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Abstract. We present a framework for in-situ processing of large-scale
simulation data that performs a universal data reduction. Instead of di-
rect compression of the data, we propose a different approach that can be
benefit from compressed sensing (CS) theory. Unlike the direct data com-
pression techniques where the accuracy of recovery is fixed, the proposed
framework enables more accurate recovery (after in situ data reduction),
with using better sparse representations, that can be learned from and
optimized for the simulation data. Moreover, we discuss the practical
case when the assumption of sparsity doesn’t hold, the optimization-
based recovery algorithm is able to recover the most important elements
in the data (characterized by the best k-term approximation), despite
significant reduction in the data. We provide theoretical arguments from
CS theory and demonstrate experimentally the error behavior exhib-
ited by the proposed approach compared by the best k-term approxi-
mation. These arguments, together with our experiments, support the
unique feature of the proposed in-situ data reduction: the accuracy of
the recovery algorithm can be improved after data reduction by learn-
ing better representations for simulation data. The proposed approach
provides opportunities for developing new data reduction mechanisms in
high performance computing and simulation environments.

Keywords: In-situ data reduction - Compressed sensing - Volume Ren-
dering

1 Introduction

With the ever increasing computing power available for extreme-scale simula-
tions, processing, storage and visualization of such large-scale data has been and
continues to be an important problem hindering our ability to harness the power
of extreme-scale computing ecosystems. Data reduction has become inevitable in
such environments as the performance of I/O modules, constrained by physical
limits, has not kept pace with the growth in computational power. Often, simu-
lation results are discarded for a range of time-steps and compression algorithms
are used for data reduction for managing the volume of the data to be stored
and further processed [17,18].

A fundamental principle leveraged in data reduction algorithms is that de-
spite the high dimensional representation of the datasets, natural phenomena
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are often governed by few degrees of freedom compared to the dimension (reso-
lution) of the ambient space they reside. This principle justifies modeling high
dimensional data in low dimensional linear subspaces and nonlinear manifolds —
the common theme in dimensionality reduction. Similarly the assumption that
most datasets can be sparsely represented in a feature domain, is key for com-
pression algorithms. For example, natural images, when represented in wavelet
domains, exhibit very few degrees of freedom observable by the sparsity of coeffi-
cients. Compression algorithms exploit such dimensionality reduction algorithms
to efficiently encode transform coefficients with low entropy. Significant compres-
sion of the data necessitates a lossy process that often involves truncation in a
transform domain. Compression techniques have been explored for in-situ data
processing as well as for large-scale visualization problems. Several compression-
domain volume rendering techniques have been proposed in the visualization
community [12,13,23,24], where the decoding is combined with rendering such
that data transfer rate to the GPU is minimizes. In these approaches, the data
is efficiently represented, for example, by vector quantization [23], transform
coding [12], dictionary learning [13], or tensor approximation [24]. During the
rendering stage, only the features are transfered to the GPU and decoded on-
the-fly. We discuss the merits for a different strategy than the direct compression
of the data. Based on results from stable embedding and compressed sensing the-
ory, we present arguments for using incoherent sensing, instead of compression,
for in-situ data reduction. The key motivation behind the proposed approach is
its ability to learn from data to improve the quality of recovery after the data
reduction has been performed. Unlike the compression paradigm that the quality
of recovery (decompression) is fixed, the proposed approach is able to improve
the accuracy of recovery with learning better sparse representations from more
and more data [25]. In this paper we show that even with sub-optimal sparse rep-
resentations (e.g., when the assumption of sparsity fails), the recovery algorithm
is able to preserve the most important elements, while significantly reducing the
data size. This notion of most important elements is formally characterized by
the best k-term approximation. As we demonstrate in the following section, the
error in the recovery algorithm is bounded by the error committed by the best
k-term approximation that we could only have obtained if we knew exactly
the location and value of the most important elements. With learning better
sparse representations (e.g., from wavelets to ridgelets to surfacelets or dictio-
nary learning) more and more of the most important elements in the data are
recovered from the same reduced-scale data (incoherently sensed). We also dis-
cuss practical considerations for applying incoherent sensing for large-scale data
reduction, where sensing matrices can not be stored, but efficiently computed
and implemented as operators.

2 Compressed Sensing framework

The Compressed Sensing (CS) theory, was developed by Donoho [11] and Candés
[8], and has transformed many data acquisition systems, including Fourier imag-
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ing (e.g., MRI, RADAR) and computed tomography (e.g., coded aperture X-
ray).

Formally, let x € RY be the vectorized dataset comprising N voxels, matrix
A € R™N (m < N) (with special properties as described in the next subsec-
tion) be the sensing matrix, and y € R™ the incoherently sensed measurements
are obtained from a linear projection:

y = Ax. (1)

Given the incoherently sensed data, y, the recovery algorithm involves an op-
timization procedure that solves the above underdetermined linear system for
x. For simplicity of presentation, we first assume that the original dataset x is
sparse itself (it has relatively small number of non-zero voxels). We then discuss
the more realistic case in which the data is sparsified only after a transformation
to a different (e.g., wavelet, Fourier) domain.

2.1 Restricted Isometry Property (RIP)

The underdetermined linear system (1) has infinite many solutions and without
further knowledge it is impossible to recover the original data x. To be able to
recover x (or a good approximation to it) from this underdetermined system, the
sensing matrix has to satisfy a condition known as Restricted Isometry Property
(RIP) [8]: A matrix satisfies RIP of order k if there exists a constant d;, (the
smallest possible one) such that matrix A obeys

(1= )lIxII3 < |Ax[I3 < (1 + 8)l|x]I3 (2)

for any k-sparse (at most k components are non-zero) vector x.

Intuitively, inequality (2) states the energy of x in projection from high di-
mension to low dimension is mostly preserved and is distorted at most by d.
Hence §;, represents the almost orthogonality of the collection of every k columns
of A. For the extreme case, if the support of vector x corresponds to the k
columns of A that are orthogonal, then the distortion of x will be 0 which
indicates that &, = 0.

2.2 Best k-term approximation

It is demonstrated that if d3 < 1, the equation (1) has a unique k-sparse solution,
therefore, in this situation, only the k-sparse vector can be recovered. This also
means that, in theory, by promoting the sparsity of vector x, it’s possible to
solve the underdetermined linear system (1). Then we can change the problem
(1) as an optimization problem (F):

min |Jul|o,
u

3)

subject to Au =1y,
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where the ¢y pseudo-norm of x, ||x||p, represents the the number of non-zero
elements (sparsity) in vector x. However, because ¢y, norm is non-convex, the
problem (3) is turned out to be NP-hard. It implies that we can not use standard
optimization algorithm to solve this. Although there are several iteration-based
greedy algorithm [20,22] can be used to solve this problem and the compute time
is always linear with the number of non-zeros in x, the performance is not robust
in general, especially when noise presents in the measurements. Therefore, there
has to be some relaxation on this problem. Candés and Tao [5, 8] show that
instead of using ¢y norm, but using ¢; norm (that is convex) can achieve the
same result when d;, < /2 — 1. Hence, we can relax the PO problem (3) to P1
problem:

min |Jul|q,
u

(4)

subject to Au =y,

and this is as easy as a linear programming problem which can be solved in
polynomial-time. In [7], it is also proved that if the RIP condition is satistied,
the solution x* of (4) obeys:

1% = %l
\/E )

where Cj is some well-behaved constant and xj; as the best k-terms approx-
imation of x. This indicates that the error of the recovered data is bounded
by the error of the best k—term approximation of the ground truth. Therefore,
this theory shows robust performance when the signal is sparse or has sparse
representation.

[x —x*[l2 < Co

()

2.3 Sparsifying Transformations

Most of the natural signals are not necessarily sparse in canonical space domain,
however, lots of transform bases can sparsely represent signals. For example,
DCT, wavelet, curvelet, surfacelet, dictionary learning and deep learning based
non-linear transform can lead many kinds of signals to sparse or compressible
representations, that is to say most of the transform coefficients are zero or very
close to zero.

Let denote ¥ € RY*N ag the transform basis, and z = Wu denote the
sparse representation of variable u. Then the optimization problem (4) can be
reformulated as:

min ||z},
u

(6)

subject to Au =1y,

this provides us a convenience that instead of regularizing the sparsity of signal
itself, the signal can be recovered by promoting the sparsity in any “well-chosen”
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sparsifying domain. Since the measurement vector y here is obtained only via
the sensing matrix A without any priori knowledge of x and transform basis
¥, This implies that we can choose any superior basis or dictionary learned by
some learning algorithms as ¥ after in-situ data reduction producing y.

2.4 Practical RIP Matrices

Because the sensing matrix has to satisfy the RIP, randomly sensing is naturally
suitable in such case. In this section, we will introduce three deeply analyzed
random matrices .

Gaussian Matrix [10] Assume that the sensing matrix A € R™*¥ satisfies

that the entries are i.i.d.(independently and identically distributed) and drawn
from the normal distribution with mean 0 and variance 1/m, then if

o). ()

then with high probability (1 — O(e~")) with some v > 0, the signal can be
recovered by solving P; problem.

Bernoulli Matrix [9] If entries of A are ii.d. and drawn from symmetric
Bernoulli distribution (P(A; ; = £1/y/m) = 1/2), then if k obeys condition (7),
the same result as Gaussian Matrix can be achieved.

Partial Fourier Matrix [21] Suppose A is a partial Fourier matrix by uni-
formly randomly selecting m rows from an N by N Fourier matrix, then if

k= O(( ), (8)

m
log N

with overwhelming probability (the probability decays exponentially in m), we
can get same result as Gaussian matrix.

3 Data Reduction vis CS

For in-situ processing of large scale data by the incoherent sensing framework,
the extremely large size of the sensing matrix A is impractical to be stored into
system memory, and the performance of the I/O module limitting the bandwidth
also becomes the bottleneck for the data reduction process. Fortunately, all of
the “good” sensing matrices discussed in section 2.4 have the superiority that is
able to be computed parallelly on-the-fly. This results in the incoherent sensing
naturally fit for large scale in-situ processing.

For aspect of implementation, the matrix A can be represented by the in-
dices of the frequencies when the random DFT or DCT are selected as sensing
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matrix and just requires as few as O(m) bytes storage space. If Gaussian or
Bernoulli measurements are used in the application, only seeds need to be loaded
into memory to generate sensing matrix. For the sparse presentation, when the
transform basis ¥ is determined, the there are also fast and patented paral-
lel algorithms to perform the domain transformations on-the-fly (e.g. FFT [14],
FWT [3], FCT [4,19]), therefore, only small bandwidth is needed in domain
transform as well. At last, the only relatively large scale data has to be trans-
ferred is the measurements vector y. However, as described above, in the CS
framework, only m measurements, which is much less than dimensionality of x,
needed to recover the original data x.

4 Experiments

In this section, we show the accuracy of incoherent sensing framework for in-situ
data reduction. Theoretically, we present the error bound as statement in (5) to
show the robustness of incoherent sensing methods. Pratically, we visualize the
reconstruction of the large scale volumetric dataset. In addition, we compare our
volumetric data reduction by using our incoherent sensing with commonly used
data reduction algorithms including run-length encoding and downsampling. We
exhibit that our incoherent sensing method is comparable or superior to those
methods. At last, We argue that the random behavior of the incoherent sensing
that requires no priori knowledge in terms of the data can be regarded as a uni-
versal encoder. By only using the small mount of reusable “code” (sensing data)
and a sparse transform basis, this alternative data reduction method can flexibly
refine the reconstruction and, in turn, improve the quality of the visualization.

4.1 £5 norm bound

In this section, we present the experiment showing that the error of the recovered
data is bounded by the best k—term approximation. We demonstrate that with
small set of random Gaussian measurements, the recovered data achieved by
solving equation (4) will always obey the bound (5).

We randomly generate the data vector x with dimension N = 200 and fix
the sparse level (the number of non-zeros) as k = 30. Then we generate the
Gaussian sensing matrix A € R™>*29 with mean 0 and variance 1/m, and vary
the number of samples, m, from 30 to 100. For the optimization, we choose
the FISTA [1] algorithm which is fastest algorithm compare to other iterative
algorithms in this case. In order to get the average performance, for each m,
we reconstruct the signal 100 times and regenerate the sensing matrix for each
reconstruction. Figure 4.1 shows the results of our experiments. Obviously, the ¢,
norm of the recovered error is bounded by the error introduced by best k—term
approximation and also it should be noticed that with increasing the number of
measurements, the error keeps decreasing, which is reasonable because the larger
number of measurements gurantees the accuracy of reconstruction.
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Fig. 1. The blue line represents the reconstruction error, which is ||x — x*||3 where

x* is the solution for equation (4), the red line shows the error of best k-term
approximation which is ||x — xg || /V.

4.2 Volumetric Dataset

As stated in section 2.3, due to the fact that most of nature signals or data
are not necessarily sparse in canonical space domain, in order to increase the
accuracy of the reconstruction, seeking the transform for sparse representation
of the data is important. The common choice of the tranform basis is wavelet
(JPEG2000 image format) or discrete cosine transform (DCT)( JPG image for-
mat), however, DCT provides worse compression performance and wavelet is
unable to efficiently approximate curve or surface which are usually presented in
volumetric dataset. In this experiment, we will choose several geometric exten-
sions of wavelet comprised of curvelets [6], shearlets [15] and surfacelets [16] as
the transform bases and compare their performance with other data reduction
methods (e.g. run-length encoding and downsampling). For the evaluation of re-
construction accuracy, we use the signal to noise ratio (SNR) which is measured
logarithmic scale (dB) over the entire volumetric data as the metric.

Hydrogen The ground truth of Hydrogen dataset is a volumetric dataset with
resolution 128 x 128 x 128. Our experiment (from [25]) compares the volumetric
incoherent sensing framework with dataset reconstructed from interpolation of
downsampled dataset. For the interpolation, we use both linear and cubic spline
as the filters. The NESTA [2] algorithm is used to solve the P; problem (6). For
the measurements, it randomly chooses m = 12.5%N columns of discrete cosine
transform (DCT) measurements. For downsampling case, the sampling rate is
set to a factor of two for each dimension, resulting in rate p = 12.5%.
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Both of these two techniques stores the same size of data (Measurements
size in incoherene sensing is 12.5% of dataset size, and sampling rate in down-
sampling is also 12.5%). Figure 2 shows the volume rendering images of the CS
reconstruction as well as interpolation from downsampling dataset. It’s obvious
that CS reconstruction can achieve higher SNR than downsampling method. We
can also observe that changing sparsifying domain can improve the CS recon-
struct performance, and surfacelets yield the best result. It verifies that better
sparse representations is able to improve the accuracy of recovery.

Supernova The supernova datasets is a volumetric dataset with resolution of
432 x 432 x 432. Still we use the 12.5% measurements and downsampling rate is
set to p = 12.5%. The visualizations are shown in Figure 3. The result is similar
to Hydrogen dataset. We also observe that CS reconstruction tends to smooth
the dataset, because the CS recovers the most significant coefficients (usually
low frequency) while keeps other coefficients (usually high frequency) as zeros.

5 Conclusion

We present the merits of using incoherent sensing, originally introduced in com-
pressed sensing, for in-situ processing and reduction of large-scale simulation
data from theoretical and practical aspects. This approach is able to learn from
data to improve the quality of recovery after the data reduction has been per-
formed. With carefully choosing better sparse representations the recovery algo-
rithm can achieve higher accuracy as it is able to recover the most important
elements in the data. Only a little measurements needed in the process leads to
significant decrease in the data storage and saves the bandwidth. The univer-
sality of random measurements requiring no priori knowledge in terms of signal
also shows the attractive utility of incoherent sensing. In the future work, we
will study on the learning-based or customer-designed sparse representations of
volumetric data.
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(e) Downsample-linear, 29.78 dB  (f) Downsample-cubic, 30.43 dB

Fig. 2. Hydrogen dataset: Sparse approximation and Downsample with sample
rate p = 12.5%.



12 Kai Zhang and Alireza Entezari

(a) Ground Truth (b) CS-wavelet, 21.75 dB

(a) CS-curvelet, 22.88 dB (b) CS-surfacelet, 26.58 dB

(c) Downsample-linear, 25.07 dB (d) Downsample-cubic, 25.64 dB

Fig. 3. Supernova dataset: Sparse approximation and Downsample with sample
rate p = 12.5%.



