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1 INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAVs) have become an alternative to both stationary and
fixed location sensors for traffic monitoring purposes as they can efficiently and quickly obtain
high quality vehicle trajectory data over any area of a traffic network with no installation costs.
A recent research trend has been to monitor a traffic network using a fleet of UAVs (Butilă &
Boboc, 2022, Gohari et al., 2022). Recently, Barmpounakis & Geroliminis (2020) conducted an
experiment where a fleet of UAVs was deployed over a real urban traffic network, demonstrating
the use of UAV video feed in obtaining vehicle trajectories from virtual loop detectors (and
hence transfer flows), average speed of links, congestion propagation, lane-changing behaviour
and extraction of Fundamental Diagrams.

Recent studies indicate that for large urban areas, an infeasibly large fleet of UAVs would
be needed to monitor the relevant components of a traffic network (Garcia-Aunon et al., 2019,
Kyrkou et al., 2018). To circumvent this problem, we propose a UAV-based, real-time traffic
estimation system, which obtains real-time measurements of traffic and estimates traffic densities
for both the observed and unobserved areas of the traffic network using a priori knowledge of
traffic dynamics. The proposed estimation method comprises of two parts. Firstly, we use a
Gaussian Process model to obtain virtual density estimates and their corresponding uncertainties
given sparse and noisy density measurements from UAVs (Englezou et al., 2022). Secondly,
we incorporate the non-linear traffic dynamics of congested traffic flow into a moving horizon
estimation (MHE) optimization problem via successive convexificaton, which guarantees a convex
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and global solution (Jiang et al., 2007, Mao et al., 2018). Our results show that accurate density
estimates can be obtained even when density and flow measurements obtained from UAVs are
noisy and sparse.

2 METHODOLOGY

2.1 Traffic Dynamics

We conduct a macroscopic simulation, assuming that the urban traffic environment being tested
is partitioned into homogeneous regions. In each region, traffic dynamics are described by a
triangular Macroscopic Fundamental Diagram (MFD). These dynamics entail slow changes in
traffic demand over time, and traffic congestion is evenly distributed, meeting the criteria outlined
by Daganzo (2007). We represent the dynamics of each region r ∈ R, where R is the set of
homogeneous regions, with the following dynamic equation:

ρrd(k + 1) = ρrd(k) +
Ts
lr

∑
j∈Jr

[cjrd(k)− crjd(k)] +
1

lr
Drd(k) + wrd(k). (1)

Above, ρrd(k) is the density of region r with trips ending in region d ∈ D, where D is the set
of destination regions. Moreover, the discrete time-step of the simulation is denoted as k ∈ K,
where K is the set of discrete time-steps of the simulation. The term crjd(k) is the transfer flow
from region r destined to region d which passes through neighbouring region j ∈ Jr, where Jr
is the set of neighbouring regions around region r. Note that crjd(k) is computed by taking into
account the capacity of neighbouring region j. Furthermore, Drd(k) is the origin-destination
matrix denoting the number of vehicles entering region r destined to region d at time-step k and
wrd(k) ∼ N (0, σw) is white Gaussian noise that is added to the model. The constants Ts and lr
are the duration of each discrete time-step and the average length of trips within region r.

2.2 UAV measurements

Each UAV is assigned a pre-defined path, calculated based on the number of regions in the urban
traffic network and number of UAVs available. The paths are cyclical and each region belongs
to at least one path, ensuring that each region is monitored by at least one UAV at some point
during the cycle. While hovering over region r, a UAV obtains noisy measurements of traffic
density ρ̃r(k) and transfer flow from region r to neighbouring region j, c̃rj(k) at time-step k:

ρ̃r(k) = ρr(k) + νρr (k), (2)
c̃rj(k) = crj(k) + νcrj(k). (3)

The terms νρr (k) ∼ N (0, σ2ρ, ) and νcrj(k) ∼ N (0, σ2c ) are Gaussian white noise, added to the
true density and transfer flows ρr(k) and crj(k), respectively. Each region is small enough (no
more than 300m across) such that all transfer flows in and out of the region can be observed by
a UAV hovering at a suitable altitude h. After monitoring region r, the UAV transitions to the
next region in the path. This transition typically takes about 30 seconds, during which no traffic
measurements are collected.

2.3 Gaussian Process model

Gaussian Process models are a non-parametric Bayesian technique frequently utilized for in-
terpolating sparse datasets by assuming a Gaussian distribution over functions. For a given
region r ∈ R, the GP model is trained on ρ̃r(k) which are available ∀r ∈ R for time-steps
k ∈ {1, 2, ..., k′}, where k′ is the current simulation time-step. The output is a distribution of
ρ̂r(k) ∀k up until and including k′, given as

ρ̂r(k) | ρ̃r(k), σ2, ϕ, ν2 ∼ N (µ̂r(k), σ̂
2
r (k)), (4)

where ϕ is the unknown correlation parameter, σ2 is the unknown variance of the parameter and
ν2 is the noise-to-signal ratio (Rasmussen, 2004).
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2.4 Successive Convexification

A MHE optimization algorithm is developed which minimizes the weighted least squares of the
measurement and process errors over a moving horizon window (MHW), with objective function:

minimize
ek

∑
k∈Wk

k−W+1

eTkΣ−1k ek.

Matrix Σ−1k is the inverse of the error variances σw, σρ, σc, where σρ is updated according to
the uncertainty of each virtual measurement from the GP model. The set Wk′

k′−W+1 comprises
measurements from time step k′ −W + 1 to the current time-step k′, where W represents the
length of the MHW. The vector ek is a column vector of variables which model the process noise
wrd(k) from Eq. (1) and measurement noises νρr (k), νcrj(k) from Eq. (2) and (3):

ek = [eρrd(k), e
ρ
r(k), e

c
rj(k)]

T ∈ RN×1. (5)

For a given MHW, Wk
k−W+1, the transfer flows measurements c̃rj(k) observed during the

window are included, as well as a full set of virtual density measurements ρ̃r(k), obtained from
the GP model. The non-linear traffic constraints are transformed to linear constraints by taking
their convex hull. Once the initial optimization problem is solved an iterative procedure follows
where the same problem is solved with tightening bounds imposed on the density estimates
ρ̂r(k)∀k ∈ Wk

k−W+1 . This process is repeated until the bounds are suitably small.

3 SIMULATIONS AND RESULTS

3.1 Simulations

We simulate an urban environment with a Macroscopic Traffic model in MATLAB, where the
number of homogeneous regions is |R| = 7. We test the robustness of the proposed estimator
by altering the measurement and process noise between high, medium and low. We also alter
the number of UAVs observing the urban network, with a minimum of one UAV surveying the
network to a maximum of seven. For each measurement and process noise pairing, we run the
simulation 20 times and average the results.

3.2 Results

We compute the Mean Average Percentage Error (MAPE) for both ρ̂r and ρ̂rd for varying mea-
surement noise, process noise and number of UAVs. We run these tests using the virtual mea-
surements of ρ̃r provided by the GP model and sparse measurements of c̃rj . For brevity, we only
show the MAPE results for varying measurement error and number of UAVs, shown in Fig. 1.

As shown in Fig. 1 we observed a decrease in MAPE for both ρ̂r and ρ̂rd as the number
of UAVs increases, which is expected as the set of ρ̃r and c̃rj is more complete. Moreover, we
observe a decrease in MAPE for ρ̂r as the standard deviation of measurement error decreases.
This is also partially observed for ρ̂rd, however it is not as pronounced as measurement noise
mainly impacts ρ̂r, according to Eq. (2).

Assuming the worst case scenario of one UAV and high measurement noise, the MAPE of
ρ̂r is around 32 %. Considering that this includes estimates of all unobserved regions and is in
real-time, we consider this an encouraging result. Moreover, the MAPE of ρ̂rd given the same
scenario is around 40 %.

4 DISCUSSION

In this work, we propose a real-time urban traffic state estimator with measurements provided
by UAVs, where the urban traffic network is partitioned into homogeneous regions. As the
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Figure 1 – Varying measurement noise results for ρ̂r and ρ̂rd.

measurements are sparse, we firstly produce virtual measurements of the traffic density which
are computed by a Gaussian Process model. We include a priori knowledge of traffic dynamics
by forming a moving horizon weighted least squares optimization problem which minimizes the
measurement and process errors. Since the traffic dynamics are non-linear we propose a successive
convexification method, where at each iteration, the bounds on state variables are tightened,
resulting in a global solution. Our results indicate that even when high noise is present and
measurements are sparse due to a limited number of UAVs monitoring the traffic network, the
proposed estimator provides accurate estimates of traffic density ρ̂r and traffic density with
known destinations ρ̂rd.
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