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Abstract. We show how Markov mixed membership models (MMMM)
can be used to predict the degradation of assets. We model the degrada-
tion path of individual assets, to predict overall failure rates. Instead of a
separate distribution for each hidden state, we use hierarchical mixtures
of distributions in the exponential family. In our approach the observa-
tion distribution of the states is a finite mixture distribution of a small
set of (simpler) distributions shared across all states. Using tied-mixture
observation distributions offers several advantages. The mixtures act as
a regularization for typically very sparse problems, and they reduce the
computational effort for the learning algorithm since there are fewer dis-
tributions to be found, i.e. less distributions than number of Markov
states. Using shared mixtures enables sharing of statistical strength be-
tween the Markov states and thus transfer learning. We determine for
individual assets the trade-off between the risk of failure and extended
operating hours by combining a MMMM with a partially observable
Markov decision process (POMDP) to dynamically optimize the policy
for when and how to maintain the asset.

Keywords: hidden Markov model · Markov mixed membership model
· tied-mixture hidden Markov model · HMM · reinforcement learning
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1 Introduction

Predictive maintenance is an important topic in asset management. Up-time im-
provement, cost reduction, lifetime extension for aging assets and the reduction
of safety, health, environment and quality risk are some reasons why asset inten-
sive industries are experimenting with machine learning and AI based predictive
maintenance.

Traditional approaches to predictive maintenance fall short in today’s data-
intensive and IoT-enabled world [16]. In this paper we introduce a novel machine
learning based approach for predicting the time of occurrence of rare events us-
ing Markov mixed membership models (MMMM) [5, 12, 22]. We show how we
use these models to learn complex stochastic degradation patterns from data
by introducing a terminal state that represents the failure state of the asset,
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whereas other states represent health-states of the asset as it progresses towards
failure. The probability distribution of these non-terminal states and the tran-
sition probabilities between states are learned from non-stationary time-series
data gathered as historic data, as well as real time streaming data (e.g. IoT
sensors).

Our approach is novel in two ways. First, we use an end-to-end approach com-
bining dynamic failure prediction of individual assets with optimization under
uncertainty [14, 15] to find optimal replacement and repair policies. Typically,
reinforcement learning approaches to predictive maintenance are satisfied with
simple nondynamic prediction models [11]. Dynamic and more accurate failure
prediction models are motivated by extending asset operating hours and are
enabled by low cost cloud compute power. In section 5 we explain this in detail.

Secondly, we found several advantages using dynamic mixed membership
modeling for remaining useful life estimates, over recurrent networks (specifically
LSTM-based [21]) and classical statistical approaches, like Cox-proportional haz-
ard regression (CPHR) [20, 17].

Adopting a Bayesian approach allows for starting with an estimate of the
probability that can be subsequently refined by observation, as more sensor
data is revealed in real time. In particular, our approach allows task specific
knowledge to be included into the model. For example, the number of health-
states, the number of mixtures of (topics, or archetypes) and the structure of
the transition matrix may be modeled explicitly using engineering knowledge of
practitioners.

Typically, the data structure for LSTM is fixed, e.g. a matrix, or time-series,
while MMMM is more flexible allowing different sampling frequencies for ex-
ample. MMMM can also work with missing data out of the box, using expert
knowledge as priors. A typical LSTM approach has to rely on transformation
models using PCA for ad-hoc feature extraction for example, before being able
to input time-series data into LSTM [21], thus separating the feature extraction
part from the prediction part.

Further, LSTM-based approaches require complete episodic inputs to learn
the prediction task, and thus can not be directly applied to right-censored data.
Right-censored data, or absorbing Markov chains, are needed for modeling degra-
dation time-series unlike predicting classical time-series like for stock trends.

Traditionally, Cox-proportional hazard regression (CPHR) models with time-
varying covariates are extensively used to represent stochastic failure processes
[20, 17]. Though CPHR works well for right-censored data, it lacks the health-
state representation of the asset. In other words, the proposed generative MMMM
model can infer the probability of failure and the most likely health-state, whereas
regression based models can only produce a probability estimate. This is par-
ticularly relevant in domains where the interpretability of the model results is
important like in engineering. Further, the CPHR analysis allows only model-
ing relationships between covariates and the response variable, while MMMM
enables modeling the relationships between any variable. That means, dynamic
Bayseian networks and MMMM in particular, allow to model not only the rela-
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tionships among covariates and the response variable, but allow to capture the
relationships among the covariates too [13]. Understanding the full relationship
between all covariates is important to understand asset degradation patterns.

The paper is structured as follows. Section 2 and 3 give a high level intro to
HMM and HMM for failure prediction respectively. We are using the terminology
of HMMs sharing hierarchical mixtures over their states; this being as a special
case of MMMM. Section 4 explains how we use reinforcement learning. Section
5 is a tutorial explaining by example how this can be applied to a large scale
system of hundreds of degrading assets.

2 A brief introduction of the hidden Markov model

A hidden Markov model is a generative graph model that represents probability
distributions over sequences of observations [7]. It involves two interconnected
models. The state model consists of a discrete-time, discrete-state first-order
Markov chain zt ∈ {1,...,N} that transitions according to p(zt|zt−1), while the
observation model is governed by p(xt|zt), where xt are the observations. The
corresponding joint distribution of a sequence of states and observations can be
factored as:

p(z1:T , x1:T ) = p(z1)p(x1|z1)

T∏
t=2

p(zt|zt−1)p(xt|zt) (1)

Therefore, to fully define this probability distribution, we need to specify a
probability distribution over the initial state p(z1), a N × N state transition
matrix defining all transition probabilities p(zt|zt−1), and the emission probabil-
ity model p(xt|zt). To summarize, the HMM generative model has the following
assumptions:

1. Each observation xt is generated by a hidden state zt.
2. Transition probabilities between states p(zt|zt−1) represented by a transition

matrix are constant.
3. At time t, an observation xt has a certain probability distribution corre-

sponding to possible hidden states.
4. States are finite and satisfy first-order Markov property.

The observation model specified by p(xt|zt) can be represented by a discrete
distribution (Bernoulli, Binomial, Poisson,...etc), a continuous distribution (Nor-
mal, Gamma, Weibull,...etc), or a joint distribution of many components assum-
ing individual components are independent. In the work discussed in this paper
we use a mixture distribution to represent the observation model. That is given a
state zt, the mixture component yt is drawn from a discrete distribution whose
parameters θ are determined by the state zt, denoted by yt ∼ Discrete(θzt),
where θzt is the vector of mixing weights associated with state zt. The observa-
tion xt is then drawn from one of a common set of K distributions determined
by component yt, denoted as xt ∼ p(.|µyt), where µk is the parameters of the
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kth distribution. It is important to note that the mixture components µ are
common and shared across states while the mixing weights θ vary across states.
Coupling the mixture components across states provides a balanced trade-off
between Heterogeneity and Homogeneity [2, 1, 19] allowing for information pool-
ing across states, see Figure 1. This compromise is also beneficial when fitting
HMM models with large number of states especially when certain states don’t
have enough observations (imbalanced data), as it provides a way of regularizing
the model avoiding over-fitting.

Fig. 1. States share common distributions providing a way of regularizing the model
to avoid overfitting

2.1 Inference

Once the parameters of a hidden Markov model distribution are learned from
data, there are several relevant quantities that can be inferred from existing
and newly observed data. For instance, given a partially observed data sequence
X = {xt, t = 1, ..., τ}, what is the posterior distribution over the hidden states
p(zt|x1:τ ) up to time τ < T , the end of the sequence. This is a filtering task
and can be carried out using the forward algorithm. This posterior distribution
will enable us to uncover the hidden health-state of an asset as we observe data
streaming in. Additionally, one can be interested in computing the most probable
state sequence path, z∗, given the entire data sequence. This is the maximum a
posteriori (MAP) estimate and can be computed through the viterbi algorithm
[4]. Readers can find more information about the forward, forward-backward,
Viterbi, and Baum-Welch algorithms in [12].

3 Hidden Markov model for failure time prediction

The model will represent the data as a mixture of different stochastic degrada-
tion processes. Each degradation process, a hidden Markov model, is defined by
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an initial state probability distribution, a state transition matrix, and a data
emission distribution. Each of the hidden Markov models will have a terminal
state that represents the failure state of the factory equipment. Other states
represent health-states of the equipment as it progresses towards failure and the
probability distribution of these non-terminal states are learned from data as
well as the transition probabilities between states. Forward probability calcu-
lations enable prediction of failure time distributions from historical and real
time data. Note that the data rate and the Markov chain evolution are decou-
pled allowing for some observations to be missing. Domain knowledge about
the degradation process is important. Therefore, expert knowledge of the failure
mechanism is incorporated in the model by enforcing constraints on the struc-
ture of the transition matrix. For example, not allowing the state to transition
from an “unhealthy” state to a “healthy” state can be incorporated by enforcing
a zero probability in the entries of the transition matrix that represent the prob-
ability of transition from an “unhealthy” state to a ”healthy” state (see Figure
4 for an example of a transition matrix with zeros to the left of the diagonal rep-
resenting an absorbing Markov chain). Enforcing constraints on the transition
matrix also reduces the computational complexity during model training as well
as when the model is running in production for online prediction and inference.
An important property of data generated from a fleet of factory equipment is
right censoring. In the context of failure data, right censoring means that the
failure times are only known in a few cases because for the vast majority of the
equipment the failure time is unknown. Only information up to the last time the
equipment was operational is known. Right censored observations are handled
in the model by conditioning on the possible states the equipment can be in at
each point in time, i.e. all non-terminal states. Once the model parameters are
estimated, the model is used for different inferential tasks. As new data streams
in from the asset, the state belief is calculated online in real time or recursively,
which gives an estimate of the most probable health-state the asset is in. This
is a filtering operation, which applies Bayes rule in a sequential fashion.

Another inference task is failure time prediction. As new data is streaming in,
an estimate of the asset health-state over a certain future horizon is calculated
as well as the most probable time at which the asset will enter the “failure” state
(terminal state). Both of those inferential tasks are important as they provide
a picture of the current state of the factory, as well as a forecast of when each
asset will most likely fail; see Figure 2. This information will then be used to
optimize the decision-making process, to maintain or replace assets.

4 Optimal decision making using partially observable
Markov decision process

At each time step we are confronted with a maintenance decision. Choosing the
best action requires considering not only immediate effects but also long-term
effects, which are not known in advance. Sometimes action with poor immediate
effects can have better long-term ramifications. An ”optimal” policy is a policy
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Fig. 2. Failure Time Prediction using HMM

that makes the right trade-off between immediate effects and future rewards [3]
and [10]. This is a dynamic problem due to the uncertainty of variables that are
only revealed in the future. For example, sensors are not always placed in the
right location on the equipment making the inference of the health-state of the
asset noisy. There is also uncertainty about how the equipment will evolve over
time, or how operators will use it.

The goal of the optimal policy is to determine the best maintenance action
to take for each asset at any given point in time, given the uncertainty of current
and future health-states. We derive the policy from a value function, which gives
a numerical value for each possible maintenance action that can be taken at each
time step. In other words, a policy is a function that maps a vector of probability
estimates of the current health-state to an action that should be taken at that
time step. There is no restriction on this value function, which can be represented
by neural networks, multi-dimensional hyper planes, or decision trees.

In this paper we focus on a local policy that is derived from a value function
represented by multi-dimensional hyper planes. A hyper plane can be represented
by a vector of its coefficients; therefore, the value function can be represented
by a set of vectors; see Figure 3.

In order to solve for our maintenance policy computing the value function,
we assume that the model used for the degradation process of the asset is a
hidden Markov model (HMM). Combining the dynamic optimization with the
HMM enables us to use the parameters of our HMM to construct a partially
observable Markov decision process (POMDP). A POMDP, in the context of
asset modeling, is defined by:
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POMDP =< S,A, T,R,X,O, γ, π > (2)

A set of health-states S, a set of maintenance actions A, an initial health-state
belief vector π, a set of conditional transition probabilities T between health-
states, a cost or reward function R, a set of observations X, a set of conditional
probabilities for the distribution of the observations O, and a discount factor
γ ∈ [0,1]. Since our model of degradation is assumed to be a hidden Markov
model, the states S, the transition probabilities T and the initial probabilities
π of the POMDP are the same as the hidden Markov model parameters. The
set of actions A can be defined as a0 = ”Do Nothing”, a1 = ”Repair”, and
a2 = ”Replace” for instance; see Figure 8 for example. This set is configurable
based on the maintenance policy for the asset and how it is operated. Similar
to A, the cost function R is also configured based on maintenance policy and
asset operation. The cost function R typically includes the cost of failure, the
cost of replacement, the cost of repair, and the negative cost of non-failure to
name a few. In addition to financial cost, one can include other forms of cost
like social cost of failure if the equipment failure could cause disruption to the
environment for example, or cause shortage of supply. R can be any type of
function, production rules set up by the operator, look up tables, etc..

Once the POMDP is defined like in 2, we solve for the policy by computing
the value function using a value iteration algorithm finding a sequence of inter-
mediate value functions, each of which is derived from the previous one. The
first iteration determines the value function for a time horizon of 1 time step,
then the value function for a time horizon of 2 is computed from the horizon 1
value function, and so forth [18].

Once the value function is computed, the best action to take on each asset
at time t is determined by finding the action with the highest value given the
current state probabilities at time t.

5 Examples

There are many use cases for the methodology described. For example, the results
of the failure prediction for a fleet of wind turbines may be input to reinforcement
learning (POMDP) to optimize the schedule and route of the maintenance crews
on a wind farm [9].

We illustrate our approach by going step by step through a real world ex-
ample. We start with historic observations like multi-sensor time-series data for
individual assets. We use expectation maximization (EM) to find the maximum
likelihood or maximum a posterior (MAP) estimates of the parameters of our
model from Fig 1. Typically, we use EM to solve larger problems with a few hun-
dred sensors and more than 20 states. In our experience, EM is computationally
more tractable for larger real world problems than Markov chain Monte Carlo
(MCMC), or its modern variant, Hamilton Monte Carlo (HMC) [8]), or the even
more expensive variational inference approaches.
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Fig. 3. Value function

When using EM, the number of states for the HMM and the number of
distinct distributions that make up our degradation processes are treated as
hyper-parameters, which we input into our model. Posterior predictive checks
(PPC) [6] is then used to find the right set of hyper-parameters.

Fig. 4. Example of transition matrix for absorbing MMMM

In Figure 4 we see an example of a transition matrix of a 6-state model. The
off diagonal elements show the probabilities of transitioning between the HMM
states, whereas the diagonals represent probabilities of remaining in each state.
The lower triangular part of the matrix is set to zero to enforce an absorbing
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Markov chain where states move only from left to right towards the failure
state. The Figure shows how the first two states are composed of mixtures,
i.e. mixtures of common distributions. The thickness of the lines between the
pdfs and the transition matrix indicates how much each common distribution
contributes to the pertinent state distribution. For example, state 1 consists
mainly of distribution 4 and 6, while distribution 5 contributes mainly to state
2. This shows an example of how the observation distributions of the states
are mixtures of some set of common (simpler) distributions shared across all
the states of the HMM. This approach can be seen as a generalization of tied-
mixture HMM [12], where the shared distributions are limited to be Gaussian,
while we allow for hierarchical mixtures of all distributions of the exponential
family. In our approach any topic, or archetype can a priori transition to any
other archetype. Using a sparse Dirichlet prior on transition distributions we
learn a meaningful dependence between archetypes through posterior inference
[22].

As mentioned before, expert knowledge of the failure mechanism maybe in-
corporated in the model by enforcing constraints on the structure of the transi-
tion matrix.

Figure 2 shows an example, of how we infer the hidden states given the
sequence of observations, in our case, a time-series of sensor data. We see how the
prediction of the expected failure time changes with additionally revealed sensor
data over time. Using a Bayesian model like the MMMM enables us to calculate a
new posterior for each newly observed data point thus gaining statistical strength
and better prediction accuracy. Calculating the posterior is simple and short. It
could be even done on edge devices. Contrast the simple solving of Bayes formula
with the approach of discriminative models (i.e. regression models), where one
would have to use the whole historic data set recalculating an improved model
to add newly observed time series data.

Fig. 5. Degradation profiles share states
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Further, there is no obvious way using LSTM to get to a better prediction
based on more real-time data points, since the posterior distribution is hidden
in the weights. Simile to regression models, LSTM typically requires to run new
back-propagation to learn from additional real time values. Another advantage of
HMM of mixtures vs. LSTM is, it captures the natural (hidden) groupings within
the data. Each group represents different asset profiles, i.e. distinct degradation
processes, and thus failure curves (top left insert of Figure 5).

Figure 5 shows an example of degradation states evolving over time. The
thickness of the lines between the states indicates the probability of transitioning
from one state to another. All assets start in state A, the initial state. After a
certain amount of time, they end up in the terminal failure state P. See Figure
2 for an example how the states evolve over time (in this Figure the final state
is called F). The other health-states (B to E, L to O, and F to J, for example)
represent states of an asset as it progresses towards failure.

The data frequency and Markov chain evolution are decoupled allowing for
real time data arriving at different rates.

Once the model is fit, one can calculate the survival curves for the differ-
ent degradation profiles which gives a summarized view of how assets fail as a
baseline. See right plot in Figure 6. The Figure also shows how the model can
be used to ”infer” which degradation profile the asset belongs to as new data
arrives (colored graph on the left in the middle). The left bottom plot shows
the entropy of the model’s belief for a specific asset as more data is observed.
Entropy, as a measure of uncertainty, decreases over time after more and more
data points of the time-series have been reveled. The decreased entropy shows
that after about 50 observations we can already be rather sure (entropy about
0.5) to which profile the asset at hand belongs. Thus the prediction for the pro-
file and the life expectancy is rather reliable, after observing only a third of its
life time (for this particular example of a degrading pump).

Fig. 6. Profiles evolve as data is revealed leading to different survival curves
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Having a measure of accuracy for failure prediction is very important for
practitioners. Obviously, the traditional ROC curves are not a good choice since
they do not capture the dynamic nature of our approach, i.e. recalculating new
posteriors when new data points arrive. Typically, practitioners are facing trade-
off questions. For example, what is the right point in time to replace a part.
Replacing assets too early leads to unnecessary expenses. On average, parts
are being replaced before they break. Running assets too long risks unforeseen
down-time. To use such trade-offs as a measure for model quality is often more
meaningful than ROC-type accuracy curves.

Fig. 7. Model performance measured by complexity

Risk tolerance is a typical constraint for operations managers. Using a trade-
off diagram she can choose the model that predicts the longest operating hours
given a certain risk level. Figure 7 shows the trade-off between risk of failure
vs. operating hours (mean up-time). Typically, the model that produces the
fewest false negatives, i.e. the steepest hockey stick failure curve, is the most
efficient. To the operator, the onset of the hockey stick indicates the latest point
in time for exchanging the asset, given a chosen risk level (12.5 percent in the
pictured-example). Flat hockey stick failure curves, i.e. those with higher number
of false positives, lead typically to reduced operating hours, since they indicate
to the operator exchanging parts before their end of life-time. Sometimes, the
steepest hokey stick curves come with less accuracy. The operator could mitigate
reduced model accuracy by increasing spare parts inventory for example, thus
still profiting from longer hours of asset operation. We see, ROC-type accuracy
is not always the most important metric. The trade-off between failure rate and
operating time can be more meaningful.

So far, we have shown in our example how we determine asset health evolving
over time (Figure 2). We are able to predict the degradation of individual assets
by deriving profiles, which lead to different survival curves (Figure 6).
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Next, we have to derive actionable insights from the predictions by finding an
optimal maintenance and resource allocation policy. We support the practitioner
by determining the best action to take on an asset at any given moment, and
assigning the right repair task to the right resource, i.e. who is to repair what
and how.

Fig. 8. Optimal action changing over time

Before we can make decisions about repairing individual assets we need to
understand which part of the value function (Figure 3) to use, depending on
a given asset health-state. Figure 8 shows how the best action changes over
time depending on the transition state probabilities and the pertinent value
function (green, yellow or red). States of assets are not observed directly but our
model can be used to infer the posterior distribution over the hidden states. For
example, the asset of Figure 8 has a low probability of failure around time point
200. According to the pertinent value function (policy) the best action is to ”take
no action”. Around time point 230 the asset has high probability of being in a
failure state (brown), thus, the value function recommends a ”replace” action as
the optimal take at this point in time.

More quantitatively, not knowing the current (hidden) state we generalize a
Markov decision process (MDP) to a partially observable MDP. Using POMDP
we observe the state only indirectly relating it to the underlying hidden state
probabilistically, Figure 8. Being uncertain about the state of the asset, we intro-
duce rewards R (e.g. costs to repair, to replace, or the cost of down time), a set
of actions A, and transition probabilities between health-states T ; for details see
equation 2. The transition probabilities T and the initial probabilities π of the
POMDP are the same as our HMM parameters since we have used the hidden
states S of our HMM to model the degradation. The set of actions A are a0 =
”Do Nothing”, a1 = ”Repair”, and a2 = ”Replace”, see Figure 9.

We do not know the states, which are hidden. We only observe time depen-
dent sensor data. From the observed sensor data we construct a belief, i.e. a
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Fig. 9. Selecting the best actions based on learned optimal policy

posterior distribution over the states. From the belief we use the optimal policy,
i.e. the solution of the POMDP, to find the optimal action to take, given the
level of uncertainty. The POMDP solution is represented by a piecewise linear
and convex value function calculated by the value iteration algorithm [18]. Once
the value function is computed, the best action to take for each asset at time t is
determined by finding the action with the highest value given the current state
probabilities at time t, as shown in Figure 9.

6 Conclusions

We showed how mixed membership hidden Markov models (MMMM) can be
used to predict the degradation of assets. From historic observations and real
time data, we modeled the degradation path of individual assets, as well as
predicting overall failure rates. Using MMMM models has several advantages.
Mixing over common shared distributions acts as a regularization for a typically
very sparse problem, thus avoiding overfitting and reducing the computational
effort for learning. Further, hierarchical mixtures (topics, or archetypes) allow for
transfer learning through sharing of statistical strength between Markov states.
We used a dual approach combining the MMMM failure prediction with a par-
tially observable Markov decision process (POMDP) to optimize the policy for
when and how to repair assets by determining the dynamic optimum between
the risk of failure and extended operating hours of individual assets. We showed
how to apply this approach using tutorial type of examples.
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