
EasyChair Preprint

№ 633

Effective and Explainable Detection of Android

Malware based on Machine Learning Algorthims

Rajesh Kumar, Zhang Xiaosong, Riaz Ullah Khan, Jay Kumar and
Ijaz Ahad

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 15, 2018



Effective and Explainable Detection of Android Malware 
based on Machine Learning Algorithms 

Rajesh Kumar 
University of Electronic Science and 

Technology of China 
0086-15520777096 

rajakumarlohano@gmail.com 

 

Zhang Xiaosong 
University of Electronic Science and 

Technology of China 
008618982067786 

s_x_zhang@163.com 

Riaz Ullah Khan 
University of Electronic Science and 

Technology of China 
0086-15520763595 

rerukhan@gmail.com 

Jay Kumar 
Quaid-e-Azam University 

Islamabad, Pakistan 
0092-3332836704 

jay_tharwani1992@yahoo.com 

Ijaz Ahad 
University of Electronic Science and 

Technology of China  
Telephone number, incl. country 

ijazahad1@gmail.com 

 

 

 
ABSTRACT 
The across the board reception of android devices and their 

ability to get to critical private and secret data have brought 

about these devices being focused by malware engineers. 

Existing android malware analysis techniques categorized into 

static and dynamic analysis. In this paper, we introduce two 

machine learning supported methodologies for static analysis 

of android malware. The First approach based on statically 

analysis, content are found through probability statistics 

which reduces the uncertainty of information. Feature 

extraction were proposed based on the analysis of existing 

dataset. Our both approaches were used to high-dimension 

data into low-dimensional data so as to reduce the dimension 

and the uncertainty of the extracted features. In training phase 

the complexity was reduced 16.7% of the original time and 

detect the unknown malware families were improved. 

Keywords: Android Malware, SVM, probability statistics, 

feature extraction, dimensional 

 

 

 

 

 

 

 

 

 1. Introduction 

In our increasingly connected society, the number and range of 

mobile devices continue to increase. It is estimated that there will 

be approximately 6.1 billion mobile device users by 2020. 

Android is currently the most popular mobile application 

platform, different application markets have android applications, 

these applications provide users with rich and valuable features. 

However, the popularity of android applications has also attracted 

the attention of many malicious attackers. The percentage of users 

that have experienced malware attacks from 4% in 2013 to 7% of 

2014. The abundance of private data that is stored on these 

devices made them an alluring focus for cyber criminals [8]. It 

revealed that users generally do not install anti-virus or anti-

malware app installed on their mobile devices, although the 

effective- ness of such apps is also unclear or debatable [17]. 

While all operating systems/platforms have been targeted by 

malware attackers. Android platform provides several ways to 

deal with the threat of malware, such as sandbox, access control, 

signature mechanism, authority mechanism and other measures 

to protect system and application security [5]. 

Early ways to deal with malware detection based on the 

discovery of anomalies in battery utilization [3]. Operating 

system events,(i.e., API calls, Input/output request, and 

resources locks) have additionally been utilized as a part of 

dynamic malware detection approaches. For instance, Taint- 

Droid is a malware detection framework based on anomalies in 

the app’s data usage behavior [9]. In [6], developed a framework 

that observed Android Dalvik operation codes based on 

frequencies to detect malicious apps applications. Several 

approaches utilized machine learning to classify malware based 

on their behaviors. Furthermore, paper [4], proposed Crowdroid 

framework by the client and server components, the client uses  



the strace mechanism of the Linux system to monitor Android 

system calls, and then send the call information to the server side 

processing. kim et al., [14] proposed CopperDroid framework 

does not pay attention to the underlying action, it detect the 

behavior of java code and local code execution. Enck et al., [9] 

proposed a method to dynamically monitor the flow of 

information to track different sources of sensitive data. Although 

these dynamic analysis methods are very effective, the memory 

and power consumption are so high that they can not be directly 

applied to mobile devices. 

In order to avoid degrading of mobile device’s performance, 

solutions based on distributed computing and collaborative 

analysis for both static and dynamic malware analysis have also 

been proposed [15]. For example, M0Droid is an Android anti-

malware solution that analyzes system calls of Android apps on 

the server and creates signatures which are pushed to the user 

devices for threat detection [8] . 

In contrast, static analysis malware analysis consumes very little 

memory and power. For example, the author [10] proposed that the 

Kirin framework use lightweight authentication to reduce malware 

during the installation phase. Furthermore, Felt et al.[12] proposed 

that the Stowaway framework that use automated testing tools to 

build permission maps for API calls to detect whether the software 

overrides the authority. The Risk-Ranker framework detects 

whether the software uses root vulnerabilities and sends back-end 

information to screen out the software[13]. All of these are manual 

testing models that are not effective at detecting unknown malware. 

There are some effective methods and frameworks for static 

analysis [18, 16], but the method of extracting features is not 

elaborated. 

 

In this paper the dataset is taken from [1], which includes all the 

software of the Android Malware Genome Project[19], after 

decompiling the software these software’s from Android Manifest. 

xml file and dex library collect a large number of different features, 

and then map them to the joint vector space (Denoted as S), the 

sample is represented by a vector. For example, a sample and S in 

contrast, if there is a corresponding feature recorded as 1, no record 

of 0, too to a vector of 0,1, then hash table [7] or cloth Long filter[2] 

for storage, finally linear support vector machine (SVM) [11] 

classification. The advantage of this method is can be applied 

directly to the mobile device, you can find the right vector 

characteristics, and then use the characteristics to explain the final 

classification results. Due to the high dimensional of the dataset 

when the model is trained to predicted long, and the accuracy of 

detecting unknown malware is low and uncertain too many data, 

training model is facing failure. this research reduced the data 

dimension from 540,000 to more than 40,000, removing the 

uncertainty data, model from training to forecasting time reduced 

to about 4s, indeed the effectiveness of the model, while improving 

the detection of unknown malware accuracy 

In this paper, we demonstrate the utility of employing machine 

learning techniques in static analysis of Android malware. 

Specifically, techniques such as manifest analysis and code 

analysis are utilized to detect malicious Android apps. The 

contributions of this paper are two-folded: 

• We present a machine learning model for Android malware 

detection based on app permissions. This approach is 

lightweight and computationally inexpensive, and can be 

deployed on a wide range of mobile devices. 

• We then present a new approach to perform code analysis 

using machine learning, which provides higher accuracy and 

is capable of revealing more granular app behaviors. Static 

code analysis of malware is a task generally undertaken by 

forensics and malware analysts. However, our research 

results indicate the potential to automate several aspects of 

the static code analysis, such as detecting malicious behavior 

within the code. 

The structure of this paper is as follows. In the next section, we 

present the research methodology used in this paper. Experiment 

and Results are discussed in Section 3 . Finally, In Section 4 

conclusion are discussed. 

2. Methodology 

2.1 Feature vectorization 

The data set used in this study comes from Drebin [1],  which 

contains 5,560 malware and 123,453 pieces of benign software, 

resulting in a total of 545,333 different features, slightly different 

from the original feature of 545,000 features. In the feature 

extraction of this dataset, one if the dimension exists in the sample, 

it is marked as 1, and if not, it is marked as 0, as shown in Figure 1.  

 

Figure 1： Features was transferd into vectors 

2.2 Probability Based Feature Selection 

Method 

The feature selection method based on probability and statistics 

adopts global dimensionality reduction strategy, which is 

abbreviated as ProDroid. The number of samples for the data set is 

recorded as m, then m = 129 013. Let the dimension of each sample 

be n, then n = 545333. The characteristics of all samples are 

represented by an 𝑚× 𝑛 matrix 𝐶, and the elements in 𝐶 are 0 or 

1. Each row of data in C represents a sample, the designated i 

sample is 𝑐𝑖𝑗, a vector of 0 and 1, where 1 ≤ 𝑖 ≤ 𝑚; 𝑐𝑖𝑗 represents 

the value of the jth feature of the ith sample, Where 1 ≤ 𝑗 ≤ 𝑛. 

Suppose the total number of features is S, then 

[𝑠 =∑

𝑚

𝑖=1

∑𝐶𝑖𝑗

𝑛

𝑗=1

] 



It can be concluded that S = 6 613 087. 

The number of occurrences of the jth feature is [𝑐𝑠𝑗], then [𝑐𝑠𝑗 =
∑ 𝐶𝑖𝑗
𝑚
𝑖=1 ] . 

There are [𝑡𝑘] features appear k times, then [𝑡𝑘] can be expressed 

as [𝑐𝑠𝑗 = 𝑘]  The sum of the number of. [𝑡𝑘]  initialized to 0, 

calculated as follows: 

When 𝑘 = 1, 𝑡1 = 367895; when 𝑘 = 2, 𝑡2 = 8156; and so on. 

If the ratio of the number of features 𝑘 to the total features is written 

as 𝑝1𝑘 , then 𝑃1𝑘 = 𝑡𝑘/𝑛, and the ratio of the number of features 

occurring k times to the total number of features appearing as𝑃2𝑘, 

𝑃2𝑘 = 𝑡𝑘𝑘/𝑠. Table 1 shows the statistics of feature appearances 

and feature proportions. 

Table 1: The statics of features 

 

As can be seen from Table 1, when 𝑘 ≥ 5, 𝑃1𝑘 = 8.24%, that is, 

the number of features with more than 5 times only accounts for 

8.24 of the total number of features. Therefore, the appearance of 

𝑘 ≥ 5  features is retained, these features are only 44942 

dimensions, the data dimension will be greatly reduced 

2.3 The Feature Extraction Based Dimension 

Reduction Method  

Compared with the feature set before optimization, the feature set 

obtained by the above method is mixed with the feature of 

uncertainties. This feature set can reduce the training of the model 

and the prediction time, but it can not reflect the unnecessary 

features. Therefore, another method is proposed, which can avoid 

extracting unnecessary features in the feature extraction stage, 

referred to as FexDroid for short. All features included in the 

sample can be divided into 10 categories, as shown in Table 2, 

where id represents the class number. 

In Table 2 that can be seen the 10th characteristic URL contains 

310488 Different characteristics, to do a specific analysis of such 

characteristics found to contain http, that are 24 4881 links, and 23 

409 links with www, url data component analysis, as shown in 

Table 3. 

The number of these links are huge, theses characteristics are 

unpredictable and may be change over time, with uncertainties. 

Classification models trained with data sets containing a large 

number of links can easily fail. In addition, the tag has 185 729 

characteristics of the activity, and activity’s main role is to interface 

management and user interaction, there must be intent [19]; Based 

on the above analysis of these two types of data is deleted, and 

finally form a new 49 116 dimension data set. 

 

Table 2: The number of dierent features 

id suffix Quantity 

1 real_permission 70 

2 feature 72 

3 api_call 315 

4 call 733 

5 permission 3812 

6 provider 4513 

7 intent 6379 

8 service_receiver 33222 

9 activity 185729 

10 url 310488 

   

Table 3 The number of features including url 

id  suffix Quantity 

1  .png 3217 

2  .html 7888 

3  .php 13063 

4  .xml 7528 

5  .do 1241 

6  .ico 89 

7  .Html? 92 

8  .Php? 921 

9  .Xml? 100 

10  .net 47094 

11  .jpg 14168 

12  .htm 2303 

13  .asp 1742 

14  .jsp 1862 

15  .jpg? 142 

16  .com 43107 

17  .Asp 1358 

18  .%27 619 

3. Experiment and Results 

We evaluated the performance of our approaches using 10-fold 

cross validation. In 10-fold cross validation, the original sample 

was randomly partitioned into ten equal sized sub-samples. A 

single sub-sample was retained for the testing, while the remaining 

nine were used for training. The process was repeated ten times, 

and each time using a different sub-sample for testing. The results 

were then averaged to produce a single estimation. The main 

advantage of this method is that all samples were used once only 

for validation. The metrics we used for the evaluation of the 

algorithms are TPR and FPR, which are widely used in the text 

mining and machine learning communities. Classified items can be 

true positive (TN –items correctly labeled as belonging to the 



class), false positive (TP - items incorrectly labeled as belonging to 

a certain class), false negative (FP - items incorrectly labeled as not 

belonging to a certain class), and true negative (FN - items correctly 

labelled as not belonging to a certain class). 

Given the number of true positives and false negatives, recall is 

calculated using the following formula 

𝑇𝑃𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The TPR is sometimes referred to as “sensitivity”or the “true 

positive rate”. Given the number of true positive and false positive 

classified items, precision (also known as “positive predictive 

rate”) is calculated as follows: 

𝐹𝑃𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

3.1 Malware detection based on SVM 

In this study, 43000 samples were randomly selected as training set, 

43000 samples were used as verification sets and classified by 

linear LibLinear. With high dimension 2. 1 Drebin and ProDroid 

FexDroid, according to the optimized according to the test results 

as shown in Table 4 

Table 4:  The detection results of malware 

 TPR/% FPR/% time/sec 

Derbin 93.9 1.0 24 

ProDroid 94.0 1.0 4 

FexDroid 94.0 3.0 4 

After the data is reduced dimension, the detection rate is guaranteed 

that can be observed in Table 4. 

3.2 Malware detection 

In this paper, supervised training methods are used to rely on the 

existing malicious Software, if a large number of malicious 

software, A small number of other Malicious Software, then the 

accuracy rate rely on a large number of that class. Therefore,it is 

necessary to detect malware separately. The top 20 malware 

families are labeled A ~ T, respectively, as shown in the Table 5. 

On the basis of Table 4, the detection rates of the first 20 types of 

malware are respectively counted, and the detection rates of each 

type of malware are shown in Figure 2 

As can be seen from Figure 3 ProDroid and FexDroid than Drebin 

on the R type malware detection rate improved significantly. 

However, the features obtained by the ProDroid method are mixed 

and do not effects on the uncertainties. In addition, the accuracy of 

detecting unknown malware is lower than that of FexDroid. 

The test results show that the detection rate of R type malware is 

obviously improved because the average 50% of the features in the 

R type sample are URLs, However, only an average of 10% of the 

features in the H sample are URL, indicating that removing the 

uncertainty information ensures the validity of the classification 

model. The slight difference between ProDroid and FexDroid is 

caused by the slight difference between URL and activity in the 

data processing strategy. 

Table 5： The top 20 families of malware 

Id Malicious family Quantity 

A FakeInstaller 925 

B DroidKungFu 667 

C Plankton 625 

D Opfake 613 

E GingerMaster 339 

F BaseBridge 330 

G Iconosys 152 

H Kmin 147 

I FakeDoc 132 

J Geinimi 92 

K Adrd 91 

L DroidDream 81 

M LinuxLotoor 70 

N GoldDream 69 

O Mobile Tx 69 

P Fake Run 61 

Q SendPay 59 

R Gappusin 58 

S Imlog 43 

T SMSreg 41 

 

 

 

Figure 2：The TPR contrast of unknown families detection 

3.3 Detection of unknown malware 

Both of these methods rely on known malware and then detect other 

malware. Then the use of known malware to detect the 

effectiveness of unknown malware in the end how feasible is worth 

exploring, so further research. 

The first experimental training set consisted of 41200 normal 

samples and 2000 malicious samples, which included 19 types of 

malware and then tested the remaining malicious samples. 



The second trial dataset is based on the first trial set, adding 10 

samples from the remaining malware, and then detecting other 

malicious samples of that type, all of which are obtained at random 

Figure 3 shows the results obtained from the high-dimensional data 

in Drebin. Figure 4 shows the results from the ProDroid strategy. 

Figure 5 shows the results from the FexDroid strategy. 

 

Figure 3  The TPR contrast of unknown families detection 

As can be seen from Figure 3, the accuracy of the detection is very 

low for the samples without any type of malware, and the accuracy 

of the sample is obviously increased after the samples of such 

malware are added. However, after dimensionality reduction, the 

detection accuracy is high even without adding samples of certain 

types of malware, so dimensionality reduction is feasible and 

necessary. 

 

 Figure 4  TPR of unknown families detection of ProDroid 

The comparison of the experiments in Fig. 4 and 5 shows that the 

ProDroid framework has more advantages than the FexDroid 

framework in detecting unknown malware. Therefore, the 

uncertainty of the high-dimensional data has a great interference 

with the detection results. 

 

 Figure 5  TPR of unknown families detection of FexDroid 

3.4 New data comparison test 

Of the 1275 apps in our data set, we were unable to decompile 33 

of them (734 non-malicious and 490 malicious), perhaps due to 

code encryption and obfuscation or instability of our Java 

decompiler. Nevertheless, the remaining 1224 source files were 

sufficient to train a good model. We used apk tool kit for 

decompiling the features such as permission, api_call and url. 

From the experimental part of 3.3 shows the detection of unknown 

malware ProDroid framework than the FexDroid framework has 

obvious advantages. Due to the strategy of ProDroid the data is 

divided into the following three categories. The first type of data 

set “marked all” , including 58363 different characteristics; the 

second type of data set recorded as number of URL,remove the 

32563 number of URLS feature, the third type of data set recorded 

as no_url_act, based on all remove the URL and activity-related 

features, 6401 special Levy. We used three types of different 

algorithms on the testing. The probability of the testing samples are 

correctly classified that is shown in Table 6. 

            Table 6: Experiment results of new dataset 

Model 𝑇𝑃𝑅𝑎/% 𝑇𝑃𝑅𝑛𝑢/% 𝑇𝑃𝑅𝑛𝑢𝑎/% 

SVM 95.2 95.2 95.0 

KNN 75.8 87.5 92.0 

Naive Bayes 80.5 80.7 90.5 

C4.5 out of memory out of memory 93.0 

DBN 84.6 85.0 87.0 

High-dimensional dataset is optimized according to the ProDroid 

strategy, The environment of the processor i7, memory 4.0 GB. The 

evaluation of the classification for the analysis of the app’s source 

code is presented in Table 6 . As Table 6 shows, over 95.2% of 

instances were correctly classified using SVM. The high accuracy 

of source code based classification reveals that the machine can 

infer app behavior from its source code. Even though the bag of-

words model disregards grammar and word order in text (in our 

context, the source code), it is possible to train a successful machine 

learning model that is able to distinguish malicious app from non- 



malicious app. C4.5 algorithm takes large amount of operation 

takes up a lot of memory, and there is a ’outofmemory’ memory 

overflow error during operation. Other machine learning 

algorithms such as KNN, Naive Bayes and DBN were also 

evaluated and had an F-score of over 90%. Therefore, source code 

appears to be a viable source of information for a machine learning 

classification algorithm. Also, with the machine learning-based 

source code analysis, it is possible to analyze whether an android 

package (apk) is malicious in less than 10 s, which is significantly 

faster than a human analyst. The algorithm is also efficient, in terms 

of speed, as it took only 0.04 s to train the model. Instances were 

also classified faster.Thus this approach suitable for real-time 

classification of (malicious) apps. Finally, integrated this model for 

classification based on permissions with SVM in the OWASP 

Seraphimdroid android app. 

At the same time, it proves that the ProDroid strategy is suitable for 

many common algorithms. We experimented with three datasets 

for trained the model, the approximate time-consuming ratio is 10: 

5: 1. It shows that the data processing method of reducing the 

information uncertainty that can improve the accuracy of sample 

classification and simplify the dataset . It can save memory and 

reduce computation time. 

On the other hand, Bayesian algorithms such as Naive Bayes and 

Bayesian networks have the worst performance. This could be due 

to the small dataset used in this study. Bayesian algorithms usually 

require much larger datasets than SVM to train the model with a 

higher accuracy. A larger dataset may also improve SVM model 

performance. SVM algorithm outperforms Naive Bayes, SVM, 

KINN, c4.5 and DBN on statistical t -test with a confidence interval 

of 0.05. However, it is not significantly better than decision trees 

and KNN 

4. Conclusion and future research directions 

We presented machine learning aided (classification and 

clustering) approaches based on statistical analysis and feature 

extraction analysis to detect and analyze malicious Android apps. 

The use of machine learning allows our algorithms to detect new 

malware families with high precision and recall rates. In our 

approach dimension of this data set is reduced from more than 50 

million to more than 40,000. the feature items with high 

information content are found through probability statistics, which 

reduces the uncertainty of information. 

Future research includes the evaluation of the proposed approaches 

using a significantly bigger labeled balanced data sets and utilizing 

online learning. Another research focus is combining static and 

dynamic software analysis in which multiple machine learning 

classifiers are applied to analyze both source code and dynamic 

features of apps in run-time. 
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