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Abstract. Based on the Directorate Report General's Horticulture, the contribution of vegetable 

horticulture agriculture tends to increase, where the GDP of vegetable horticulture has 

increased by 9.86%. In 2016, cabbage is a vegetable horticultural commodity that has the 

highest production amount in Indonesia, and the poor district is one of the major producers of 

commodities cabbage in eastern Java. Generalized Space-Time Autoregressive (GSTAR) is a 

multivariate time series model that considers site aspects with heterogeneous location 

characteristics. The purpose of this study was to model cabbage production in Malang Regency 

using the GSTAR model. Selection criteria for the best model to use the value of the root mean 

square error (RMSE) and the value of R2. The results showed that the GSTAR model (1,2) is 

the best model for modeling cabbage production and has good forecasting accuracy to predict 

cabbage production in Malang Regency. 

Keywords: Generalized Space-Time Autoregressive (GSTAR), Cabbage, root mean square 

error (RMSE), 𝑅2 

1. Introduction 

 Time series analysis is an analysis that considers the effect of time used to predict future 

observations. In general, there are two time-series data modeling, namely univariate and multivariate 

(Wei,2006)[1]. The univariate time series model that is often used is the Autoregressive Integrated 

Moving Average (ARIMA) model. ARIMA model only involves one time series variable. While the 

multivariate time series model is a model that involves more than one time series variable, for 

example, the Vector Autoregressive Integrated Moving Average (VARIMA) model.  

 The ARIMA model does not contain a location element in its forecasting model, so another 

model that contains time is needed, and the location of the space-time model is a model that combines 

elements of time and location linkages in time and location data series. The space-time model is a 

model that combines elements of time and location linkages in time and location data series. The 

space-time model developed by Pfeifer and Deutsch (1980a, 1980b)[2]. Pfeifer and Deutsch adopted 

the steps developed by Box-Jenkins (1976)[3] for ARIMA modeling, which includes identification, 

estimation, and diagnostic checks into STARIMA (Space-Time Autoregressive Integrated Moving 

Average) modeling. 

 The model space-time developed by Pfeifer and Deutsch (1980a, 1980b)[4] has a weakness in the 

flexibility of parameters that explain the relationship between locations and different times in a time 

series data and location. This weakness is corrected by Borovkova and colleagues (2002)[5] through a 

model is known as the GSTAR (Generalized Space-Time Autoregressive) model. 

 This research was conducted with the aim of applying the GSTAR model to cabbage production 

data in the Malang Regency. In this study, it is hoped that an appropriate model can be obtained, so 
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that it can be used to obtain accurate forecast values, and can explain the relationship between cabbage 

production in one location and cabbage production in other locations. 

2. Review of Literature 

2.1. Stationarity Test Stationarity 

testing in this study used the unit root test (Dickey-Fuller). The hypothesis used in testing whether 

there is a unit root problem is: 

𝐻0: 𝜙1 =  1 (non-stationary data) 

𝐻1: 𝜙1 < 1 (stationary data) 

The test statistic used is the t-test statistic. However, under 𝐻0, the t-test statistic does not have a 

t 

distribution, but instead distributes  𝜏: 

𝝉 =
�̂�𝟏

∗

𝑺𝑬 (�̂�𝟏
∗ )

~𝝉𝒏 
(1) 

where, 

       �̂�1
∗  : the estimated value of the parameter autoregressive (AR) 

𝑆𝐸 (�̂�1
∗)  =

𝜎�̂�1
∗

√𝑛
   𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 �̂�1

∗ 

 

2.2. Space-Time 

Model The space-time model (space-time) is a model that can combine elements of time and 

location dependence on data multivariate time series. The concept of multivariate time series data is 

that there is more than one time series variable, in this case, there are several research locations that 

are used as research variables. This model is a modeling of a number of observations 𝑍𝑖(𝑡) contained 

at each N location in space (𝑖 =  1,2, … , 𝑁)  against t  time period.  

2.3. Inverse matric distance   

weighting serves to describe the spatial relationship between regions. The location weight used 

in this study is the inverse location weight of the distance. The weight of the inverse distance location 

is obtained from calculations based on the actual distance between locations. This weight gives a 

smaller coefficient of weight for long distances, and vice versa. The calculation of this weight is: 

 

𝑾𝒊𝒋 =
𝟏 /𝒅𝒊𝒋

∑ 𝟏 /𝒅𝒊𝒋𝒊 ≠ 𝒋

       (2) 

where 𝑑𝑖𝑗 is the distance between location i and location j. 

2.4. GSTAR 

 GSTAR or Generalized Space-Time Autoregressive model is a space-time model that aims to 

increase the flexibility of STAR parameters. The GSTAR model is a more specific form of the VAR 

(Vector Autoregressive) model. The most basic difference is in spatial dependent and matrix weights. 

Wutsqa and Suhartono (2010)[6] stated that the GSTAR model is more realistic because there are more 

models with different model parameters for different locations. This model was introduced by 

Borovkova, et al. (2002)[5].  



 

 

 

 

 

 

 Determination of the order of the GSTAR model is the same as the VAR model, namely using 

the MPACF (Matrix Partial Autocorrelation Function) (Wei, 2006)[1]. The partial autocorrelation 

matrix on lag k is denoted by 𝑃 (𝑘) 𝑖𝑠 defined as follows 

 

𝑷(𝒌) = [𝑫𝒗(𝒌)]−𝟏𝑽𝒗𝒖 (𝒌)[𝑫𝒖(𝒌)]−𝟏 (3) 

where, 

𝐷𝑣(𝑘) : The diagonal matrix of size m x m with the to-i diagonal element is the root of the to-i 

diagonal element of the var (𝑣𝑘−1,t).  

𝐷𝑢(𝑘) :  diagonal matrix of size m x m with the i-th diagonal element is the root of the i-th 

diagonal element of the var matrix (𝑢𝑘−1,𝑡 + 1) 

𝑉𝑣𝑢(𝑘)     : matrix the covariance matrix of 𝑣𝑠−1,𝑡 and 𝑢𝑠−1,𝑡 + 1 which measures m x m.  

 

𝑣𝑘−1,𝑡 = 𝑍𝑡 − 𝛽𝑘−1,1𝑍𝑡 + 1− . . . −𝛽𝑘−1,𝑘−1𝑍𝑡 + 𝑘−1 

𝑢𝑘−1,𝑡 + 𝑘 = 𝑍𝑡 + 𝑘 − 𝛼𝑘 −1.1𝑍𝑡 + 𝑘 + 1 − ⋯ − 𝛼𝑘−1,𝑘−1𝑍𝑡 + 1 
 The autoregressive order is determined from a significant matrix element to the lag to-p (Wei, 

2006)[1]. The GSTAR model with autoregressive order 𝑝 and spatial order (λ), or denoted by GSTAR 

(𝑝,𝜆 ) can be written in the following equation:  

𝒁(𝒕) = ∑ [𝜱𝒌𝟎𝒁(𝒕−𝒌) + ∑ 𝜱𝒌𝒉

𝜆

ℎ=1

𝑾(𝒈)𝒁(𝒕−𝒌)] + 𝜺(𝒕)

𝑝

𝑘=1

 

(4) 

 

with 

𝜆 : spatial order on the parameter autoregressive 

𝑍(𝑡) : random vector of size (𝑚 ×  1) at time t. 

𝛷𝑘0  : diag (𝛷𝑘0
1 ,…,𝛷𝑘0

𝑚 ) that is, the diagonal matrix of autoregressive parameters at time lag k and 

spatial lag 0 

𝛷𝑘𝑔  : diag (𝛷𝑘0
1 , ...,𝛷𝑘0

𝑚 ) that is, the diagonal matrix of autoregressive parameters at lag time -k and 

spatial lag g. 

𝑊(𝑔) : size weighted matrix (m × m) on spatial lag g, where 𝑤𝑖𝑖
(𝑔)

=  0 and ∑ 𝑤𝑖𝑗
(𝑔)

𝑖 ≠ 𝑗 =  1. 

𝜀(𝑡) : the size error vector (m × 1) is white noise and normally multivariate distribution. 

𝑚 : the number of locations used. 

 

In the GSTAR model, the model parameter is a matrix with diagonal elements which states the 

autoregressive parameter and the changing space-time parameter for each location. GSTAR has 

limitations, namely that it can only be used for stationary and non-seasonal space-time data. This 

condition tends not to be fulfilled on data that is not stationary and contains seasonal patterns. 

2.5. Estimation of Parameters 

Ruchjana (2002)[7] used the Ordinary Least Square (OLS) method to estimate the parameters of 

the GSTAR model. The OLS method is a method used to estimate the parameters of a model by 

minimizing the number of squares of errors, namely minimizing ∑ 𝑒𝑡
2 𝑇

𝑖 = 1 . The estimation method of 

least squares to 𝜃 be 

𝜃 = (𝑋′𝑋)−1𝑋′𝑍  (5) 

 For each location 𝑖 =  1,2, . . . , 𝑚 have partial linear model such as equation (5). This means that 

the estimation of the least-squares 𝜃𝑖 for each location can be calculated separately. 



 

 

 

 

 

 

2.6. Goodness Model Criteria 

Criteria for selecting the best model to use the value of the root mean square error (RMSE) and 

the value of 𝑅2.RMSE has a function to obtain the amount of difference that appears between the 

actual value and the predicted value. RMSE value is obtained from the following formula 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒁𝒕 − �̂�𝒕)𝟐

𝒏

𝒕 = 𝟏

 
(6) 

𝑅2 stating how much the diversity of the dependent variable can be explained by the independent 

variable.value 𝑅2 obtained from the following formula 

𝑹𝟐 =  𝟏 −
∑ (𝒁𝒕 − �̂�𝒕)

𝟐𝒏
𝒕 = 𝟏

∑ (𝒁𝒕 − 𝒁)
𝟐𝒏

𝒕 = 𝟏

 
(7) 

3. Research Methods 

 This study uses secondary data obtained from the Department of Agriculture and Horticulture 

Malang. This study used variables, namely cabbage production (quintal). This study models cabbage 

production in Malang Regency with the GSTAR-OLS model using the inverse matric distance. In 

addition, the simulation also applies location weighting, namely the normalization of statistical 

inference results in partial cross-correlation at the appropriate time lag to determine the optimal 

location weight in the GSTAR model.  

4. Results and Discussion 

4.1. Description of Cabbage Production Data 

Data used in this study were cabbage production in three locations in Malang Regency during 

the period 2013 - 2017. In Table 1, the descriptive statistics of the data are presented below. 

Table 1. Descriptive Statistics Production Data Cabbage in Three Locations Malang 

N

o 

Location N Mean Min Max Standard 

Deviation 

1 Poncokusumo 60 20533.33 2500 42000 9510.417 

2 Wajak 60 4341 630 22050 3092.141 

3 Tumpang 60 3359.7 150 25 200 3836.008 

Plot production data cabbage in Malang Regency period Month January 2013 until December 

2017 is presented in Figure 1 below: 

 

 



 

 

 

 

 

 

 

 

Figure 1. Data plot of Cabbage Production 

Figure 1 shows that the data is not stationary, so the data is processed differencing. Data 

already done process differencing is denoted as 𝑍𝑖(𝑡) =𝑙𝑛 𝑙𝑛 𝑌𝑖(𝑡)  and it is said to be stationary if the 

data structure from time to time has fixed or constant data fluctuations and does not change. 

4.2. Stationarity Test  

After the data was transformed, it was tested using Augmented Dickey-Fuller (ADF). The test 

results are presented in Table 2 below: 

Table 2. Stationarity Test Results of Cabbage Production Data in Three Locations of Malang 

Regency 

N

o 

Location P-value Information 

1 Poncokusumo 0.095 Accept H0 

2 Wajak 0.020 Reject H0 

3 Tumpang 0.078 Accept H0 

 

Because the p-value in Poncokusumo and Tumpang Districts in Table 3 is greater than 𝛼 =
 0.05 then H0 is accepted, in other words, the cabbage production data in Poncokusumo and Tumpang 

Districts are not stationary yet, so it needs to be stationary.  

 

 



 

 

 

 

 

 

4.3. Location Weight GSTAR (1,2) 

The results of the weighted matrix calculation with the inverse distance weight are as follows: 

𝑊𝑖𝑗

= [0.000000 0.457335 0.542665 0.520193 0.000000 0.479807 0.562642 0.437358 0.000000 ] 

4.4. Estimation Results of GSTAR Model Parameters (1,2) Three Locations 

Determine the parameters of the GSTAR model (1,2) using Equation (5), where the parameter 

values are calculated using SAS software. The results of parameter estimation for cabbage production 

data in the three research locations obtained the parameter estimation values for the period January 

2013 to December 2017 are as follows: 

Table 3. Estimation Results of Cabbage Production Data Parameters in Three Locations of 

Malang Regency 
Lokasi Variabel DF Parameter 

Estimate 

Standard 

Error 

t-Value Pr > |t| 

PONCOKUSUMO 

Z1t_1 1 0.7733 0.1436 5.39 <.0001 

Z1t_2 1 0.0386 0.1503 0.26 0.7981 

V1t_1 1 1.6479 0.9818 1.68 0.0990 

V1t_2 1 -0.1076 0.9414 -0.11 0.9094 

WAJAK 

Z2t_1 1 0.1881 0.1060 1.77 0.0818 

Z2t_2 1 0.6082 0.0998 6.10 <.0001 

V2t_1 1 0.0471 0.0319 1.47 0.1462 

V2t_2 1 -0.0029 0.0339 -0.09 0.9299 

TUMPANG 

Z3t_1 1 0.2745 0.1239 2.21 0.0310 

Z3t_2 1 0.4646 0.1211 3.84 0.0003 

V3t_1 1 0.0429 0.0468 0.92 0.3630 

V3t_2 1 0.0091 0.0479 0.19 0.8505 

Based on Table 3 can be seen that for the District Poncokusumo variables that significantly 

affect the production of cabbage is the result of cabbage production in the previous period with a p-

value of 0.0001. for Wajak Regency that had a significant effect on cabbage production at time to- t  

was the cabbage production yield in the previous two periods (t-2). For Tumpang District, what affects 

cabbage production at time to- t is the yield of cabbage in the previous period (t-2) and the two 

previous periods (t-2). 

Based on Table 3, the GSTAR equation of cabbage production data from three locations is: 

[

�̂�1(𝑡)

�̂�2(𝑡)

�̂�3(𝑡)

] = [
0.7733 0.0000 0.0000
0.0000 0.1881 0.0000
0.0000 0.0000 0.2745

] [

𝑍1(𝑡 − 1)

𝑍2(𝑡 − 1)
𝑍3(𝑡 − 1)

] + [
0.0386 0.0000 0.0000
0.0000 0.6082 0.0000
0.0000 0.0000 0.4646

] [

𝑍1(𝑡 − 2)

𝑍2(𝑡 − 2)
𝑍3(𝑡 − 2)

] 

+ [
1.6479 0.0000 0.0000
0.0000 0.0471 0.0000
0.0000 0.0000 0.0429

] [
0.000000 0.457335 0.542665
0.520193 0.000000 0.479807
0.562642 0.437358 0.000000

] [

𝑉1(𝑡 − 1)

𝑉2(𝑡 − 1)
𝑉3(𝑡 − 1)

] 

+ [
−0.1076 0.0000 0.0000
0.0000 −0.0029 0.0000
0.0000 0.0000 0.0091

] [
0.000000 0.457335 0.542665
0.520193 0.000000 0.479807
0.562642 0.437358 0.000000

] [

𝑉1(𝑡 − 2)

𝑉2(𝑡 − 2)
𝑉3(𝑡 − 2)

] 



 

 

 

 

 

 

[

�̂�1(𝑡)

�̂�2(𝑡)

�̂�3(𝑡)

] = [

0.7733𝑍1(𝑡 − 1)

0.1881𝑍2(𝑡 − 1)

0.2745𝑍3(𝑡 − 1)
] + [

0.7536 𝑉2(𝑡 − 1) + 0.8943 𝑉3(𝑡 − 1)

0.0245 𝑉1(𝑡 − 1) + 0.0226 𝑉3(𝑡 − 1)

 0.0241 𝑉1(𝑡 − 1) + 0.0188 𝑉2(𝑡 − 1)
] 

          + [

−0.0492 𝑉2(𝑡 − 2) − 0.0584 𝑉3(𝑡 − 2)

−0.0015 𝑉1(𝑡 − 2) − 0.0014 𝑉3(𝑡 − 2)

 0.0051 𝑉1(𝑡 − 2) + 0.0040 𝑉2(𝑡 − 2) 

]   (8) 

Based on Equation (8), the GSTAR (1,2) model can be written for each location as follows: 

a. Poncokusumo 

�̂�1(𝑡) = 0.7733𝑍1(𝑡 − 1) + 0.7536 𝑉2(𝑡 − 1) + 0.8943 𝑉3(𝑡 − 1) − 0.0492 𝑉2(𝑡 − 2)
− 0.0584 𝑉3(𝑡 − 2) 

b. Wajak 

�̂�2(𝑡) = 0.1881𝑍2(𝑡 − 1) + 0.0245 𝑉1(𝑡 − 1) + 0.0188 𝑉2(𝑡 − 1) − 0.0015 𝑉1(𝑡 − 2)
− 0.0014 𝑉3(𝑡 − 2) 

c. Tumpang 

�̂�3(𝑡) = 0.2745𝑍3(𝑡 − 1) + 0.0241 𝑉1(𝑡 − 1) + 0.0188 𝑉2(𝑡 − 1) + 0.0051 𝑉1(𝑡 − 2)
+ 0.0040 𝑉2(𝑡 − 2)  

 

 From this equation, it can be seen that the cabbage production data at time t correlates with the 

cabbage production data at the previous time and is influenced by the cabbage production at other 

places. In other words, Poncokusumo, Wajak and Tumpang cabbage production data influence each 

other. 

4.5. Goodness model 

 Goodness GSTA Rused in this study using RMSE and 𝑅2 are appropriate [6] and [7] whose 

results are presented in Table 4. 

Table 4. Criteria Goodness Model 

N

o 

Location RMSE 𝑹𝟐 

1 Poncokusumo 5.9736 0.9847 

2 Wajak 0.6046 0.9867 

3 Tumpang 1.0746 0.9652 

 

 The accuracy of the measurement error estimation method is indicated by the presence of a 

small RMSE. Models that have a smaller RMSE are said to be more accurate than models that have a 

larger RMSE. Based on the value of RMSE and R2above it can be concluded that the level of accuracy 

of the model for Wajak It can be seen from the smallest RMSE value of 0.6046 and R2 most large, 

namely 98.67%.  

5. Conclusion 

 The GSTAR (1,2) model is the best model that can be used to forecast cabbage production data 

at three sales locations, namely Poncokusumo, Wajak, and Tumpang. The results of the evaluation of 

the GSTAR model (1,2) show that the R2 value is very good for each district, especially the Wajak 

sub-district of 98.67%. 
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