;, d;)-DP is feasible if oy ;
meets

21n(1.25/5;) - 2B /e, )
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IV. EXPERIMENT

We validate the effectiveness of DPLE through experiments
in this section. Logistic regression training is conducted on
the MNIST and FashionMNIST datasets. For MNIST, 12,700
samples from classes 1 and 2 are chosen for training. Fash-
1onMNIST focuses on binary classification between *Pullover’
and ’Dress’ classes. Each dataset sample comprises 785 fea-
tures, with the additional feature accounting for bias. Privacy
budget ¢ is uniformly distributed across workers, and ¢ is set
to 0.01.

Figures 3 and 4 illustrate the training accuracy of the
Fashion-MNIST and MNIST datasets under different privacy
budgets. In Fig. 3, we set the parameters as N = 50, K =5,
and T' = 4, while in Fig. 4, the parameters are N = 50, T = 2,
and K = 5. It’s observed that training accuracy increases as
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Fig. 5. The impact of varied dataset partitions with Fashion-MNIST.



the privacy budget expands, albeit with a trade-off of reduced
privacy protection.

In Fig. 5, we illustrate the impact of varying dataset par-
titions on training accuracy, with parameters set at N = 50,
T =4, and € = 5. It can be observed that increasing dataset
partitions leads to a gradual decrease in training accuracy.

V. CONCLUSION

To counter the risks posed by numerous honest but inquisi-
tive nodes and external eavesdroppers in the LCC framework,
we integrated differential privacy into it. We then examined
the necessary noise variance magnitude for attaining targeted
levels of privacy protection. Experimentation investigated the
impact of different system parameters on training accuracy.
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