
EasyChair Preprint

№ 633

Effective and Explainable Detection of Android

Malware based on Machine Learning Algorthims

Rajesh Kumar, Zhang Xiaosong, Riaz Ullah Khan, Jay Kumar and
Ijaz Ahad

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 15, 2018

Effective and Explainable Detection of Android Malware
based on Machine Learning Algorithms

Rajesh Kumar
University of Electronic Science and

Technology of China
0086-15520777096

rajakumarlohano@gmail.com

Zhang Xiaosong
University of Electronic Science and

Technology of China
008618982067786

s_x_zhang@163.com

Riaz Ullah Khan
University of Electronic Science and

Technology of China
0086-15520763595

rerukhan@gmail.com

Jay Kumar
Quaid-e-Azam University

Islamabad, Pakistan
0092-3332836704

jay_tharwani1992@yahoo.com

Ijaz Ahad
University of Electronic Science and

Technology of China
Telephone number, incl. country

ijazahad1@gmail.com

ABSTRACT
The across the board reception of android devices and their

ability to get to critical private and secret data have brought

about these devices being focused by malware engineers.

Existing android malware analysis techniques categorized into

static and dynamic analysis. In this paper, we introduce two

machine learning supported methodologies for static analysis

of android malware. The First approach based on statically

analysis, content are found through probability statistics

which reduces the uncertainty of information. Feature

extraction were proposed based on the analysis of existing

dataset. Our both approaches were used to high-dimension

data into low-dimensional data so as to reduce the dimension

and the uncertainty of the extracted features. In training phase

the complexity was reduced 16.7% of the original time and

detect the unknown malware families were improved.

Keywords: Android Malware, SVM, probability statistics,

feature extraction, dimensional

 1. Introduction

In our increasingly connected society, the number and range of

mobile devices continue to increase. It is estimated that there will

be approximately 6.1 billion mobile device users by 2020.

Android is currently the most popular mobile application

platform, different application markets have android applications,

these applications provide users with rich and valuable features.

However, the popularity of android applications has also attracted

the attention of many malicious attackers. The percentage of users

that have experienced malware attacks from 4% in 2013 to 7% of

2014. The abundance of private data that is stored on these

devices made them an alluring focus for cyber criminals [8]. It

revealed that users generally do not install anti-virus or anti-

malware app installed on their mobile devices, although the

effective- ness of such apps is also unclear or debatable [17].

While all operating systems/platforms have been targeted by

malware attackers. Android platform provides several ways to

deal with the threat of malware, such as sandbox, access control,

signature mechanism, authority mechanism and other measures

to protect system and application security [5].

Early ways to deal with malware detection based on the

discovery of anomalies in battery utilization [3]. Operating

system events,(i.e., API calls, Input/output request, and

resources locks) have additionally been utilized as a part of

dynamic malware detection approaches. For instance, Taint-

Droid is a malware detection framework based on anomalies in

the app’s data usage behavior [9]. In [6], developed a framework

that observed Android Dalvik operation codes based on

frequencies to detect malicious apps applications. Several

approaches utilized machine learning to classify malware based

on their behaviors. Furthermore, paper [4], proposed Crowdroid

framework by the client and server components, the client uses

the strace mechanism of the Linux system to monitor Android

system calls, and then send the call information to the server side

processing. kim et al., [14] proposed CopperDroid framework

does not pay attention to the underlying action, it detect the

behavior of java code and local code execution. Enck et al., [9]

proposed a method to dynamically monitor the flow of

information to track different sources of sensitive data. Although

these dynamic analysis methods are very effective, the memory

and power consumption are so high that they can not be directly

applied to mobile devices.

In order to avoid degrading of mobile device’s performance,

solutions based on distributed computing and collaborative

analysis for both static and dynamic malware analysis have also

been proposed [15]. For example, M0Droid is an Android anti-

malware solution that analyzes system calls of Android apps on

the server and creates signatures which are pushed to the user

devices for threat detection [8] .

In contrast, static analysis malware analysis consumes very little

memory and power. For example, the author [10] proposed that the

Kirin framework use lightweight authentication to reduce malware

during the installation phase. Furthermore, Felt et al.[12] proposed

that the Stowaway framework that use automated testing tools to

build permission maps for API calls to detect whether the software

overrides the authority. The Risk-Ranker framework detects

whether the software uses root vulnerabilities and sends back-end

information to screen out the software[13]. All of these are manual

testing models that are not effective at detecting unknown malware.

There are some effective methods and frameworks for static

analysis [18, 16], but the method of extracting features is not

elaborated.

In this paper the dataset is taken from [1], which includes all the

software of the Android Malware Genome Project[19], after

decompiling the software these software’s from Android Manifest.

xml file and dex library collect a large number of different features,

and then map them to the joint vector space (Denoted as S), the

sample is represented by a vector. For example, a sample and S in

contrast, if there is a corresponding feature recorded as 1, no record

of 0, too to a vector of 0,1, then hash table [7] or cloth Long filter[2]

for storage, finally linear support vector machine (SVM) [11]

classification. The advantage of this method is can be applied

directly to the mobile device, you can find the right vector

characteristics, and then use the characteristics to explain the final

classification results. Due to the high dimensional of the dataset

when the model is trained to predicted long, and the accuracy of

detecting unknown malware is low and uncertain too many data,

training model is facing failure. this research reduced the data

dimension from 540,000 to more than 40,000, removing the

uncertainty data, model from training to forecasting time reduced

to about 4s, indeed the effectiveness of the model, while improving

the detection of unknown malware accuracy

In this paper, we demonstrate the utility of employing machine

learning techniques in static analysis of Android malware.

Specifically, techniques such as manifest analysis and code

analysis are utilized to detect malicious Android apps. The

contributions of this paper are two-folded:

• We present a machine learning model for Android malware

detection based on app permissions. This approach is

lightweight and computationally inexpensive, and can be

deployed on a wide range of mobile devices.

• We then present a new approach to perform code analysis

using machine learning, which provides higher accuracy and

is capable of revealing more granular app behaviors. Static

code analysis of malware is a task generally undertaken by

forensics and malware analysts. However, our research

results indicate the potential to automate several aspects of

the static code analysis, such as detecting malicious behavior

within the code.

The structure of this paper is as follows. In the next section, we

present the research methodology used in this paper. Experiment

and Results are discussed in Section 3 . Finally, In Section 4

conclusion are discussed.

2. Methodology

2.1 Feature vectorization

The data set used in this study comes from Drebin [1], which

contains 5,560 malware and 123,453 pieces of benign software,

resulting in a total of 545,333 different features, slightly different

from the original feature of 545,000 features. In the feature

extraction of this dataset, one if the dimension exists in the sample,

it is marked as 1, and if not, it is marked as 0, as shown in Figure 1.

Figure 1： Features was transferd into vectors

2.2 Probability Based Feature Selection

Method

The feature selection method based on probability and statistics

adopts global dimensionality reduction strategy, which is

abbreviated as ProDroid. The number of samples for the data set is

recorded as m, then m = 129 013. Let the dimension of each sample

be n, then n = 545333. The characteristics of all samples are

represented by an 𝑚× 𝑛 matrix 𝐶, and the elements in 𝐶 are 0 or

1. Each row of data in C represents a sample, the designated i

sample is 𝑐𝑖𝑗, a vector of 0 and 1, where 1 ≤ 𝑖 ≤ 𝑚; 𝑐𝑖𝑗 represents

the value of the jth feature of the ith sample, Where 1 ≤ 𝑗 ≤ 𝑛.

Suppose the total number of features is S, then

[𝑠 =∑

𝑚

𝑖=1

∑𝐶𝑖𝑗

𝑛

𝑗=1

]

It can be concluded that S = 6 613 087.

The number of occurrences of the jth feature is [𝑐𝑠𝑗], then [𝑐𝑠𝑗 =
∑ 𝐶𝑖𝑗
𝑚
𝑖=1] .

There are [𝑡𝑘] features appear k times, then [𝑡𝑘] can be expressed

as [𝑐𝑠𝑗 = 𝑘] The sum of the number of. [𝑡𝑘] initialized to 0,

calculated as follows:

When 𝑘 = 1, 𝑡1 = 367895; when 𝑘 = 2, 𝑡2 = 8156; and so on.

If the ratio of the number of features 𝑘 to the total features is written

as 𝑝1𝑘 , then 𝑃1𝑘 = 𝑡𝑘/𝑛, and the ratio of the number of features

occurring k times to the total number of features appearing as𝑃2𝑘,

𝑃2𝑘 = 𝑡𝑘𝑘/𝑠. Table 1 shows the statistics of feature appearances

and feature proportions.

Table 1: The statics of features

As can be seen from Table 1, when 𝑘 ≥ 5, 𝑃1𝑘 = 8.24%, that is,

the number of features with more than 5 times only accounts for

8.24 of the total number of features. Therefore, the appearance of

𝑘 ≥ 5 features is retained, these features are only 44942

dimensions, the data dimension will be greatly reduced

2.3 The Feature Extraction Based Dimension

Reduction Method

Compared with the feature set before optimization, the feature set

obtained by the above method is mixed with the feature of

uncertainties. This feature set can reduce the training of the model

and the prediction time, but it can not reflect the unnecessary

features. Therefore, another method is proposed, which can avoid

extracting unnecessary features in the feature extraction stage,

referred to as FexDroid for short. All features included in the

sample can be divided into 10 categories, as shown in Table 2,

where id represents the class number.

In Table 2 that can be seen the 10th characteristic URL contains

310488 Different characteristics, to do a specific analysis of such

characteristics found to contain http, that are 24 4881 links, and 23

409 links with www, url data component analysis, as shown in

Table 3.

The number of these links are huge, theses characteristics are

unpredictable and may be change over time, with uncertainties.

Classification models trained with data sets containing a large

number of links can easily fail. In addition, the tag has 185 729

characteristics of the activity, and activity’s main role is to interface

management and user interaction, there must be intent [19]; Based

on the above analysis of these two types of data is deleted, and

finally form a new 49 116 dimension data set.

Table 2: The number of dierent features

id suffix Quantity

1 real_permission 70

2 feature 72

3 api_call 315

4 call 733

5 permission 3812

6 provider 4513

7 intent 6379

8 service_receiver 33222

9 activity 185729

10 url 310488

Table 3 The number of features including url

id suffix Quantity

1 .png 3217

2 .html 7888

3 .php 13063

4 .xml 7528

5 .do 1241

6 .ico 89

7 .Html? 92

8 .Php? 921

9 .Xml? 100

10 .net 47094

11 .jpg 14168

12 .htm 2303

13 .asp 1742

14 .jsp 1862

15 .jpg? 142

16 .com 43107

17 .Asp 1358

18 .%27 619

3. Experiment and Results

We evaluated the performance of our approaches using 10-fold

cross validation. In 10-fold cross validation, the original sample

was randomly partitioned into ten equal sized sub-samples. A

single sub-sample was retained for the testing, while the remaining

nine were used for training. The process was repeated ten times,

and each time using a different sub-sample for testing. The results

were then averaged to produce a single estimation. The main

advantage of this method is that all samples were used once only

for validation. The metrics we used for the evaluation of the

algorithms are TPR and FPR, which are widely used in the text

mining and machine learning communities. Classified items can be

true positive (TN –items correctly labeled as belonging to the

class), false positive (TP - items incorrectly labeled as belonging to

a certain class), false negative (FP - items incorrectly labeled as not

belonging to a certain class), and true negative (FN - items correctly

labelled as not belonging to a certain class).

Given the number of true positives and false negatives, recall is

calculated using the following formula

𝑇𝑃𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

The TPR is sometimes referred to as “sensitivity”or the “true

positive rate”. Given the number of true positive and false positive

classified items, precision (also known as “positive predictive

rate”) is calculated as follows:

𝐹𝑃𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

3.1 Malware detection based on SVM

In this study, 43000 samples were randomly selected as training set,

43000 samples were used as verification sets and classified by

linear LibLinear. With high dimension 2. 1 Drebin and ProDroid

FexDroid, according to the optimized according to the test results

as shown in Table 4

Table 4: The detection results of malware

 TPR/% FPR/% time/sec

Derbin 93.9 1.0 24

ProDroid 94.0 1.0 4

FexDroid 94.0 3.0 4

After the data is reduced dimension, the detection rate is guaranteed

that can be observed in Table 4.

3.2 Malware detection

In this paper, supervised training methods are used to rely on the

existing malicious Software, if a large number of malicious

software, A small number of other Malicious Software, then the

accuracy rate rely on a large number of that class. Therefore,it is

necessary to detect malware separately. The top 20 malware

families are labeled A ~ T, respectively, as shown in the Table 5.

On the basis of Table 4, the detection rates of the first 20 types of

malware are respectively counted, and the detection rates of each

type of malware are shown in Figure 2

As can be seen from Figure 3 ProDroid and FexDroid than Drebin

on the R type malware detection rate improved significantly.

However, the features obtained by the ProDroid method are mixed

and do not effects on the uncertainties. In addition, the accuracy of

detecting unknown malware is lower than that of FexDroid.

The test results show that the detection rate of R type malware is

obviously improved because the average 50% of the features in the

R type sample are URLs, However, only an average of 10% of the

features in the H sample are URL, indicating that removing the

uncertainty information ensures the validity of the classification

model. The slight difference between ProDroid and FexDroid is

caused by the slight difference between URL and activity in the

data processing strategy.

Table 5： The top 20 families of malware

Id Malicious family Quantity

A FakeInstaller 925

B DroidKungFu 667

C Plankton 625

D Opfake 613

E GingerMaster 339

F BaseBridge 330

G Iconosys 152

H Kmin 147

I FakeDoc 132

J Geinimi 92

K Adrd 91

L DroidDream 81

M LinuxLotoor 70

N GoldDream 69

O Mobile Tx 69

P Fake Run 61

Q SendPay 59

R Gappusin 58

S Imlog 43

T SMSreg 41

Figure 2：The TPR contrast of unknown families detection

3.3 Detection of unknown malware

Both of these methods rely on known malware and then detect other

malware. Then the use of known malware to detect the

effectiveness of unknown malware in the end how feasible is worth

exploring, so further research.

The first experimental training set consisted of 41200 normal

samples and 2000 malicious samples, which included 19 types of

malware and then tested the remaining malicious samples.

The second trial dataset is based on the first trial set, adding 10

samples from the remaining malware, and then detecting other

malicious samples of that type, all of which are obtained at random

Figure 3 shows the results obtained from the high-dimensional data

in Drebin. Figure 4 shows the results from the ProDroid strategy.

Figure 5 shows the results from the FexDroid strategy.

Figure 3 The TPR contrast of unknown families detection

As can be seen from Figure 3, the accuracy of the detection is very

low for the samples without any type of malware, and the accuracy

of the sample is obviously increased after the samples of such

malware are added. However, after dimensionality reduction, the

detection accuracy is high even without adding samples of certain

types of malware, so dimensionality reduction is feasible and

necessary.

 Figure 4 TPR of unknown families detection of ProDroid

The comparison of the experiments in Fig. 4 and 5 shows that the

ProDroid framework has more advantages than the FexDroid

framework in detecting unknown malware. Therefore, the

uncertainty of the high-dimensional data has a great interference

with the detection results.

 Figure 5 TPR of unknown families detection of FexDroid

3.4 New data comparison test

Of the 1275 apps in our data set, we were unable to decompile 33

of them (734 non-malicious and 490 malicious), perhaps due to

code encryption and obfuscation or instability of our Java

decompiler. Nevertheless, the remaining 1224 source files were

sufficient to train a good model. We used apk tool kit for

decompiling the features such as permission, api_call and url.

From the experimental part of 3.3 shows the detection of unknown

malware ProDroid framework than the FexDroid framework has

obvious advantages. Due to the strategy of ProDroid the data is

divided into the following three categories. The first type of data

set “marked all” , including 58363 different characteristics; the

second type of data set recorded as number of URL,remove the

32563 number of URLS feature, the third type of data set recorded

as no_url_act, based on all remove the URL and activity-related

features, 6401 special Levy. We used three types of different

algorithms on the testing. The probability of the testing samples are

correctly classified that is shown in Table 6.

 Table 6: Experiment results of new dataset

Model 𝑇𝑃𝑅𝑎/% 𝑇𝑃𝑅𝑛𝑢/% 𝑇𝑃𝑅𝑛𝑢𝑎/%

SVM 95.2 95.2 95.0

KNN 75.8 87.5 92.0

Naive Bayes 80.5 80.7 90.5

C4.5 out of memory out of memory 93.0

DBN 84.6 85.0 87.0

High-dimensional dataset is optimized according to the ProDroid

strategy, The environment of the processor i7, memory 4.0 GB. The

evaluation of the classification for the analysis of the app’s source

code is presented in Table 6 . As Table 6 shows, over 95.2% of

instances were correctly classified using SVM. The high accuracy

of source code based classification reveals that the machine can

infer app behavior from its source code. Even though the bag of-

words model disregards grammar and word order in text (in our

context, the source code), it is possible to train a successful machine

learning model that is able to distinguish malicious app from non-

malicious app. C4.5 algorithm takes large amount of operation

takes up a lot of memory, and there is a ’outofmemory’ memory

overflow error during operation. Other machine learning

algorithms such as KNN, Naive Bayes and DBN were also

evaluated and had an F-score of over 90%. Therefore, source code

appears to be a viable source of information for a machine learning

classification algorithm. Also, with the machine learning-based

source code analysis, it is possible to analyze whether an android

package (apk) is malicious in less than 10 s, which is significantly

faster than a human analyst. The algorithm is also efficient, in terms

of speed, as it took only 0.04 s to train the model. Instances were

also classified faster.Thus this approach suitable for real-time

classification of (malicious) apps. Finally, integrated this model for

classification based on permissions with SVM in the OWASP

Seraphimdroid android app.

At the same time, it proves that the ProDroid strategy is suitable for

many common algorithms. We experimented with three datasets

for trained the model, the approximate time-consuming ratio is 10:

5: 1. It shows that the data processing method of reducing the

information uncertainty that can improve the accuracy of sample

classification and simplify the dataset . It can save memory and

reduce computation time.

On the other hand, Bayesian algorithms such as Naive Bayes and

Bayesian networks have the worst performance. This could be due

to the small dataset used in this study. Bayesian algorithms usually

require much larger datasets than SVM to train the model with a

higher accuracy. A larger dataset may also improve SVM model

performance. SVM algorithm outperforms Naive Bayes, SVM,

KINN, c4.5 and DBN on statistical t -test with a confidence interval

of 0.05. However, it is not significantly better than decision trees

and KNN

4. Conclusion and future research directions

We presented machine learning aided (classification and

clustering) approaches based on statistical analysis and feature

extraction analysis to detect and analyze malicious Android apps.

The use of machine learning allows our algorithms to detect new

malware families with high precision and recall rates. In our

approach dimension of this data set is reduced from more than 50

million to more than 40,000. the feature items with high

information content are found through probability statistics, which

reduces the uncertainty of information.

Future research includes the evaluation of the proposed approaches

using a significantly bigger labeled balanced data sets and utilizing

online learning. Another research focus is combining static and

dynamic software analysis in which multiple machine learning

classifiers are applied to analyze both source code and dynamic

features of apps in run-time.

4. References

1. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,

Rieck, K. and Siemens, C.E.R.T., 2014, February.

DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket. In NDSS.

2. Bloom, B.H., 1970. Space/time trade-offs in hash coding

with allowable errors. Communications of the

ACM, 13(7), pp.422-426.

3. Buennemeyer, T.K., Nelson, T.M., Clagett, L.M.,

Dunning, J.P., Marchany, R.C. and Tront, J.G., 2008,

January. Mobile device profiling and intrusion detection

using smart batteries. In Hawaii International Conference

on System Sciences, Proceedings of the 41st Annual (pp.

296-296). IEEE.

4. Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S., 2011,

October. Crowdroid: behavior-based malware detection

system for android. In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and

mobile devices(pp. 15-26). ACM.

5. Analytics, S., 2016. Android Captures Record 85 Percent

Share of Global Smartphone Shipments in Q2

2016. Online].

6. Canfora, G., Mercaldo, F. and Visaggio, C.A., 2015,

July. Mobile malware detection using op-code frequency

histograms. In e-Business and Telecommunications

(ICETE), 2015 12th International Joint Conference

on (Vol. 4, pp. 27-38). IEEE.

7. Corman, T.H., Leiserson, C.E., Rivet, R.L. and Stein, C.,

2009. Introduction to Algorithms, 3rd-edition.

8. Damshenas, M., Dehghantanha, A., Choo, K.K.R. and

Mahmud, R., 2015. M0droid: An android behavioral-

based malware detection model. Journal of Information

Privacy and Security, 11(3), pp.141-157.

9. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun,

B.G., Cox, L.P., Jung, J., McDaniel, P. and Sheth, A.N.,

2014. TaintDroid: an information-flow tracking system

for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS), 32(2), p.5.

10. Enck, W., Ongtang, M. and McDaniel, P., 2009,

November. On lightweight mobile phone application

certification. In Proceedings of the 16th ACM conference

on Computer and communications security (pp. 235-

245). ACM.

11. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R. and

Lin, C.J., 2008. LIBLINEAR: A library for large linear

classification. Journal of machine learning

research, 9(Aug), pp.1871-1874.

12. Felt, A.P., Chin, E., Hanna, S., Song, D. and Wagner, D.,

2011, October. Android permissions demystified.

In Proceedings of the 18th ACM conference on

Computer and communications security (pp. 627-638).

ACM.

13. Grace, M., Zhou, Y., Zhang, Q., Zou, S. and Jiang, X.,

2012, June. Riskranker: scalable and accurate zero-day

android malware detection. In Proceedings of the 10th

international conference on Mobile systems,

applications, and services (pp. 281-294). ACM.

14. Kim, J., Choi, H., Namkung, H., Choi, W., Choi, B.,

Hong, H., Kim, Y., Lee, J. and Han, D., 2016, November.

Enabling Automatic Protocol Behavior Analysis for

Android Applications. In CoNEXT (pp. 281-295).

15. Schmidt, A.D., Clausen, J.H., Camtepe, A. and Albayrak,

S., 2009, October. Detecting symbian os malware

through static function call analysis. In Malicious and

Unwanted Software (MALWARE), 2009 4th

International Conference on (pp. 15-22). IEEE.

16. Sheen, S., Anitha, R. and Natarajan, V., 2015. Android

based malware detection using a multifeature

collaborative decision fusion

approach. Neurocomputing, 151, pp.905-912.

17. Walls, J. and Choo, K.K.R., 2015, August. A Review of

Free Cloud-Based Anti-Malware Apps for Android.

In Trustcom/BigDataSE/ISPA, 2015 IEEE (Vol. 1, pp.

1053-1058). IEEE.

18. Yuan, Z., Lu, Y., Wang, Z. and Xue, Y., 2014, August.

Droid-Sec: deep learning in android malware detection.

In ACM SIGCOMM Computer Communication

Review (Vol. 44, No. 4, pp. 371-372). ACM.

19. Zhou, Y. and Jiang, X., 2012, May. Dissecting android

malware: Characterization and evolution. In Security and

Privacy (SP), 2012 IEEE Symposium on (pp. 95-109).

IEEE.

