
EasyChair Preprint
№ 7760

Survey of Automation Practices in Model-Driven
Development and Operations

Christophe Ponsard and Valery Ramon

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 12, 2022

Survey of Automation Practices in
Model-Driven Development and Operations

Christophe Ponsard and Valery Ramon

CETIC Research Centre, Gosselies, Belgium

Abstract

Model-driven methods are gaining momentum in the industry to
develop software intensive systems. To be effective in quality and ef-
ficient in productivity, they require a strong toolchain with seamless
automation. The DevOps approach can help reach this by unifying
software development and operations with a strong focus on automa-
tion and monitoring. The aim of this short paper is to review automa-
tion tasks that are specific to a model-driven context and to classify
them according to a typical DevOps lifecycle covering design, code,
testing, deployment and runtime activities. Tasks are identified based
on different industry use cases experienced in our research centre or re-
ported in the literature. Some challenges are identified and discussed,
especially related to the use of bots in a model-driven context.

Keywords— DevOps, Model-Based System Development, Verification, Test-
ing, Generation, Certification, Continuous Integration, Toolchain

1 Introduction
Engineering has been relying on modelling for quite a long time in many disciplines
such as construction, electronics or aeronautics. It has widely proven capabilities
to abstract and reason on real world artefacts at design time. However, its adop-
tion is still in progress in the areas of software development (MDD - Model-Driven
Development) [22] and system engineering (i.e. MBSE - Model-Based System En-
gineering) [11]. A common cause is the difficulty to face the problem of switch-
ing from a rigid document-based culture to a more dynamic model-based culture
[15]. The latter relies on standardised and widely adopted modelling languages like
SysML at system level, UML for software and also increasingly on Domain Specific

1

BotSE 2022 Preprint

Languages (DSLs). Their visual syntax ease design and communication activities
while their semantics enable automation.

Automation is crucial for the success of such methods because the cost of extra
modelling activities must be regained on later activities, especially testing and bug
fixing which can amount to a large ratio of the project budget. In addition to model-
level verification and validation activities, the automated generation of artefacts is
advised to get the most out of the modelling effort and to avoid introducing new
flaws due to manual coding tasks.

Over the past few year DevOps has emerged as a strong way to bridge to the
gap between Development (Dev) and Operations (Ops) by emphasizing communi-
cation and collaboration, continuous integration, quality assurance, and delivery
with automated deployment utilizing a set of development practices [12]. It pro-
vides a reference framework for organising a systematic pipeline of tool supported
activities ensuring both continuous development (CD) and integration (CI). Dif-
ferent specialisations have emerged such as DevSecOps which focuses on security
activities [16] and, of interest here, ModDevOps that strongly advocates abstrac-
tion, automation, and monitoring at all steps of system construction [10]. Figure
1 illustrates the latter on the standard infinite loop used to depict the continuous
DevOps lifecycle.

Figure 1: ModDevOps lifecycle [3]

A DevOps pipeline is highly automated so that the teams can focus on the
value-added activities and on collaboration, especially across the Development and
Operations borders. A number of tasks can be fully automated and operated by
so called “bots” which are triggered by user commands or events, typical examples
are nightly builds including non-regression testing or the scan of commits for de-
tecting and reporting some possible flaws early. The exact definition of a bot is

2

BotSE 2022 Preprint

still emerging and empirical study has identified important characteristics such as
autonomy, intelligent processing, and a tight integration [7].

In the scope of this paper, we are interested by identifying and classifying
candidate tasks for automation in the context of MDD. We carry out our analysis by
using the (Mod)DevOps as reference architecture for comparison and classification
even though it might not be the actual implementation.

The methodology followed is based on the gathering and analysis of a number
of case studies from our own experience and from the literature. At this stage of
our research, we do not claim to be exhaustive and did not apply a systematic
mapping survey approach. We rather confronted cases from a variety of domains
with different focus (e.g. new system vs modernisation/enterprise architecture)
and various kinds of requirements (including safety/security critical) in order to
discuss specific DevOps support for MDD including the use of bots.

This paper is structured as follows. First, Section 2 reminds about standard
DevOps automation before Section 3 surveys more specific automation related to
MBSE. It is followed by a discussion in Section 4 which also highlight key challenges
in connection with the use of bots. Finally, Section 5 draws some conclusions and
identifies our future work.

2 Standard DevOps Automation
The focus of this paper is not to identify standard automation activities in DevOps.
However, this section reminds about them in order to set the background so we
can exclude them from the specific tasks targeting modelling or possibly state how
they (inter)relate, e.g. as refinement or support.

Figure 2: Standard DevOps pipeline with typical tools

A DevOps infrastructure can involve a variety of tools at each phase as depicted
in Figure 2. Those tools can be deployed on premises and/or in the Cloud. The

3

BotSE 2022 Preprint

outer communication layer is also a key for the successful operation by enabling
communication through teams across the lifecycle, for example through collabo-
rative chat platforms such as Slack or Mattermost. DevOps automation can be
bounded to specific static rules such as nightly builds but is also supported by
more flexible and dynamic agent called “bots” which can act as a bridge between
the collaboration and the DevOps tools. The interaction with such bots can occur
through chat commands posted in a channel of the collaboration tool and later
acts to perform specific tasks [14]. A bot act autonomously with a level of human
control and supervision to check the outcome either directly (e.g. direct answer for
a real-time query) or through some dashboards (e.g. successful build process).

Scenarios can cover the whole lifecycle, for example: [21]

• Proactive Planning : create new user stories in sprint planning tools, assign
them, update sprints and product backlogs.

• Build and Continuous Integration: execute on-demand or daily/nigthly build
jobs and report back statistics.

• Continuous Deployment : perform deployments across environments, roll
back deployments in case of failure, perform status checks or post-deployment
actions such as VM restarts.

• Infrastructure Provisioning and Configuration Management : launch jobs to
provision infrastructure or application environments. Enable monitoring and
restarting services and servers.

• Continuous Monitoring/Feedback : gather application statistics and health
status, perform analytics to feed a dashboard.

3 DevOps Automation for MDD
In this section, we first review automation needs. Then, we survey and classify
existing practices in the scope of model-driven development. This includes some
MBSE connectivity at the requirements and design phases (i.e in the DevOps plan
step).

3.1 MDD Automation Needs
Dev phase - Figure 3 depicts a classical V-shaped model-driven development.
The figure shows that the model becomes a central artefact. Efficient support to
all model related activities in this phase is critical to ensure the expected pro-
ductivity gain. The idea is to invest more in analysis to reduce the testing effort
and the need to correct flaws and bugs discovered later in development or even in
operations. Model related activities can be classified in model analysis and model
transformation.

Standard model analysis needs are to:

4

BotSE 2022 Preprint

Figure 3: Summary of major activities in Model-Base Software Development

• assess model quality issues related to its relation with requirements (e.g.
uncovered/missing/flawed requirements). This triggers iterative clarification
between requirements and design models.

• performing traceability analysis and impact assessment across a model for
different purposes, e.g. change request or refactoring.

• early model verification and validation: depending on the degree of formali-
sation, it can range from estimating some timing behaviours in a functional
block model to formal verification of specific safety invariant (e.g. in B).

• possibly performing model animation if the model captures the dynamic
behaviour in order to ease the model validation prior to more detailed design
and development steps.

Model transformation is typically used to automatically generate the following
artefacts from the model and thus achieve substantial productivity gains:

• standard lifecycle documents, previously produced manually in a document-
oriented approach, e.g. design document, test plans, documents to support
a certification process.

• test suites using a model-based testing approach.
• more refined models, closer to the code, e.g. in the B method.
• code, either stubs (from a structural model) or executable code (from a

behavioural model).

Ops phase - Although less specific, MDD can extend into the operations

5

BotSE 2022 Preprint

phase, especially to achieve the following tasks:

• runtime monitoring of specific properties used as assumption for the correct
operation of the system related to the environment including user behaviour
or execution platform performance/responsiveness. This does not apply to
critical requirements but helps to provision adequate and more dynamic re-
sponse, especially in a DevOps cycle. Code monitors can be generated for
this purpose.

• seamless runtime update and reconfiguration of the system relying on a de-
ployment model shared between the DevOps platform and the application
itself.

3.2 Survey of Automation Practices in MDD
To conduct our survey, we identified a number of case studies related to our
MDD/MBSE activities with industrial partners or through reported use of such
activities although we did not implement a systematic mapping study. Our goal
was to achieve a decent coverage of a variety of application domains (automotive,
space, logistics, railways...) and DevOps practices. Our search was limited to
the past 5 past years and used keywords such as MBSE, automation, continuous
integration, DevOps, bots and case study.

The following raw observations can be formulated:

• SysML and UML are widely reported as modeling framework. SysML is even
more cited than UML probably because the whole software-based system is
usually modelled.

• Most of the reported automation activities relate to the Dev part while the
few activities reported in Ops are quite standard (configuration management
and monitoring).

• Most model-related activities are reported with a bigger focus on model anal-
ysis and traceability rather than model transformation (not many references
to test and code generation).

• The pipeline seems rather static with manual triggers and few reported use of
bot technology except in two cases. The first (case 7) is in railways and stands
out against other safety-critical applications: bots explicitly used to synchro-
nise requirements templates, generate documents and automated builds [13].
The second (case 8) is related to security management, a domain with a
specific variant called DevSecOps [16]. Note also a few cases cover security
requirements.

• Our survey involves mainly large organisations known to be less agile and
more subject to work in silos.

6

BotSE 2022 Preprint

Table 1: Survey of Automation Practices in MDD
Year Domain CompaniesScope Languages Dev automation Ops automation Tooling Ref.
1 2017 Space fictional cubesat SysML,

CONOPS
stereotype
(semi-
automation),
dependency ma-
trix, simulation

N/A MagicDraw[8]

2 2017 Logistics LWN sea
crane

SysML UML reuse, optimisa-
tion

N/A Architect. [23]

3 2017 Telecom US gov radar
(mod-
ernisa-
tion)

UML,
SysML,
dataflow,
CONOPS

traceability, con-
sistency checks,
system risk anal-
ysis, model pub-
lication

N/A DOORS,
DSM,
Radiant
web UI

[4]

4 2017 Space NASA,
ESA,
DARPA

small
satel-
lite
sys-
tems

SysML viewpoints, rules N/A N/A [1]

5 2019 Railways infrabel business
system

EA/BPMN Model quality
Document gen-
eration

KPI monitoring Sparx EA [17]

6 2019 Automo-
tive

General
Motors

auton.
auto-
motive

dynamic
modeLs

Test generation N/A CARLA,
VIRES

[6]

7 2020 Manufac-
turing

Christian
Doppler
Lab

CPS,
robotics

SysML, 3D
CAD

code generation
scripts, test case
generators

deployment
scripts

N/A [3]

8 2021 Railways D-Bahn
Siemens

transp.
system

SysML reqbot, docgen,
simulation

N/A Capella,
gitlab CI,
jupyter

[13]

9 2021 Inform.
security

SPARTA firewall data/threat/
infrastruc-
ture/certification
models

traceability config manage-
ment,

frama-C,
Open-
SCAP

[5]

10 2021 Manufact.
& logis-
tics

ABB,
FAGOR

control
system

Finite State
Machines

automated test
gen for attacks,
code checking

config of trace
monitor

Uppaal [19]

4 Discussion

4.1 Bots for DevOps Collaboration
The reported use of MDD is mainly in large organisations which tend to have ded-
icated departments dealing with the functional, safety and/or security dimensions,
often in a wider engineering context. Consequently, DevOps collaboration means
may be hindered by the mandatory use of corporate channels which may still be
partly document-based. In early adoption phase of modelling, its extend may be
limited to the functional dimension and rely on document flows for connecting with
other departments, e.g. safety.

This explains that the use of bots is limited to focused activities such as model
analysis at design stage (detecting quality issues, synchronisation with requirements
management, etc.) or at collaboration boundaries using document generation. A

7

BotSE 2022 Preprint

prerequisite to a wider adoption is to make sure the model is truly accessible
across departments, so each department can start developing its own viewpoints as
mentioned in [1] and move to co-engineering practices [18]. Many modelling envi-
ronment incorporate communication inside modelling tools for reviewing purposes
(e.g. TEAMS for Capella, PostMania for Visual Paradigm). Such channels can
also be used to interact with bots or by bots to report detected issues. In such a
settings, bots can play the role of virtual modelling assistants or real-time model
reviewers, resulting in a continuous feedback on the model quality [2].

4.2 Bot support for Dev to/from Ops Transitions
Our study highlights a focus on model design and transitioning to code/test and less
on operations. This is confirmed in [3] which stresses the need for better support
especially for cyber-physical systems. For Dev-to-Ops, virtual environments should
be available for system level testing, standard deployments procedures should also
be available and work in a similar way. For Ops-to-Dev, the monitoring should
be supported by adequate descriptive runtime models easing the link back to the
design model for enabling analysis and triggering possible evolution. This requires
adequate languages for connecting runtime models back to design models, for the
specification of indicators and identifying the information collection needs. A pre-
requisite is to make sure the pipeline is model-aware [9]. Complex monitors might
also evolve from dedicated components to model generated or configured compo-
nents based on a domain specific analysis enriched with runtime data, like threat
models and vulnerability databases in cybersecurity. At this point, bots can be effi-
cient to perform semantic reconciliation and impact analysis of design-time models
with runtime data [2]. Conversely digital twins can also be analysed for deviation
or kept synchronised using runtime bots.

4.3 Bots for more Incremental Processes
Many investigated domains are subject to certification constraints, mostly related
to safety and increasingly cybersecurity. DevOps automation and specialised bots
can support evidence gathering and document generation required by certification.
The incremental approach is especially useful for supporting the need of fast update
deployment, especially in response to cyberthreats [5].

5 Conclusion and Perspectives
This paper performed an overall survey of automation needs and practices for
MDD using a DevOps approach. Although not exhaustive, our current analysis
is consistent with other published works. It highlighted interesting directions to
deepen our survey and further research in this area. We plan to extend our survey to
better characterise the bot support for MBSE, especially from the operations phase.

8

BotSE 2022 Preprint

We will also confront it with another mapping study in a wider scope [20]. There are
many opportunities to introduce more bots in MDD inside modelling environments
or in connection with runtime monitoring and data processing. The use of machine
learning techniques can also help to improve and ease the performance of various
diagnostics.

References
[1] Awele I Anyanhun and William W. Edmonson. Inter-satellite communication

MBSE design framework for small satellites. In Annual IEEE International
Systems Conference, SysCon, Montreal, QC, Canada, April 24-27, 2017, pages
1–7. IEEE, 2017.

[2] Jordi Cabot et al. Cognifying model-driven software engineering. In Software
Technologies: Applications and Foundations - STAF Collocated Workshops,
Marburg, Germany, July 17-21, Revised Selected Papers. Springer, 2017.

[3] Benoit Combemale and Manuel Wimmer. Towards a model-based devops
for cyber-physical systems. In Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment,
2020.

[4] Jeremiah Crane et al. Mbse for sustainment: A case study of the air force
launch and test range system (ltrs). In AIAA SPACE and Astronautics Forum
and Exposition, page 5302, 2017.

[5] Sébastien Dupont et al. Incremental common criteria certification processes
using devsecops practices. In IEEE European Symposium on Security and
Privacy Workshops, EuroS&P 2021, Sept., 2021.

[6] Joseph D’Ambrosio et al. An mbse approach for development of resilient
automated automotive systems. Systems, 7:1, 01 2019.

[7] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. An
empirical study of bots in software development: Characteristics and chal-
lenges from a practitioner’s perspective. In Proc. of the 28th ACM Joint
Meeting ESEC/FSE, 2020.

[8] Sanford Friedenthal and Christopher Oster. Architecting Spacecraft with
SysML: A Model-based Systems Engineering Approach. Createspace Indepen-
dent, 2017.

[9] Jokin García and Jordi Cabot. Stepwise adoption of continuous delivery in
model-driven engineering. In DEVOPS, 2018.

9

BotSE 2022 Preprint

[10] Jerome Hugues and Joe Yankel. From Model-Based Systems and Software
Engineering to ModDevOps. CMU Resarch Review, 2021.

[11] INCOSE. Systems engineering vision 2020. Seattle, WA: International Council
on Systems Engineering, 2007.

[12] Ramtin Jabbari, Nauman Ali, Kai Petersen, and Binish Tanveer. What is
devops?: A systematic mapping study on definitions and practices. pages
1–11, 05 2016.

[13] Viktor Kravchenko. An example of model-centric engineering environment
with Capella and CI/CD. Capella Days Conference, 2021.

[14] Carlene Lebeuf, Margaret-Anne D. Storey, and Alexey Zagalsky. Software
bots. IEEE Softw., 35(1):18–23, 2018.

[15] Azad M. Madni and Shatad Purohit. Economic analysis of model-based sys-
tems engineering. Systems, 7(1), 2019.

[16] Håvard Myrbakken and Ricardo Colomo-Palacios. Devsecops: a multivocal
literature review. In International Conference on Software Process Improve-
ment and Capability Determination, pages 17–29. Springer, 2017.

[17] Christophe Ponsard. Assessing IT Architecture Evolution using Enriched En-
terprise Architecture Models. BENEVOL19 (talk) http://soft.vub.ac.be/
benevol2019/papers/BENEVOL_2019_paper_17.pdf, 2019.

[18] Christophe Ponsard, Jeremy Grandclaudon, and Philippe Massonet. A goal-
driven approach for the joint deployment of safety and security standards for
operators of essential services. J. Softw. Evol. Process., 33(9), 2021.

[19] Andrey Sadovykh et al. Veridevops: Automated protection and prevention
to meet security requirements in devops. In Design, Automation & Test in
Europe Conference & Exhibition, DATE 2021, Grenoble, France, February
1-5. IEEE, 2021.

[20] Sivasurya Santhanam et al. Bots in software engineering: a systematic map-
ping study. PeerJ Computer Science, 8(e866), February 2022.

[21] Shriniwas Sathe. The Role of Bots in DevOps. https://devops.com/
the-role-of-bots-in-devops, 2019.

[22] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39(2):25–31, Feb 2006.

[23] Thomas Vosgien et al. A Federated Enterprise Architecture and MBSE Mod-
eling Framework for Integrating Design Automation into a Global PLM Ap-
proach. In 14th IFIP Int. Conf. on Product Lifecycle Management (PLM),
July 2017.

10

