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Abstract. Obtaining the complete weight distributions for nonbinary
codes is an even harder problem than obtaining their Hamming weight
distributions. In fact, obtaining these distributions is a problem that
usually involves the evaluation of sophisticated exponential sums, which
leaves this problem open for most of the linear codes. In this work we
present a method that uses the known complete weight distribution of a
given cyclic code, to determine the complete weight distributions of other
cyclic codes. In addition we also obtain the complete weight distributions
for a particular kind of one- and two-weight irreducible cyclic codes,
and use these distributions and the method, in order to determine the
complete weight distributions of in�nite families of cyclic codes. As an
example, and as a particular instance of our results, we determine in a
simple way the complete weight distribution for one of the two families of
reducible cyclic codes studied by Bae, Li and Yue [Discrete Mathematics,
338 (2015) 2275�2287].

Keywords: Complete weight enumerator · Weight distribution · One-
and two-weight irreducible cyclic codes · Cyclic codes · Gauss sums.

1 Introduction

The complete weight distribution of a code enumerates the codewords by the
number of symbols of each kind contained in each codeword. Therefore, the
complete weight distribution of a code contains much more information than
the Hamming weight distribution. In fact, the complete weight distribution has
a wide range of applications in many research �elds as the information it con-
tains is of vital use in practical applications. For example, as pointed out in [2]
the complete weight distribution of Reed-Solomon codes could be helpful in
soft decision decoding. As another example, the complete weight distribution is
useful in the computation of the Walsh transform of monomial functions over
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�nite �elds [6]. Unfortunately, determining the complete weight distribution is
an even harder problem than obtaining the Hamming weight distribution. As a
consequence, the complete weight distribution is unknown for most codes.

For this reason, determining the complete weight distributions of either linear
codes or cyclic codes over �nite �elds has received a great deal of attention in
recent years (see for example [1, 3, 10, 11, 16�19]). In this work we present a
method that uses the known complete weight distribution of a given cyclic code,
to determine the complete weight distribution of other cyclic codes. In addition
we also obtain the complete weight distributions for a particular kind of one- and
two-weight irreducible cyclic codes, and use these distributions and the method,
in order to determine the complete weight distribution of in�nite families of cyclic
codes. As an example, and as a particular instance of our results, we determine
in a simple way the complete weight distribution for one of the two families of
reducible cyclic codes studied in [1]. As another example we also determine the
complete weight distributions for another family of cyclic codes which, as we
shall see later, can be obtained in terms of the complete weight distribution of
the subclass of optimal three-weight cyclic codes recently reported in [15].

This work is organized as follows: In Section 2 we establish the notation,
give some de�nitions, and recall some known results. Particularly, we recall a
result that determines the Hamming weight distributions of all one- and two-
weight semiprimitive irreducible cyclic codes. By using such result, the complete
weight distributions for a particular kind of one- and two-weight irreducible cyclic
codes is determined in Section 3. A method for determining new complete weight
distributions, in terms of known ones, is presented in Section 4. In Section 5,
we use the complete weight distributions obtained in Section 3, and the method
in Section 4, in order to determine the complete weight distributions of in�nite
families of cyclic codes. As examples, and as particular instances of our results,
two of these families are presented in this section. Finally, Section 6 is devoted
to conclusions.

2 Notation, de�nitions and known results

First of all we set for this section and for the rest of this work, the following:

Notation. Let p, t, q, m, and ∆, denote positive integers such that p is a prime
number, q = pt and ∆ = qm−1

q−1 . From now on, γ will denote a �xed primitive

element of IFqm . Let u be an integer such that u|(qm−1). For i = 0, 1, · · · , u−1,

we de�ne C(u,q
m)

i := γi〈γu〉, where 〈γu〉 denotes the subgroup of IF∗qm generated

by γu. The cosets C(u,q
m)

i are called the cyclotomic classes of order u in IFqm .
For an integer u, such that gcd(p, u) = 1, p is said to be semiprimitive modulo
u if there exists a positive integer d such that u|(pd + 1). We will denote by
�Tr�, the absolute trace mapping from either IFqm or IFq to the prime �eld IFp,
and by �TrIFqm/IFq

� the trace mapping from IFqm to IFq. Let s ∈ IFq, and let
V = (v0, v1, · · · , vn−1) be a vector of length n over IFq. We de�ne the number
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of occurrences of the symbol s in V , N (s, V ), as the number of times that s
appears as an entry in the vector V . That is:

N (s, V =(v0, v1, · · · , vn−1)) := |{i | s = vi, 0 ≤ i < n}| .

An [n, l, d] linear code, C , over IFq is an l-dimensional subspace of IFnq with
minimum Hamming distance d, and the vectors of C are called codewords. A code
C is cyclic if it is linear and if (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, . . . , cn−2) ∈
C . A cyclic code is irreducible (reducible) if its parity-check polynomial (see
for example [13, p. 194]) is irreducible (reducible). Let Ai be the number of
codewords with Hamming weight i in C (recall that the Hamming weight of a
codeword c is the number of nonzero coordinates in c). Then, the sequence 1,
A1, . . ., An is called the Hamming weight distribution of the linear code C , and
the polynomial 1+A1T + . . .+AnT

n is called the Hamming weight enumerator
of C . If ]{1 ≤ i ≤ n : Ai 6= 0} =M , then C is called an M -weight code.

In a similar way let C be a code of length n over IFq. Denote the q elements
of IFq by u0 = 0, u1, · · · , uq−1 in some �xed order. By denoting N0 := N ∪ {0},
we de�ne the complete weight of a vector v = (v0, v1, · · · , vn−1) ∈ IFnq , as the

vector wcplt(v) := (f1, f2, · · · , fq−1) ∈ Nq−10 , where fl (1 ≤ l < q) is the number
of components vj (0 ≤ j < n) of v that are equal to ul. In addition, for a

vector f = (f1, f2, · · · , fq−1) ∈ Nq−10 we denote by Zf the monomial in the q− 1
variables (z1, z2, · · · , zq−1) given by

Zf := zf11 z
f2
2 · · · z

fq−1

q−1 ,

Now, for a linear code C of length n over IFq, we de�ne the set of complete
nonzero weights of C , WC , by the set:

WC := {wcplt(c) | c is a nonzero codeword in C } ,

and for each complete nonzero weight w ∈WC , we de�ne its frequency, Aw, as:

Aw := ]{ c ∈ C | wcplt(c) = w } .

The sequence 1, {Aw}w∈WC is called the complete weight distribution of the
linear code C , whereas the polynomial

CWEC (Z) := 1 +
∑

w∈WC

Aw Zw , (1)

is called its complete weight enumerator.

Remark 1. Let n be as before, and let f0 : Nq−10 → N0 be the function given by

f0(f1, f2, · · · , fq−1) = n−
q−1∑
i=1

fi .

Thus, it is important to observe that a quite common de�nition for the complete
weight enumerator (see for example [13, p. 141]) is:
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CWEC (Z) := zn0 +
∑

w∈WC

Aw z
f0(w)
0 Zw .

For linear codes these two de�nitions are equivalent and, for the convenience of
this work, we are going to use (1). In addition, observe also that (1) coincides
with the Hamming weight enumerator when q = 2 and contains much more
information if q > 2.

The following gives an explicit description of an irreducible cyclic code of
length n and dimension ordn(q) (the order of q modulo n; the smallest integer
m > 0 for which qm ≡ 1 (mod n)) over IFq.

De�nition 1. Let n, N and N ′ be integers such that N = gcd(qm − 1, N ′) and
nN = qm − 1. Then the set

IN ′ := {c(a) | a ∈ IFqm} ,
where

c(a) := (TrIFqm/IFq
(aγN

′i))n−1i=0 ,

is an irreducible cyclic code of length n and dimension ordn(q) over IFq.

Remark 2. Note that IN and IN ′ are in general two di�erent irreducible cyclic
codes, however they are equivalent in the sense that both share the same length
n = qm−1

N , the same dimension ordn(q), and the same Hamming and complete
weight distribution.

Main assumption. From now on, we use n and N as integers in such a way
that nN = qm−1, assuming that m = ordn(q). Under these circumstances, note
that if hN (x) ∈ IFq[x] is the minimal polynomial of γ−N (see for example [13, p.
99]), then, due to Delsarte's Theorem [5], hN (x) is the parity-check polynomial
of an irreducible cyclic code of length n and dimension m over IFq.

The canonical additive character of IFq is de�ned as follows:

χ(x) := e2π
√
−1Tr(x)/p , for all x ∈ IFq .

Let a ∈ IFq, then the orthogonality relation for χ is∑
x∈IFq

χ(xa) =

{
q if a = 0,
0 otherwise.

This property plays an important role in numerous applications of �nite �elds.
Among them, this property is useful for determining the number of zero entries
in a given vector; for example, if v = (a0, a1, . . . , an−1) ∈ IFnq , then

N (0,v) =
1

q

n−1∑
i=0

∑
y∈IFq

χ(yai) . (2)
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If 〈λ〉 = IF∗q , then any multiplicative character of IFq is de�ned by

ψj(λ
l) := e2π

√
−1 jl/(q−1) , for j, l = 0, 1, · · · , q − 2 .

If q is odd, an important multiplicative character of IFq is the so-called quadratic
character which is denoted by η and de�ned by: η(x) = 1 if x is the square of
an element of IF∗q and η(x) = −1 otherwise.

Let ψ be a multiplicative and χ an additive character of a �nite �eld F . Then
the Gaussian sum, GF (ψ, χ), of ψ and χ over the �nite �eld F is de�ned by

GF (ψ, χ) :=
∑
x∈F∗

ψ(x)χ(x) .

Determining the value of a Gaussian sum is, in general, a di�cult task. However,
for the canonical additive character and the quadratic character of a �nite �eld,
we have the following result:

Theorem 1. [12, Theorem 5.15, p. 199] With our notation, let η be the quadratic
character of IFq and let χ be the canonical additive character of IFq. Assume that
q = pt is odd. Then

GIFq (η, χ) =

 (−1)t−1q1/2 if p ≡ 1 (mod 4) ,

(−1)t−1(
√
−1)tq1/2 if p ≡ 3 (mod 4) .

The following known result gives a full description for all one-weight and
semiprimitive two-weight irreducible cyclic codes over any �nite �eld.

Theorem 2. [14, Theorem 2] Let n, N , and IN be as in De�nition 1. Fix
u = gcd(∆,N). Assume that u = 1 or p is semiprimitive modulo u. Let d be
the smallest positive integer such that u|(pd + 1) and let s = 1 if u = 1 and
s = (mt)/(2d) if u > 1. Let c(a) ∈ IN and �x

WA =
nqm/2−1

∆
(qm/2 − (−1)s−1(u− 1)) , WB =

nqm/2−1

∆
(qm/2 − (−1)s) ,

and

δ :=


0

if u = 1; or p = 2; or p > 2 and 2|s;
or p > 2, 2 - s, and 2|p

d+1
u

,

u
2 if p > 2, 2 - s and 2 - p

d+1
u .

Then,

wH(c(a)) =


0 if a = 0 ,

WA if a ∈ C(u,q
m)

δ ,

WB if a ∈ IF∗qm \ C
(u,qm)
δ ,

(3)
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where wH(·) stands for the usual Hamming weight function. Therefore, since

|C(u,q
m)

δ | = qm−1
u , IN is either a one-weight (u = 1) or a two-weight (u > 1)

[n,m] irreducible cyclic code whose Hamming weight enumerator is

1 +
qm − 1

u
TWA +

(qm − 1)(u− 1)

u
TWB . (4)

Some desirable properties of a linear code are that it is optimal and that it
has few nonzero weights (see for example [4]). The complete weight enumerator
of a subclass of optimal three-weight cyclic codes was recently presented. We
now recall such result by means of the following:

Theorem 3. [15, Theorem 1] Let e2 and e3 be integers. If gcd(e3, q
2 − 1) = 1

and e3 ≡ e2 (mod q − 1), then h(x) := h(q+1)e2(x)he3(x) is the parity-check
polynomial of an optimal three-weight [q2 − 1, 3, q(q − 1) − 1] cyclic code, C ,
whose complete weight enumerator, CWEC (Z), is

CWEC (Z) = 1 + (q − 1)

q−1∏
i=1

zq+1
i + (q2 − 1)

 q−1∏
i=1

zqi +

q−1∑
j=1

zj

q−1∏
i=1,i6=j

zq+1
i

 .

3 Some preliminary results

Through the following result, we determine the complete weight distribution for
a particular kind of one- or two-weight irreducible cyclic codes in Theorem 2.

Proposition 1. Consider the same notation and assumption as in Theorem 2.
In addition, assume also that N is a proper divisor of ∆. Then IN is either a
one- or two-weight irreducible cyclic code whose complete weight enumerator is

CWEIN (Z) = 1 +
qm − 1

N

q−1∏
i=1

zε1i +
(qm − 1)(N − 1)

N

q−1∏
i=1

zε2i , (5)

where

ε1 :=
WA

q − 1
and ε2 :=

WB

q − 1
.

Proof. In the light of Theorem 2, it is su�cient to determine the complete weight
enumerator of IN . Since u = gcd(∆,N) and N |∆, u = N and n = qm−1

u . Let

c(a) ∈ IN , τ = ∆
u and consider the n

τ = q − 1 vectors, Vj , given by:

Vj := (TrIFqm/IFq
(aγu(τj+i)))τ−1i=0 , for j = 0, 1, · · · , q − 2 .

Thus, note that c(a) = V0|V1| · · · |Vq−2, where the operator �|� stands for the
vector concatenation. On the other hand, recall that 〈γ∆〉 = IF∗q and note that

the length of the vector Vj is τ = ∆
u . Therefore,
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Vj = (TrIFqm/IFq
(aγ∆j+ui))τ−1i=0 = γ∆j(TrIFqm/IFq

(aγui))τ−1i=0 = γ∆jV0 ,

for j = 0, 1, · · · , q− 2. This means that, if x := N (1, c(a)), then N (s, c(a)) = x
for all s ∈ IF∗q . In consequence, the result now follows from (3), (4), and the fact
that |IF∗q | = q − 1. ut

Remark 3. In the previous proposition if q is odd and N = 2, then, without loss

of generality, ε1 = qm−1+qm/2−1

2 and ε2 = qm−1−qm/2−1

2 , and note that ε1 + ε2 =
qm−1.

When q and m are odd integers, we can also determine the complete weight
distribution for some of the one-weight irreducible cyclic codes in Theorem 2.

Proposition 2. With our current notation, suppose that q and m are odd. Let
N be an integer such that gcd(N, qm − 1) = 2 and let IN be as in De�nition

1. Let λ = γ∆ and �x the elements of IFq as u0 = 0, ui = λi−2b
i
2 cλ2b

i
2 c, for

i = 1, 2, · · · , q− 1 (observe that uq−1 = 1). Let O be the subset of odd integers in

{1, 2, · · · , q−1}, that is O := {1, 3, · · · , q−2}. Then IN is a [ q
m−1
2 ,m, q

m−1(q−1)
2 ]

one-weight irreducible cyclic code whose complete weight enumerator is

CWEIN (Z) = 1 +
qm − 1

2

(∏
i∈O

zε1i z
ε2
i+1 +

∏
i∈O

zε2i z
ε1
i+1

)
, (6)

where

ε1 :=
qm−1 + q

m−1
2

2
and ε2 :=

qm−1 − qm−1
2

2
.

Proof. Due to Remark 2 we can assume, without loss of generality, that N = 2.

By Theorem 2, and since m is odd, IN is a [ q
m−1
2 ,m, q

m−1(q−1)
2 ] one-weight

irreducible cyclic code whose weight enumerator is 1 + (qm − 1)T
qm−1(q−1)

2 . We
now determine the complete weight enumerator for IN . Let c ∈ IF∗q and a, c′ ∈
IF∗qm such that TrIFqm/IFq

(c′) = c. Then

N (c, c(a)) = ]{0 ≤ i < qm − 1

2
| TrIFqm/IFq

(aγ2i)− c = 0} ,

= ]{0 ≤ i < qm − 1 | TrIFqm/IFq
(aγ2i − c′) = 0}/2 .

If χ′ and χ are the canonical additive characters of IFqm and IFq, respectively,
then, due to (2) and since χ′ = χ ◦ TrIFqm/IFq

, we have

2N (c, c(a)) =

qm−2∑
i=0

1

q

∑
y∈IFq

χ(yTrIFqm/IFq
(aγ2i − c′)) ,

=
qm − 1

q
+

1

q

∑
y∈IF∗q

∑
x∈IF∗

qm

χ′(y(ax2 − c′)) .
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Therefore, by [12, Theorem 5.30, p. 217], we have

2N (c, c(a)) =
qm − 1

q
+

1

q

∑
y∈IF∗q

(χ′(−yc′)η(ya)GIFqm
(η, χ′)− χ′(−yc′)) ,

where η is the quadratic character of IFqm . Now because m is odd, η is also the
quadratic character of IFq. Thus, since χ

′(−yc′) = χ(−yc) and c 6= 0,

2N (c, c(a)) =
qm − 1

q
+

1

q
(GIFqm

(η, χ′)
∑
y∈IF∗q

χ(−yc)η(ya)−
∑
y∈IF∗q

χ(−yc)) ,

= qm−1 +
1

q
η(a)GIFqm

(η, χ′)
∑
y∈IF∗q

χ(−yc)η(y) ,

= qm−1 +
1

q
η(a)η(−c)GIFqm

(η, χ′)
∑
y∈IF∗q

χ(−yc)η(−yc) ,

= qm−1 +
1

q
η(a)η(−c)GIFqm

(η, χ′)GIFq
(η, χ) ,

where the second equality holds because
∑
y∈IF∗q

χ(−yc) = −1. Let l = 1 if p ≡ 3

(mod 4) and t(m+1)
2 is odd, and l = 0 otherwise. Then, by Theorem 1, we have

2N (c, c(a)) = qm−1 +
1

q
η(a)η(−c)(−1)t−1q1/2(−1)mt−1(−1)lqm/2 ,

= qm−1 + η(−a)η(c)(−1)lq
m−1

2 ,

therefore,

N (c, c(a)) =

 ε1 if η(−a)(−1)l = η(c) ,

ε2 if η(−a)(−1)l 6= η(c) ,

and observe that if η(c) = 1 (η(c) = −1) then there must exists an even (odd)
integer 1 ≤ i ≤ q − 1 such that ui = c. Finally, since ]{a ∈ IF∗qm | η(−a)(−1)l =
1} = qm−1

2 , both values ε1 and ε2 occur qm−1
2 times. ut

The Multinomial Theorem (see for example [8]) is a generalization of the
Binomial Theorem, and therefore, it describes how to expand the power of a sum
of more than two terms. We now recall such result by means of the following:

Theorem 4. For a positive integer k and a non-negative integer r,

(y1 + y2 + · · ·+ yk)
r =

∑
e1+e2+···+ek=r

(
r

e1, e2, ..., ek

) k∏
j=1

y
ej
j ,
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where e1, · · · , ek are non-negative integers, and(
r

e1, e2, ..., ek

)
:=

r!

e1!e2! · · · ek!
.

As an almost direct consequence of the previous theorem we have:

Lemma 1. Let k and r be as before. Then

(1 + y1 + y2 + · · ·+ yk)
r = 1 +

r∑
i=1

∑
e1+e2+···+ek=i

(
r

e1, e2, ..., ek, r − i

) k∏
j=1

y
ej
j .

Proof. Clearly, (1 + y)r = 1+
∑r
i=1

(
r
i

)
yi, and if y = y1 + y2 + · · ·+ yk, then,

by the previous theorem, we have

(1 + y)r = 1 +

r∑
i=1

(
r
i

) ∑
e1+e2+···+ek=i

(
i

e1, e2, ..., ek

) k∏
j=1

y
ej
j .

The result now follows from the fact that(
r
i

)(
i

e1, e2, ..., ek

)
=

(
r

e1, e2, ..., ek, r − i

)
.

ut

4 Determining new complete weight distributions in

terms of known ones

Given a cyclic code, C , whose Hamming weight enumerator is known, it is pos-
sible to determine the Hamming weight enumerator of another cyclic code, C ′,
in terms of a power of the Hamming weight enumerator of C . A �rst version of
this result was presented in [7, 9] (see particularly Lemma 4.5 and Theorem 5.1
in [7]). An equivalent result for the complete weight enumerator is as follows:

Theorem 5. For suitable integers n, m and d, let C be an [n,m, d] cyclic code,
over IFq, with parity-check polynomial h(x), and whose complete weight enu-
merator is CWEC (Z). Let also r be any positive integer, such that gcd(q, r) =
1. Then, the polynomial h(xr) is the parity-check polynomial of an [nr,mr, d]
cyclic code, C ′, whose complete weight enumerator, CWEC ′(Z), is CWEC ′(Z) =
CWEC (Z)r.

Proof. Clearly, h(xr)|(xnr−1) and deg(h(x)) = m. Therefore, since gcd(q, nr) =
1, we have that h′(x) := h(xr) is the parity-check polynomial of an [nr,mr] cyclic
code, C ′, over IFq. Suppose that WC = {w1,w2, · · · ,wk} is the set of complete
nonzero weights of C , and, for 1 ≤ j ≤ k, let Awj

be the number of codewords
in C whose complete weight is equal to wj . In a similar way, suppose that
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WC ′ = {w′1,w′2, · · · ,w′k′} is the set of complete nonzero weights of C ′, and,
for 1 ≤ j ≤ k′, let A′w′j

be the number of codewords in C ′ whose complete

weight is equal to w′j . Then CWEC (Z) = 1 +
∑k
j=1Awj

zwj and CWEC ′(Z) =

1 +
∑k′

j=1A
′
w′j
zw
′
j are the weight enumerators of C and C ′, respectively.

Through the correspondence

π : IFnrq → Rnr := IFq[x]/(x
nr − 1) ,

with

π(a0, a1, ..., anr−1) := a0 + a1x+ · · ·+ anr−1x
nr−1 ,

we can view the cyclic code C ′ as an ideal in the ring Rnr, whose generator
polynomial is g′(x) = (xnr − 1)/h′(x). By considering this, let us de�ne, for
i = 1, · · · , r,

oi := {π−1(xi−1g′(x)), π−1(xi−1+rg′(x)), · · · , π−1(xi−1+(m−1)rg′(x))} ⊂ IFnrq .

Observe that if Si ⊂ IFnrq (i = 1, · · · , r) is the linear span of oi (that is Si = 〈oi〉),
then we have for sure the following three facts:

(i) C ′ =
r⊕
i=1

Si (where
⊕

denotes direct sum of subspaces), and Si ∩ Sl = {0}

(the zero codeword in C ′) if and only if 1 ≤ i 6= l ≤ r. That is, any subspace
Si (i = 1, · · · , r) is independent of all other subspaces Sl in the sense that
there does not exist any nonzero codeword in Si which is a linear combination
of codewords in the other subspaces. Therefore, for each c′ ∈ C ′ there must
exist unique codewords c1, · · · , cr, with ci ∈ Si and 1 ≤ i ≤ r, such that
c′ = c1 + · · ·+ cr.

(ii) For each pair of codewords a and b, such that a ∈ Si and b ∈ Sl, with
1 ≤ i 6= l ≤ r, we have that wcplt(a+ b) = wcplt(a) + wcplt(b).

(iii) Each Si is an [nr,m, d] linear code (not necessarily cyclic), whose complete
weight enumerator is given by CWEC (Z).

With the idea of clarifying the previous facts we brie�y interrupt this proof
in order to present the following:

Example 1. Let IF4 = IF2(α), with α
2 + α+ 1 = 0, and we denote the elements

of IF4 as: u0 = 0, u1 = 1, u2 = α and u3 = α+1. Let n = 5, h(x) = 1+αx+x2,

and r = 3. Then g(x) := x5−1
h(x) = 1 + αx+ αx2 + x3, and g′(x) := g(x3). Under

these conditions, it is not di�cult to see that the cyclic code C is a [5, 2, 4]
one-weight irreducible cyclic code over IF4, whose complete weight enumerator
is CWEC (Z) = 1 + 5z21z

2
2z

0
3 + 5z21z

0
2z

2
3 + 5z01z

2
2z

2
3 . Therefore note that WC =

{(2, 2, 0), (2, 0, 2), (0, 2, 2)}. The generator matrices for the cyclic codes C and
C ′ are, respectively,
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G =

[
1 α α 1 0
0 1 α α 1

]
,

and

G′ =


1 0 0 α 0 0 α 0 0 1 0 0 0 0 0
0 1 0 0 α 0 0 α 0 0 1 0 0 0 0
0 0 1 0 0 α 0 0 α 0 0 1 0 0 0
0 0 0 1 0 0 α 0 0 α 0 0 1 0 0
0 0 0 0 1 0 0 α 0 0 α 0 0 1 0
0 0 0 0 0 1 0 0 α 0 0 α 0 0 1

 .

Therefore

o1 =

{
(1 0 0 α 0 0 α 0 0 1 0 0 0 0 0),
(0 0 0 1 0 0 α 0 0 α 0 0 1 0 0)

}
,

o2 =

{
(0 1 0 0 α 0 0 α 0 0 1 0 0 0 0),
(0 0 0 0 1 0 0 α 0 0 α 0 0 1 0)

}
,

and

o3 =

{
(0 0 1 0 0 α 0 0 α 0 0 1 0 0 0),
(0 0 0 0 0 1 0 0 α 0 0 α 0 0 1)

}
.

In this way, note that S1, S2 and S3 are [15, 2, 4] linear codes (they are not cyclic),
whose complete weight enumerator is CWEC (Z), and clearly C ′ = S1

⊕
S2
⊕
S3

and Si ∩ Sj = {0}, 1 ≤ i 6= j ≤ 3.

Continuing with the proof, we now de�ne U := {S1, · · · ,Sr} and recall that
WC = {w1,w2, · · · ,wk} ⊂ Nq−10 . Thus, as a consequence of the previous facts,
note that for each codeword c′ ∈ C ′, with wcplt(c

′) = w′ ∈WC ′ , there must exist
an integer i; k non-negative integers, e1, · · · , ek; k disjoint subsets, V1, · · · ,Vk, of
the set U ; and k codewords, a1, · · · , ak, of C ′, in such a way that the following
conditions are met:

(1) 1 ≤ i ≤ r, i = e1 + · · ·+ ek and c′ = a1 + · · ·+ ak.

(2) |Vj | = ej , aj ∈
⊕
S∈Vj

S and wcplt(aj) = ejwj , for j = 1, · · · , k.

(3) The complete nonzero weight w′, can be expressed as w′ = wcplt(a1 + · · ·+
ak) = wcplt(a1)+ · · ·+wcplt(ak) = e1w1+ · · ·+ekwk, where the penultimate
equality holds because the subsets Vj are disjoint.

Then, we can summarize all the above by saying that for each w′ ∈WC ′ , there
must exist at least one (k+1)-tuple of non-negative integers (i, e1, · · · , ek), that
satis�es 1 ≤ i ≤ r, i = e1+ · · ·+ek and w′ = e1w1+ · · ·+ekwk. In consequence,
if we construct, for each w′ ∈WC ′ , the set
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Tw′ := { τ | τ is an (k + 1)-tuple of non-negative integers of the form

(i, e1, · · · , ek) that satis�es, 1 ≤ i ≤ r, i = e1 + · · ·+ ek and

w′ = e1w1 + · · ·+ ekwk } ,

then it is clear that |Tw′ | 6= 0. Now, by taking a �xed (i, e1, · · · , ek) ∈ Tw′ , we
have that there are(

r
e1

)(
r − e1
e2

)
· · ·
(
r − (e1 + · · ·+ ek−1)

ek

)
=

(
r

e1, e2, ..., ek, r − i

)
possible choices for the construction of the disjoint subsets: V1, · · · ,Vk. But recall
that all the IFq-linear subspaces Si, have the same complete weight enumerator
CWEC (Z). Therefore, for all these IFq-linear subspaces Si, the integer value
Awj

(for j = 1, · · · , k) is the frequency of occurrence of the nonzero weight wj .
Consequently we have

A′w′ =
∑

(i,e1,+···+ek)∈Tw′

(
r

e1, e2, ..., ek, r − i

) k∏
j=1

A
ej
wj ,

but, since w′ = e1w1 + · · ·+ ekwk and A
ej
wjZ

ejwj = (AwjZ
wj )ej ,

A′w′Z
w′ =

∑
(i,e1,+···+ek)∈Tw′

(
r

e1, e2, ..., ek, r − i

) k∏
j=1

(AwjZ
wj )ej .

Conversely, note that for each (k + 1)-tuple of non-negative integers of the
form (i, e1, · · · , ek), that satis�es 1 ≤ i ≤ r and i = e1 + · · · + ek, there must
exist a unique w′ ∈WC ′ such that w′ = e1w1 + · · ·+ ekwk. Therefore,

CWEC ′(Z) = 1 +

r∑
i=1

∑
e1+e2+···+ek=i

(
r

e1, e2, ..., ek, r − i

) k∏
j=1

(Awj
Zwj )ej ,

and, by Lemma 1, we conclude that CWEC ′(Z) = CWEC (Z)r. Finally, both C
and C ′ have the same minimum Hamming distance, d, because WC ⊆WC ′ . ut

Example 2. Let C and C ′ be as in Example 1. Thus, due to Theorem 5, C ′ is a
[15, 6, 4] cyclic code over IF4, whose complete weight enumerator is:

CWEC ′(Z) = CWEC (Z)3 = (1 + 5z21z
2
2z

0
3 + 5z21z

0
2z

2
3 + 5z01z

2
2z

2
3)

3

= 1 + 15(z21z
2
2z

0
3 + z21z

0
2z

2
3 + z01z

2
2z

2
3) + 75(z41z

4
2z

0
3 + z41z

0
2z

4
3 + z01z

4
2z

4
3)

+125(z61z
6
2z

0
3 + z61z

0
2z

6
3 + z01z

6
2z

6
3) + 150(z21z

2
2z

4
3 + z21z

4
2z

2
3 + z41z

2
2z

2
3)

+375(z21z
4
2z

6
3 + z21z

6
2z

4
3 + z41z

2
2z

6
3 + z41z

6
2z

2
3 + z61z

2
2z

4
3 + z61z

4
2z

2
3)

+750z41z
4
2z

4
3 .

By using directly the cyclic code C ′, the previous numerical result was veri�ed
by a computer program.



Determining the complete weight distributions of families of cyclic codes 13

5 Complete weight distribution of families of cyclic codes

In order to observe the usefulness of Theorem 5, we now determine in a simple
way the complete weight distribution for one of the two families of reducible
cyclic codes studied in [1].

Theorem 6. [1, Theorem 3.1] With the notation of Propositions 1 and 2, sup-
pose that q is odd and let C ′ be the [qm − 1, 2m] reducible cyclic code with
parity-check polynomial h′(x) := h1(x)h qm−1

2 +1(x). Then the complete weight

enumerator of C ′ is

CWEC ′(Z) =

[
1 +

qm − 1

2

(
q−1∏
i=1

zε1i +

q−1∏
i=1

zε2i

)]2

= 1 + (qm − 1)

(
q−1∏
i=1

zε1i +

q−1∏
i=1

zε2i

)
+

(qm − 1)2

2

q−1∏
i=1

zq
m−1

i

+
(qm − 1)2

4

(
q−1∏
i=1

z2ε1i +

q−1∏
i=1

z2ε2i

)
, (7)

if m is even and

CWEC ′(Z) =

[
1 +

qm − 1

2

(∏
i∈O

zε1i z
ε2
i+1 +

∏
i∈O

zε2i z
ε1
i+1

)]2

= 1 + (qm − 1)

(∏
i∈O

zε1i z
ε2
i+1 +

∏
i∈O

zε2i z
ε1
i+1

)
+

(qm − 1)2

2

q−1∏
i=1

zq
m−1

i

+
(qm − 1)2

4

(∏
i∈O

z2ε1i z2ε2i+1 +
∏
i∈O

z2ε2i z2ε1i+1

)
, (8)

if m is odd.

Proof. Let h2(x) be the minimal polynomial of γ−2. Since q is odd, deg(h2(x)) =
deg(h1(x)) = deg(h qm−1

2 +1(x)) = m. Additionally, since γ−2 is a root of h2(x),

and because γ−
qm−1

2 −1 = −γ−1, we see that γ−1 and γ−
qm−1

2 −1 are both roots of
h2(x

2). Thus, h2(x
2) = h1(x)h qm−1

2 +1(x) and, by De�nition 1 and Propositions

1 and 2, h(x) := h2(x) is the parity-check polynomial of a [ q
m−1
2 ,m] irreducible

cyclic code, IN , whose complete weight enumerator is given by (5) if m is even
and (6) if m is odd, where N = 2 for these two equations. Clearly gcd(q, 2) = 1,
thus, by Theorem 5 and Remark 3, C ′ is a [qm − 1, 2m] reducible cyclic code
whose complete weight enumerator is given by (7) if m is even and by (8) if
m is odd. Finally, note that (7) and (8) coincide with Tables 1 and 2 in [1],
respectively. ut
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Example 3. (A) Let q = 3 and m = 2. Then by Theorem 6 ε1 = 2, ε2 = 1, and
h′(x) = h1(x)h5(x) is the parity-check polynomial of an [8, 4] reducible cyclic
code, C ′, whose complete weight enumerator is

CWEC ′(Z) = (1 + 4(z21z
2
2 + z1z2))

2 = 1 + 32z31z
3
2 + 16z41z

4
2 + 24z21z

2
2 + 8z1z2 ,

which coincides with Example 3.2(1) in [1] (take into consideration Remark 1).
(B) Let q = 5 and m = 2. Then by Theorem 6 ε1 = 2, ε2 = 3, and h′(x) =

h1(x)h13(x) is the parity-check polynomial of a [24, 4] reducible cyclic code, C ′,
whose complete weight enumerator is

CWEC ′(Z) = (1 + 12(z21z
2
2z

2
3z

2
4 + z31z

3
2z

3
3z

3
4))

2

= 1 + 288z51z
5
2z

5
3z

5
4 + 144(z41z

4
2z

4
3z

4
4 + z61z

6
2z

6
3z

6
4)

+24(z21z
2
2z

2
3z

2
4 + z31z

3
2z

3
3z

3
4) ,

which coincides with Example 3.2(2) in [1].
(C) Let q = 3 and m = 3. Then by Theorem 6 ε1 = 3, ε2 = 6, and h′(x) =

h1(x)h14(x) is the parity-check polynomial of a [26, 6] reducible cyclic code, C ′,
whose complete weight enumerator is

CWEC ′(Z) = (1 + 13(z31z
6
2 + z61z

3
2))

2

= 1 + 338z91z
9
2 + 169(z121 z

6
2 + z61z

12
2 ) + 26(z31z

6
2 + z61z

3
2) ,

which coincides with Example 3.2(3) in [1].
(D) Let q = 5 and m = 3. Then by Theorem 6 ε1 = 10, ε2 = 15, and

h′(x) = h1(x)h63(x) is the parity-check polynomial of a [124, 6] reducible cyclic
code, C ′, whose complete weight enumerator is

CWEC ′(Z) = (1 + 62(z101 z
15
2 z

10
3 z

15
4 + z151 z

10
2 z

15
3 z

10
4 ))2

= 1 + 7688z251 z
25
2 z

25
3 z

25
4 + 3844(z201 z

30
2 z

20
3 z

30
4 + z301 z

20
2 z

30
3 z

20
4 )

+124(z101 z
15
2 z

10
3 z

15
4 + z151 z

10
2 z

15
3 z

10
4 ) ,

which coincides with Example 3.2(4) in [1] (be careful, for this last example the
authors of [1] choose a di�erent order for the elements in IF5).

As another instance of Theorem 5, we can now determine the complete weight
distributions for another family of cyclic codes which, as we shall see below,
can be obtained in terms of the complete weight distribution of the subclass of
optimal three-weight cyclic codes given in Theorem 3:

Theorem 7. Consider the same notation and assumption as in Theorem 3. Let
r be any positive integer, such that gcd(q, r) = 1. Then h(xr) is the parity-check
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polynomial of a [(q2−1)r, 3r, q(q−1)−1] cyclic code, C ′, whose complete weight
enumerator, CWEC ′(Z), is

CWEC ′(Z) =

 1 + (q − 1)

q−1∏
i=1

zq+1
i + (q2 − 1)

 q−1∏
i=1

zqi +

q−1∑
j=1

zj

q−1∏
i=1,i6=j

zq+1
i

 r .
Proof. Direct from Theorems 5 and 3. ut

Example 4. Let (q, e2, e3, r) = (4, 1, 1, 3). Thus, due to Theorem 3 and [15, Ex-
ample 1], h(x) = h5(x)h1(x) is the parity-check polynomial of an optimal three-
weight [15, 3, 11] cyclic code, C , over IF4, whose complete weight enumerator is
CWEC (Z) = 1+3A+15(B+C+D+E), where A = (z1z2z3)

5, B = (z1z2z3)
4,

C = z1z
5
2z

5
3 , D = z51z2z

5
3 , and E = z51z

5
2z3. On the other hand, by Theorem

7, h(x3) is the parity-check polynomial of a [45, 9, 11] cyclic code, C ′, whose
complete weight enumerator, CWEC ′(Z), is

CWEC ′(Z) = CWEC (Z)3

= 1 + 9A+ 27(A2 +A3) + (45 + 270A+ 405A2)(B + C +D + E)

+(4050AB + 1350B + 10125B2)(C +D + E)

+(675 + 2025A)(B2 + C2 +D2 + E2)

+3375(B3 + C3 +D3 + E3)

+(1350 + 4050A+ 20250B)(CD + CE +DE) + 20250CDE

+10125(B(C2 +D2 + E2) + C2(D + E)

+D2(C + E) + E2(C +D)) .

By using directly the cyclic code C ′, the previous numerical result was veri�ed
by a computer program.

6 Conclusions

In this work we determined the complete weight distributions for a particular
kind of one- and two-weight irreducible cyclic codes (Propositions 1 and 2). After
this, a method that determines new complete weight distributions in terms of
known ones was presented (Theorem 5). Then, we used such method in order
to determine the complete weight distribution of in�nite families of cyclic codes
(Section 5). As an example of such families, the complete weight distribution for
one of the two families of reducible cyclic codes studied in [1] was determined in a
simple way (Theorem 6). As another example, the complete weight distribution
for another family of cyclic codes was also determined which, as shown earlier,
can be obtained in terms of the complete weight distribution of the subclass of
optimal three-weight cyclic codes presented recently in [15] (Theorem 7).
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As it is known, Theorem 2 gives us the Hamming weight distributions for all
one-weight and semiprimitive two-weight irreducible cyclic codes over any �nite
�eld. On the other hand, by means of Propositions 1 and 2, the complete weight
distributions for a particular kind of one- and two-weight irreducible cyclic codes
were determined. Thus, as a complement of this work, we believe that it would
be interesting to determine the complete weight distributions of the remaining
part of the family of one- and semiprimitive two-weight irreducible cyclic codes
in Theorem 2.
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