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Abstract—With expansion of power system and continuous
proliferation of renewable energy generation, the transient
stability characteristics of power system become more
complicated, and online transient stability assessment faces
severe challenges. The calculation of unstable equilibrium
point (UEP) is a critical step in the direct method of power
system transient stability assessment. This paper presents a
new method for predicting transient UEPs of power systems
based on PSO-MSVR. Instead of complicated calculation,
UEPs can be obtained by steady state measurement date.
Firstly, UEPs are calculated by BCU method under different
operating conditions of the system to provide sample data for
the prediction model. Then the voltage amplitude and phase
angle of the steady state operating conditions are taken as the
sample characteristics, and the mapping relationship between
the measured data and UEPs is constructed by multi support
vector regression (MSVR). In the meantime, the penalty and
kernel parameters in MSVR are optimized by particle swarm
optimization (PSO) algorithm. Finally, fast prediction of the
transient UEPs based on the steady state operating information
of the system is achieved. Case study on IEEE 9-bus system
shows that the proposed approach has high prediction
accuracy through a small amount of training data.
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I. INTRODUCTION
Currently electric power systems operate under more

stressful conditions because of the need to increase the
transmission capacity of transmission lines at the lowest cost
[1]. These operating conditions make power systems more
susceptible to large disturbances because of the increased
possibility of loss of stability. Once the stability of the power
system is destroyed, it will not only lead to power failure, but
form some very serious accidents [2]. After the fault occurs,
the fast and accurate prediction of the unstable equilibrium
point (UEP) can provide the basis for the stability
discrimination in time, which is of great significance to the
security prevention and control of the power system [3].

One method of power system transient stability analysis
and control is the direct method or energy based method [4].
The algorithm relies on the identification of the UEP of the
given transient energy function. Several methods have been
proposed to compute the closet UEP [5]-[7]. In [7],
homotopic-based algorithm combined with the singular
fixed-point strategy is proposed to find a set of UEPs
containing the closest UEP. However, the computational
speed of the above-mentioned mechanism based UEP
algorithm is slow, which cannot meet the requirements of

online fast calculation. With the development of artificial
intelligence, a large number of artificial intelligence
algorithms are applied to transient stability prediction [8]-
[10]. Compared with the traditional neural network, the
support vector machine (SVM) method can better solve the
practical problems such as small sample size, nonlinearity,
high dimension and local minima [11]. In view of this, the
mapping relationship between steady-state operation
information and UEPs is established by using multi support
vector regression (MSVR) for multi-input and multi-output
(MIMO) system in this paper. And in order to determine the
optimal values of the kernel width and penalty factor in
MSVR model, particle swarm optimization (PSO) algorithm
is used to optimize the kernel function.

The rest of the paper is structured as follows. Section II
gives boundary of stability region based controlling UEP
(BCU) methods for solving UEPs. In the Section III, PSO-
MSVR is used to construct the mapping relationship between
steady-state operation information and UEPs, in the
meantime, penalty and kernel parameters in MSVR are
optimized by PSO algorithm. The UEPs of the system can be
quickly and accurately predicted by the voltage and phase
angle of the steady-state operation node. Section IV solves
UEPs of IEEE 9-bus system using the potential energy
boundary surface (PEBS) and BCU methods respectively,
and validates the PSO-MSVR prediction model. The
conclusion is provided in Section V.

II. THE BCU METHOD

For a multi machine system, a classical model of n-
machine is considered, load is simulated with constant
impedance, assuming that the network shrank to the node
inside the generator, ignoring the transfer conductance of the
network. The system equation after fault is:
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where i and i are the rotor angle and its angular velocity
of ith generator, respectively; miP , iM and iE are the
mechanical power, inertia constant and internal potential
amplitude of ith generator, respectively; ijB is the network
transfer admittance between bus i and bus j.

Take the nth generator as the reference machine. Define
relative angle and relative angular velocity as follows:
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The system equation (1) can be abbreviated as:
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where  and  are n-1 dimensional vectors; f is n-1
dimensional vector function and have the following
components:
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The equilibrium point of the system (3) is the solution of
0 and ( )=0f  .The corresponding transient energy

function ( , )V   of the above systems can be written as the
sum of the transient kinetic energy ( )KEV  and the transient
potential energy ( )PEV  :
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where the superscript s represents the state variable at the
stable equilibrium point.

Fig. 1. The BCU method

The BCU method is an analysis method based on the
theory of modern non-linear dynamic system. UEP under a
specific fault whose stable manifold contains the exit point
(EP) of the trajectory during fault, called the controlling UEP
(CUEP).Generally, it is very difficult to determine the EP of
a critical unstable trajectory, while the manifolds of SEP and
UEP are not explicitly represented. It is easier to replace the
stable manifold of UEP with an energy function, so it can be
said that the BCU method approximates the locally stable
boundary with a constant energy surface passing through
CUEP, as shown in Fig. 1. In the figure, 1( , )s 0 and ( , )s 0
represent the SEPs of the system before and after the fault,
( , )ess ess  represents the EP of the trajectory during fault,
and ( , )u 0 represents the CUEP. It can be seen that the
energy function value of any point on the stable manifold

s ( , )0uW  of ( , )0u is always greater than or equal to the
constant energy surface ( , )0uV  .

The main steps to obtain the UEPs using the BCU
method are as follows:

1) Using the PEBS method, find the EP * of
projected trajectory of the fault trajectory
( ( ), ( ))t t  in angular space through PEBS;

2) Set * as the EP of the shrinkage system and * as
the initial condition, integrate the shrinkage system

after fault to find the point *
0 where
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first reaches the minimum value.

3) With *
0 as the initial value, the equation ( )=0f 

is solved iteratively to obtain the UEP ̂ .

Fig. 2. The solving process of the UEPs
In Fig. 2, s( )A  is stable boundary of the primitive

system. As shown in Fig. 2, the distance from * to ̂ is far
away, but the distance from *

0 to ̂ are close enough that
̂ can be quickly found using iterative method.

III. UEP PREDICTION MODEL BASED PSO-MSVR
ALGORITHM

A. The MSVR algorithm
To solve the multivariable output problem, the MSVR

algorithm for MIMO systems is used to predict the UEPs.
For a regression problem of n-dimensional input and m-
dimensional output, assume given training samples
  1, L

i i ix y , where L is the number of samples, nx R is the

input data, and my R is the output data. Construct the
regression function to be ( ) ( )T F x x W B , where
( )x is a non-linear mapping of high-dimensional space,

1=[ ,..., ]m W , 1=[ ,..., ]mb bB . In the case of multiple
outputs, the minimization structure belongs to the following
constrained optimization problem:
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where C is the penalty factor and ( )iL u is the loss function
defined on the hypersphere, which is expressed as
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( )Ti i i  e y Φ x W B ;  is a hypersphere insensitive
domain. When 0  , the problem is a least-squares
regression of each output component. When 0  , the
regression of output function is solved by taking into account



the fitting effects of other output components, so that the
problem will be an optimal solution for overall fitting.

By introducing Lagrange multipliers, the estimation
function of MSVR is obtained after partial derivative
processing of the related parameters as follows:
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where *, 0( 1,2,..., )i i i L    are Lagrange multipliers and
( , )ix xK is a kernel function.

In the construction of MSVR, the selection of kernel is
the most important. Generally, Gaussian kernel is chosen as
the kernel in MSVR model, and its expression is:
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where  is kernel width which controls the range of the
Gaussian kernel function.

B. The PSO algorithm
Generally, the kernel width  and penalty factor C are

set artificially in MSVR model construction, and it is not
possible to determine the optimal value of these two
parameters. For this reason, this paper uses PSO algorithm to
find the optimal combination of parameters in MSVR model,
and then the optimal combination of parameters is assigned
to MSVR for model building.

The PSO algorithm is a population-based random
optimization technique. The quality of each particle is
determined by the fitness function. The position and speed of
each particle are updated by learning global and local
optimal solutions to achieve global optimization. The particle
positions and velocities are 1 2( , ,..., )i i i idx x xX and

1 2( , ,..., )i i i idv v vV , respectively. The speed of particles
directly affects the global convergence of PSO algorithm.
When approaching the optimal solution, particles lack
effective control and constraints, and do not have strong
local search ability. Therefore, effective control and
adjustment of particle flight speed can be achieved by
introducing inertial weights. The strategy they update is:
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where ( )t
idp and ( )

g
t
dp are individual and globally optimal

solutions for particles at time t, maxw and minw are maximum
and minimum values of inertial weights, 1r and 2r are
random numbers evenly distributed between (0,1), 1c and 2c
are positive learning factors, maxt and t are maximum and
current iterations.

C. UEP prediction model based PSO-MSVR algorithm
The UEPs of the system after a fault are related to the

parameters of each component in the power grid, the
topology, the current operation condition of the power grid
and the characteristics of the fault. In a specific power grid,

the UEPs of a single fault under the same operation condition
are only related to the operation condition of the system, and
there is a mapping relationship from steady-state operation
information to the UEPs. When (1) (2) ( )[ , ,..., ]pX X X X is
used to represent the steady-state operation information of a
power grid, the UEP can be expressed as UEP ( )fP X . In
this paper, the node voltage and phase angle are selected as
sample characteristics to represent the steady-state operation
information of the system.

In order to eliminate the influence of different
dimensions and units of the input and output, the input and
output dates of the samples should be normalized before
training to satisfy the following formula:
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In the offline training stage, the topology of the power
grid and the actual operating environment are considered to
generate the set of expected accidents. For each fault, the
training sample was generated under different operating
conditions considering the load fluctuation in the power
network and the power of the generation. Then, the training
was conducted through PSO-MSVR to obtain the UEP
prediction model of each expected fault. In the online
application stage, after a fault occurred, according to the
stable operation information and the specific fault number of
the current operation condition of the power network, the
power network's UEP could be quickly calculated through
the UEP prediction model, which provided a basis for the
temporary stability assessment and a more reasonable and
effective security control for the system.

The process of model building is shown in Fig. 3. The
steps of UEP prediction based on PSO-MSVR are as follows:

1) Determine the range of combinatorial optimization
parameters ( , )C , and set the basic parameters in
MSVR, mainly including particle size M, positive
learning factor 1c and 2c ; maximum and minimum
of inertial weights, maximum number of iterations

maxt and finally initialize the speed and location of
each particle in the population.

2) The sample set of UEPs calculated by BCU method
is input into MSVR model for training and learning,
and the target function value of each particle, i.e. the
fitness, is calculated according to the following
formula:
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3) Find the individual and global optimal position
dp and gp of each particle according to the fitness

value.

4) Update the velocity and position of particles and
their inertial weights according to the formula (4).

5) Recalculate the fitness of each particle after location
updates, and reupdate dp and gp .



6) Check the termination condition of the PSO and
output the optimal solution location if the maximum
number of iteration or the optimal solution has been
stopped; otherwise, return to step 4).

7) Construct the MSVR prediction model of UEP by
the corresponding value of the optimal solution
location and training samples, and calculate test
sample set.

Fig. 3. PSO-MSVR based UEP prediction model

IV. SIMULATION RESULTS AND ANALYSIS

A. Test system
To verify the validity of the proposed method in this

paper, the IEEE 9-bus system is set as the test system. There
are 3 synchronous generators, 3 loads and 9 lines in the
whole system. The role of exciters is considered in all the
generators. The three-phase short-circuit fault occurred on
line 5-7 will be analyzed, and the fault location is near bus 5.
The method to clear the fault is to cut off line 5-7.

Fig. 4. IEEE 9 bus test system

B. UEP calculation results

Fig. 5. Family of phase planar curves and UEPs
The blue line in the figure above corresponds to a series

of unstable trajectories on the plane from closed to unclosed
trajectories with increasing fault clearing time; the red line is

the trajectory after fault calculated by BCU method. And the
red and blue points are UEPs calculated by BCU method and
PEBS method, respectively. After calculating the UEPs, the
equipotential energy curves of the system and the transient
energy at each time can be obtained, as shown in Fig. 6, Fig.
7, respectively. Table Ⅰ compares the results of critical
transient energy, critical fault clearing time (CCT), and
calculation time calculated by time domain method, PEBS
and BCU methods.

Fig. 6. Equipotential energy curve

Fig. 7. Transient energy curve after fault

It can be seen that PEBS method will mistakenly judge
stability when the system is unstable. Therefore, BCU
method is selected to construct the sample set of PSO-MSVR
prediction model. Compared with time domain method, BCU
method is faster and more in line with the purpose of the
UEP fast prediction.

TABLE I. Performance of different UEP calculation methods
Method Time domain method PEBS BCU

Critical transient energy 0.843 1.250 0.973
CCT(s) 0.178 0.184 0.162

Calculation time(s) 0.85 0.53 0.71

C. Prediction model results
All the loads (both active and reactive) change randomly

within 80% to 120% of basic load level, independently; and
the generator output is adjusted accordingly. Then, the UEPs
under different operation conditions can be calculated by
BCU method so that 729 sets of sample date are obtained.
The rotor angles of three generators representing UEPs are
taken as sample output, and considering the difficulty of data
acquisition in practical application, the node voltage and
phase angle are selected as the sample characteristics. 510
sets of date are selected as training set and 219 groups are
used as test set. The data in the test set is different from that
in the training set, which can be used to test the
generalization ability of the training model.

The initial particle swarm size M is set to 20, dimension
set as 3; acceleration factor 1c and 2c are 1.5 and 1.7
respectively; inertia weight maxw and minw are 1.0 and 0.1
respectively; maximum iteration time is 200; the kernel
width  and penalty factor C optimized by PSO algorithm



both range from 0.001 to 1000. The change of fitness curve
in the process of optimizing MSVR model by PSO algorithm
is shown in Fig. 8, and the optimal combination parameters
 and C are 1.933 and 807.509 respectively. Finally, the
optimal combination parameters are substituted into MSVR
model for test sample experiment.

Fig. 8. PSO-MSVR fitness curve
In order to visually display the prediction accuracy of the

model for the test samples, the prediction overlap charts of
the test samples of the model are made. From the comparison
of the models in Fig.9, it can be seen that the prediction
values of the test samples in the PSO-MSVR model
proposed in this paper are closer to the actual values. To
further quantitatively compare the accuracy of the model
predictions, the mean square error (MSE) of the model
predictions are calculated.
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where M is the number of samples in the test data set; ky is
the output data in the test data set; and ˆ( )y k is the output
value of the MSVR prediction model.

Fig. 9 . The results of prediction model
TABLE II. Different sample set prediction performance

MSE_train MSE_test
MSVR 0.2437 0.2535

PSO-MSVR 0.0437 0.0645
It can be seen from Table Ⅱ that the prediction accuracy

of MSVR optimized by PSO algorithm is greatly improved.

TABLE III. Calculation time of different UEP calculation methods
Time domain

method PEBS BCU PSO-
MSVR

Calculation
time(s) 183.28 115.64 153.49 21.89

In aspect of computing efficiency, Table Ⅲ shows that
PSO-MSVR method is much faster than other traditional
methods. In this paper, high prediction accuracy is achieved
by using only the voltage and phase angle of each node in
steady state operation, and the model is simple, the
calculation speed is fast. This prediction model can meet the
requirements of practical application.

V. CONCLUSION
This paper presents a PSO-MSVR based method for

predicting transient UEPs of power systems. First, compared
with PEBS, the UEPs calculated by BCU are more accurate
and there is no aggressive result. Then, PSO-MSVR is used
to construct the mapping relationship between steady-state
operation information and UEPs, where penalty parameters
and kernel parameters in MSVR are optimized by PSO
algorithm. Therefore, the UEPs of the system can be quickly
and accurately predicted by the voltage and phase angle of
each node in steady state operation. The results of simulation
examples show that the proposed method can accurately
predict the UEPs of the systems under different operating
conditions through a small amount of training data, and has a
certain generalization ability.
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