
EasyChair Preprint
№ 7596

Type Checking Conditional Purpose-Based
Privacy Policies in the π-Calculus

Georgios V. Pitsiladis

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 17, 2022

Type Checking Conditional Purpose-Based
Privacy Policies in the π-calculus

Georgios V. Pitsiladis

National Technical University of Athens,
School of Applied Mathematical and Physical Science

Heroon Polytechniou 9, 15780 Zografou,Greece
g.v.pitsiladis@gmail.com

Abstract. This paper presents a formal system which builds upon the
privacy framework defined in [8], able to statically infer the read, write,
access, and disclose permissions needed by a given process of a variant
of the π-calculus and then check if they are consistent with a given
privacy policy. The syntax and semantics of the framework is extended
to support granting permissions after checking for condition satisfaction.
In addition, the proofs of the extended framework’s safety are outlined.

Keywords: privacy, privacy policies, type systems, π-calculus

1 Introduction and Related Work

This paper presents some work carried out in the context of a diploma thesis
[13] in the School of Applied Mathematical and Physical Science of the National
Technical University of Athens, supervised by Prof. Petros Stefaneas.

Privacy is a concept that has been studied –in some form or another– since
Aristotle, but has been acknowledged as a human right that needs protection
over the last century [3]. Although its precise nature has not been clarified,
it has been related to personal autonomy [17], the ability to maintain social
relations [14] and human dignity [4]; several cases of breaches of privacy have
been identified and classified [15]. In recent years, the advancement of technology
has posed a great threat to privacy [1, 16]. As a result, privacy enforcement in
the digital age needs relevant tools that protect user privacy and detect potential
or actual breaches.

A long-term goal that follows from these concerns is to have sound and ef-
ficient formal systems that can be used as easily as possible to reason about
privacy-related properties of information systems and enforce privacy require-
ments. A methodology towards such a system is described in [7] and some steps
to the direction it indicates are taken in [8] and its extensions [6]; they define
a framework (a privacy policy language, a variant of the π-calculus and a type
system) that can statically infer the read, write, access, and disclose permissions
needed by a given process of the π-calculus and then check if they are consistent
with a given privacy policy. This paper extends those results with the notion of

condition, which captures the intuition that some permission may be granted to
entities after checking that some condition is fulfilled (eg a person has a specific
age).

Much work has been done lately on the subject of formal methods on pri-
vacy, apart from the line of work of [8]. [5] defines a framework which uses type
checking and a custom variant of the π-calculus, in order to reason about data
on the Web, particularly the data expressed with standards such as RDF. [11]
defines a rather expressive formal system based on epistemic logic, tailored to
reasoning about the privacy policies of social networks.

Moreover, since privacy policies share some common properties with access
control policies, there have been attempts to extend access control policies, in
order to be usefully applicable for privacy purposes. Such an extension is P-
RBAC [9, 10, 2], where the notion of condition employed here stems from. It
also provides reasons for splitting Groups of [8] in separate notions of Users and
Roles.

2 The Privacy Policy Language

As in [6], privacy policies are defined over the sets of Basic Types D, which
represent the (sensitive) data of users, Purposes PU , Users U and Roles R. We

also use the set of Groups G def
= U ∪R.

Notation. Variables of D will be denoted by t, of PU by u, of U by U , R by R,
of G by G.

We will need a language for expressing conditions. The syntax of the one
presented here is identical to LC0 of Core P-RBAC [9], although the semantics
differ in some respects to be discussed later on. The condition language LC0

presupposes a set of context variables X . Each X ∈ X has a finite domain
of possible values DX , which is equipped with the operators =, ̸=. Conditions
(denoted by c) are expressed as follows:

1. If X ∈ X , op ∈ {=, ̸=}, u ∈ DX , then (X op v) is an atomic condition.
(X = v) is satisfied by v, while (X ̸= v) is satisfied by DX \ v.

2. If c1, c2 are conditions, c1 ∧ c2 is a condition. c1 ∧ c2 is satisfied when both
c1 and c2 are satisfied.

If X1, . . . , Xn (ordered by their names), are the context variables that appear
in c, then the set D(c) =

∏n
i=1 DXi

is called the domain of c. D(c) is naturally
split in two equivalence classes, D+(c) = {v ∈ D(c) | c is satisfied by v} (posi-
tive condition domain) and D−(c) = {u ∈ D | c is not satisfied by v} (negative
condition domain). Hereafter, each condition will be semantically identified with
its positive domain1.

1 It is trivial to check that the relation c1 ∼ c2
def⇔ D+(c1) = D+(c2) is an equivalence

relation, so each condition will hereafter represent its equivalence class under ∼.

The set of privacy-related Permissions Perm (its elements will be denoted by
the letter p) that can be granted to entities contains two kinds of elements: basic
or unconditional permissions and conditional permissions. Basic permissions are
the same as in [6]: read, write, access and discG; they give entities the right
to read, write, access and disclose data within group G. Conditional permissions
are formed by an unconditional permission, followed by the keyword “if” and a
condition in LC0.

Hierarchies, denoted by the letter H, supply partial orderings of groups and
assign them purposes. Their syntax is as follows:

H ::= ϵ | U : ũ[ϵ] | R : ũ[H̃] ,

where H̃ is a non-empty hierarchy set, ϵ is the empty hierarchy and we require
that R /∈ groups(H̃). In G : ũ[H̃], purposes ũ are also implicitly assigned to all
G ∈ groups(H̃). The function groups(H̃) collects all the groups that appear in a
set of hierarchies. We also define the functions root(H), which returns the root
of H as a set, and u → H, which adds the purpose u to the root of H.

Notation. We write G[] for G : ∅[ϵ], G : ũ for G : ũ[ϵ] and G[H̃] for G : ∅[H̃].

Privacy policies have the form

P ::= t ≫ H,π | P;P ,

with the operator ; being associative and commutative and π being a permission
assignment function: π : PU × G → ℘(Perm). We require that the same basic
type does not appear twice in a policy.

We now turn to define some useful ordering relations between elements of our
policies. We will use the functions vars(c), which collects all context variables
appearing in c, and c↾X̃ , which strips c of every atomic condition whose context

variable is not contained in X̃ (we require that vars(c) ∩ X̃ ̸= ∅).

Definition 1.

1. c1 ≤ c2
def⇔ vars(c2) ⊆ vars(c1) ∧ D+(c1↾vars(c2)) ⊆ D+(c2)

2. p1 ≤ p2
def⇔ p1 = p2 ∨ ((p1 = p if c) ∧ (p2 = p))

∨ ((p1 = p if c1) ∧ (p2 = p if c2) ∧ (c1 ≤ c2))

3. p̃1 ≲ p̃2
def⇔ ∀p ∈ p̃1∃p′ ∈ p̃2 : p ≤ p′

The above definition captures the intuition that we can make a condition stricter
by diminishing its positive domain or by making it depend on more context vari-
ables, we can make a permission stricter by adding a condition and we can make
a permission set stricter by removing a permission or by making a permission in
it stricter. A direct consequence of the definition is that ≤ is a partial order on
conditions and on permissions and that ≲ is a preorder on permission sets.

Note that in case p̃1 and p̃2 do not contain conditional permissions, we obtain
p̃1 ≲ p̃2 ⇔ p̃1 ⊆ p̃2. This, along with our definitions of privacy policy language

elements, implies that our privacy policy language is backwards compatible with
the one of [6].

Although LC0 comes directly from Core P-RBAC, there is a fundamental
difference in its semantics: in our framework, by virtue of ∃ in the definition of ≲,
permission p on data t will be granted to user or role G for purpose u under policy
t ≫ H,π(u,G) = {p if c1, p if c2} if either one of c1 and c2 holds (as if there was
a disjunction between them); on the contrary, the corresponding construct of
Core P-RBAC will grant the permission only if both c1 and c2 hold (as if there
was a conjunction between them) [9]. Our framework’s behaviour is similar to
that of Normalized Permission Assignment Sets in Conditional P-RBAC [10].
As noted in [9], this can lead to unintended consequences in uninformed use
of the framework (imagine a case where c1 = (UserAge ̸= under18) and c2 =
(UserrConsent = Yes); using c2, one may bypass the age check).

Example 1. Suppose we wish to examine the privacy policy of an online sales
company. The company is divided in three departments: administration, orders
and marketing. The orders department is divided in purchase and shipping de-
partments. Of course, the company needs to communicate with its clients for
sales, but it also communicates with other companies, in order to exchange data
about customers for marketing purposes; the second case happens only for cus-
tomers over 18 years old who have given their consent. Moreover, administration
periodically collects and statistically analyses sales and some customer data. We
will focus on a user named Bob and, in particular, on his address. The spe-
cial thing about Bob is that he has given his friend Alice permission to use his
address for her purchases.

We model the above assumptions as follows:
The context variables we need are Bob’s age and his consent with regard to

the exchange of his data with third parties for marketing purposes.

X = {Bob.Age,Bob.Consent} , DConsent = {Yes,No} ,
DAge = {0− 12, 13− 17, 18− 30, 31− 50, 51− 70, over70} .

Bob’s sensitive data is his address, so D = {Bob.Address} ∪ X .
The set of users is U = {Alice,Bob}, while for the set of roles we have the

departments of the company, the role of client, a role that unifies company and
clients and a role that unifies third parties and the marketing department.

R = {Company,OrderDept,AdminDept,PurchaseDept,ShippingDept,

MarketingDept,ThirdParty,Comp&Clients,Clients }

The intuitive relation of groups in G = U ∪R is illustrated in figure 1.
As for purposes, we have PU = {analysis, purchase,marketing}.
In order to specify a privacy policy, we will need permission assignment func-

tions, one for each element of D. Bob’s age can be accessed and read by the
purchase department to check if he is old enough to make purchases; it can be
accessed and read by the marketing department to check if his data may be

Comp&Clients ThirdParty

Company

OrderDptAdminDpt

PurchaseDpt ShippingDpt

MarketingDpt

Clients

Alice Bob

Fig. 1. The groups of G and their relation. A group connected with another group
above it is supposed to inherit its permissions.

forwarded to third parties for marketing purposes; it can finally be read and
accessed by administration for statistical analysis. Of course, Bob has complete
permissions on his own data. Same holds for Bob’s consent regarding the ex-
change of his data with third parties for marketing purposes, except that there
is no reason for the purchase department to have any permission on it.

πB.Age(u,G) =



{access, read} if (u,G) = (analysis,AdminDpt)

{access, read} if (u,G) = (purchase,PurchaseDpt)

{access, read} if (u,G) = (marketing,MarketingDpt){
read, write, access,
disc Comp&Clients

}
if G = Bob

πB.Consent(u,G) =


{access, read} if (u,G) = (marketing,MarketingDpt)

{access, read} if (u,G) = (analysis,AdminDpt){
read, write, access,
disc Comp&Clients

}
if G = Bob

During purchases, the purchase department can access Bob’s address and dis-
close it within the order department, provided that Bob is over 18 years old. The
shipping department can receive and read the address in order to send him the
products he ordered, but it is not obliged to check his age. The marketing de-
partment can access Bob’s address and disclose it to third parties for the purpose
of marketing, provided that Bob is over 18 years old and has given his consent to
do so. Alice can read, access and disclose Bob’s address within the company dur-
ing her purchases. Observe that administration enjoys no permission on Bob’s
address. We write c0 for (B.Age ̸= 0− 17) and c1 for (B.Consent = Yes).

πB.Address(u,G) =



{
access if c0,

discOderDpt if c0

}
if u = purchase,

G = PurchaseDpt

{access, read} if u = purchase,

G = ShippingDpt{
access if c0,

disc ThirdParty if c1 ∧ c0

}
if u = marketing,

G = MarketingDpt{
read, write, access,

disc Comp&Clients

}
if G = Bob

{read, access, disc Comp&Clients} if u = purchase,

G = Alice

Finally, we need to specify a hierarchy; the tree of figure 1 with Comp&Clients
as its root will suffice for that. We also specify the purposes towards which each
group can act.

H =Comp&Clients [

Clients : {purchase} [Alice[],Bob[]],
Company [

AdminDept : {analysis} ,
OrderDept : {purchase} [PurchaseDept[], ShippingDept[]],

MarketingDept : {marketing}]]

Thus, we obtain the following privacy policy:

PBob = B.Age ≫ H,πB.Age ; B.Consent ≫ H,πB.Consent

; B.Address ≫ H,πB.Address

3 The π-calculus

We will use the variant of π-calculus described in [6], with an extension to support
condition checking.

We assume there exist three basic sets of entities: an infinitely countable set
of Names N , ranged over by x, y, z, a, b, a set of basic types, a set of purposes
and a set of groups. We identify the sets of basic types, purposes and groups with
those defined in the previous section. We include each context variable domain as
a subset of N . We also define a set of Types T , ranged over by T ; it contains all
basic types, all context variables and each element of the form G[T]. Each name
is mapped to a type (explicitly or implicitly), something that restricts usage of
the channel represented by the name: in particular, a name of type G[T] can be

used by processes that “belong” to group G (in a sense that will be clear later)
to exchange messages of type T .

Programmes of π-calculus are defined in two levels: processes (denoted by P)
and systems (denoted by S):

P :: = 0 | P1 | P2 | !P | (ν x : T)P | x(y : T).P

| x ⟨y⟩ .P | [x = y](P1;P2) | Jx = yKP | Jx ̸= yKP
S ::= 0 | S1 | S2 | (ν x : T)S | (ν R)S | (ν G)P ⟨u⟩

The processes 0, P1 | P2, !P , (ν x : T)P , x(y : T).P and x ⟨y⟩ .P are standard
constructs of π-calculus; we require that y in x(y : T).P and x in (ν x : T)P ,
(ν x : T)S are not context variable values, because we think of context variable
values as global constants of our systems. The process [x = y](P1;P2) checks
if the names x and y, with y being a context variable value, are equal; if so,
it proceeds as P1, else it proceeds as P2. The processes Jx = yKP , Jx ̸= yKP ,
with y being a context variable value, assume there has been a condition check
and continue as P . These two constructs are intended to be used only by the
framework itself, acting as a “tag” that a condition check –which otherwise would
have been forgotten– has taken place. The systems 0, (ν x : T)S, S1 | S2 act like
the respective processes, albeit at the level of systems. The system (ν G)P ⟨u⟩
bindsG and declares that a process is running on behalf of group (user or system)
G for the purpose u. Finally, the system (ν R)S binds R and declares that the
system is running on behalf of an entity that belongs to role R.

Notation. For brevity, [x = y]P
def≡ [x = y](P ;0) and [x ̸= y]P

def≡ [x = y](0;P).

Notation. We write fn(P) and fn(S) for the names free in a process P and a
system S, bn(P) and bn(S) for the names bound in a process P and a system
S, fg(T), fg(P) and fg(S) for the groups bound in a type T , a process P and a
system S. Note that free groups of processes occur only within types and context
variable values can never be bound.

As in [6], we use labelled transition semantics. We first define labels (denoted
by l) as l ::= τ | x(y : T) | x ⟨y⟩ | (ν y : T)x̄ ⟨y⟩, where τ corresponds
to the internal action, x(y : T) to input, x ⟨y⟩ to output and (ν y : T)x ⟨y⟩ to
restricted output. The functions fn(l) and bn(l) collect the free and bound names
of label l; all names in labels are free, except for the bound y in labels of the
form (ν y : T)x ⟨y⟩. We also define the relation dual between labels:

dual(l1, l2)
def⇔ {l1, l2} = {x(y : T), x̄ ⟨y⟩} ∨ {l1, l2} = {x(y : T), (ν y : T)x̄ ⟨y⟩} .

The labelled transition semantics is presented in figure 2, using the meta-
notation F ::= P | S. The symbol (ν bn(l1) ∪ bn(l2)) in (??) is to be read as
follows (ϵ being the empty string):

(ν bn(l1) ∪ bn(l2)) ≡

{
ϵ if {l1, l2} = {x(y : T), x̄ ⟨y⟩}
(ν y : T) if {l1, l2} = {x(y : T), (ν y : T)x̄ ⟨y⟩}

.

x(y:T).P
x(z:T)−−−−→ P {z/y} (In) x ⟨y⟩ .P x̄⟨y⟩−−−→ P (Out)

P
l−→ P ′

!P
l−→ P ′ |!P

(Repl)
P

l−→ P ′ op ∈ {=, ̸=}Jx op yKP l−→ Jx op yKP ′
(CondX)

P
l−→ P ′

[x = x](P, P ′′)
l−→ Jx = xKP ′

(CondT)
P

l−→ P ′ x, y ∈ DX x ̸= y

[x = y](P ′′, P)
l−→ Jx ̸= yKP ′

(CondF)

F1
l−→ F ′

1 bn(l) ∩ fn(F2) = ∅

F1 | F2
l−→ F ′

1 | F2

(ParL)
F2

l−→ F ′
2 bn(l) ∩ fn(F1) = ∅

F1 | F2
l−→ F1 | F ′

2

(ParR)

F
l−→ F ′ x /∈ fn(l)

(ν x : T)F
l−→ (ν x : T)F ′

(ResN)
F

x̄⟨y⟩−−−→ F ′

(ν y : T)F
(ν y:T)x̄⟨y⟩−−−−−−−→ F ′

(Scope)

P
l−→ P ′

(ν G)P ⟨u⟩ l−→ (ν G)P ′ ⟨u⟩
(ResGP)

S
l−→ S′

(ν R)S
l−→ (ν R)S′

(ResGS)

F1
l1−→ F ′

1 F2
l2−→ F ′

2 dual(l1, l2)

F1 | F2
τ−→ (ν bn(l1) ∪ bn(l2))(F

′
1 | F ′

2)
(Com)

F1 ≡α F2 F2
l−→ F

F1
l−→ F

(Alpha)

Fig. 2. The rules of labelled transition semantics.

Example 2. We build on example 1 by giving examples of π-calculus systems
that may run in the company’s environment.

1. During a purchase, system SAlice runs in Alice’s browser; it discloses Bob’s
address to the company. At the same time, systems SPurchaseDpt, running
on behalf of the purchase department, and SShippingDpt, running on behalf
of the shipping department, are waiting to receive the address, process it
accordingly and then restart: SPurchaseDpt checks if Bob is an adult and, if so,
forwards the address; SShippingDpt receives and reads it in order to finalise the
purchase and proceed to shipping. T1 stands for Comp&Clients[B.Address].

SAlice = (ν Alice)sendaddr ⟨addr⟩ .0 ⟨purchase⟩
SPurchaseDpt = (ν PurchaseDpt)![bobage ̸= 0− 17]sendaddr(addr : T1).

order ⟨addr⟩ .0 ⟨purchase⟩
SShippingDpt = (ν ShippingDpt)!order(addr : T1).addr(a : B.Address).0 ⟨purchase⟩

S1 = (ν Comp&Clients)(ν sendaddr : Comp&Clients[T1])(

(ν Clients)SAlice | ((ν Company)(νOderDpt)

(ν order : OrderDpt[T1])(SPurchaseDpt | SShippingDpt)))

2. The system S2 runs on behalf of the marketing department for marketing
purposes. It checks if Bob is an adult, reads the value of his consent and
forwards his address to a third party. Note that it does not stop if Bob has
declared that he refuses to share his data with third parties –we expect type

checking to detect this. T2 stands for ThirdParty[ThirdParty[B.Address]].

S2 = (ν ThirdParty)(ν Comp&Clients)(ν sendtotp : T2)(ν Company)

(νMarketingDpt)[bobage ̸= 0− 17]readc(cons : B.Consent).

(ν addr : ThirdParty[B.Address])sendtotp ⟨addr⟩ .0 ⟨analysis⟩

4 The Type System

The type system aims to infer the permissions needed by a process or system
of the π-calculus. Of course, when inferred, these permissions can –and will–
be compared with privacy policies for compliance. What follows is an extension
of the type system of [6] with rules for condition checking; type checking is
performed via Γ -Environments and infers ∆-Environments for processes and
Θ-Interfaces for systems.

Γ -Environments (denoted by Γ) store information concerning the groups
“known” to a system and the mapping of names to types in processes and sys-
tems. Their syntax is as follows:

Γ ::= ∅ | x : T | G | Γ1 · Γ2 ,

with the operator · being associative and commutative; we require that each
name and each group appears in a Γ -Environment at most once. We define the
function dom(Γ), which collects all the names and groups appearing in Γ and
we write Γ ⊆ Γ ′ when dom(Γ) ⊆ dom(Γ ′) and Γ , Γ ′ map their common names
to the same types.

∆-Environments (denoted by ∆) store information concerning the permis-
sions exercised on basic types in a process. Their syntax is as follows:

∆ ::= ∅ | t : p̃ | ∆1 ·∆2 ,

with the operator · being associative and commutative; we require that each
basic type appears in a ∆-Environment at most once.

Θ-Interfaces (denoted by Θ) store information concerning the basic types
present in a system; for each basic type, they store tuples consisting of a) the
groups some entity belongs to, along with a purpose towards which it acts, b) a
permission set. Their syntax is as follows:

Θ ::= ∅ | t ≫
⟨
H↓, p̃

⟩
| Θ1 ; Θ2 ,

with the operator ; being associative and commutative. H↓ is a special type of
linear hierarchy called Interface Hierarchy: H↓ ::= G[u] | G[H↓]. We define
the functions dom(Θ), which collects all the basic types appearing in Θ, and
purpose(H↓), which returns the purpose in H↓.

We need to define some auxiliary functions:

Definition 2.

1. c⊕ p =

{
p′ if c ∧ c′ if p = p′ if c′

p if c otherwise
, c⊕ p̃ =

∪
p∈p̃

{c⊕ p}

2. c⊕∆ =


(c⊕∆1) · (c⊕∆2) if ∆ = ∆1 ·∆2

t : (c⊕ p̃) if ∆ = t : p̃

∅ otherwise

3. ∆r(T) =


t : read if T = t

t : access if T = G[t]

∅ otherwise

, ∆w(T) =


t : write if T = G[t]

t : discG if T = G[G′[t]]

∅ otherwise

4. ∆1⊎∆2 = {t : p̃1 ∪ p̃2 | t : p̃1 ∈ ∆1, t : p̃2 ∈ ∆2}, where we suppose for brevity
that t : ∅ ∈ ∆ if there is no other p̃ such that t : p̃ ∈ ∆

5. G[u]⊙∆ =


(G[u]⊙∆1); (G[u]⊙∆2) if ∆ = ∆1 ·∆2

t ≫ ⟨G[u], p̃⟩ if ∆ = t : p̃

∅ otherwise

G⊙Θ =


(G⊙Θ1); (G⊙Θ2) if Θ = Θ1;Θ2

t ≫
⟨
G[H↓], p̃

⟩
if Θ = t ≫

⟨
H↓, p̃

⟩
∅ otherwise

We use three kinds of typing judgements: Γ ⊢ x ▷ T states that x has type
T under Γ ; Γ ⊢ P ▷ ∆ states that P is well-typed under Γ and produces ∆;
Γ ⊢ S ▷ Θ states that S is well-typed under Γ and produces Θ. Type checking
is performed according to the rules in figure 3.

fg(T) ⊆ dom(Γ)

Γ · x : T ⊢ x ▷ T
(Name)

Γ ⊢ P ▷ ∆
Γ ⊢!P ▷ ∆

(Rep)

Γ · y : T ⊢ P ▷ ∆ Γ ⊢ x ▷ G[T]

Γ ⊢ x(y : T).P ▷ ∆ ⊎∆r(T)
(In)

Γ ⊢ P ▷ ∆ Γ ⊢ x ▷ G[T] Γ ⊢ y ▷ T

Γ ⊢ x̄ ⟨y⟩ .P ▷ ∆ ⊎∆w(G[T])
(Out)

Γ ⊢ P1 ▷ ∆1 Γ ⊢ P2 ▷ ∆2

Γ ⊢ P1 | P2 ▷ ∆1 ⊎∆2
(ParP)

Γ ⊢ S1 ▷ Θ1 Γ ⊢ S2 ▷ Θ2

Γ ⊢ S1 | S2 ▷ Θ1;Θ2
(ParS)

Γ · x : T ⊢ P ▷ ∆
Γ ⊢ (ν x : T)P ▷ ∆

(ResNP)
Γ · x : T ⊢ S ▷ Θ
Γ ⊢ (ν x : T)S ▷ Θ

(ResNS)

Γ ·G ⊢ P ▷ ∆
Γ ⊢ (ν G)P ⟨u⟩ ▷ G[u]⊙∆

(ResGP)
Γ ·R ⊢ S ▷ Θ

Γ ⊢ (ν R)S ▷ R⊙Θ
(ResGS)

Γ ⊢ P ▷ ∆ Γ ⊢ x ▷ X Γ ⊢ y ▷ X op ∈ {=, ̸=}
Γ ⊢ Jx op yKP ▷ (X op y)⊕∆

(CondA)

Γ ⊢ Jx = yKP1 ▷ ∆1 Γ ⊢ Jx ̸= yKP2 ▷ ∆2

Γ ⊢ [x = y](P1;P2) ▷ ∆1 ⊎∆2

(CondB)

Γ ⊢ 0 ▷ ∅ (Nil)

Fig. 3. The rules of the type system.

Rules (CondA) and (CondB) can be combined to yield rule (Cond):

Γ ⊢ P1 ▷ ∆1 Γ ⊢ P2 ▷ ∆2 Γ ⊢ x ▷ X Γ ⊢ y ▷ X

Γ ⊢ [x = y](P1;P2) ▷ ((X = y)⊕∆1) ⊎ ((X ̸= y)⊕∆2)
(Cond)

Now that we can infer the permissions needed by a system of the π-calculus,
it is natural to wish to test them for compliance with a privacy policy. We say
that a Θ-Interface Θ satisfies a privacy policy P (notation: P ⊨ Θ), if

∀t ≫
⟨
H↓, p̃

⟩
∈ Θ ∃t ≫ H,π ∈ P : p̃ ≲ permsπ(H, groups(H↓), purpose(H↓)) ,

where

permsπ(H, G̃, u) =



π(u,G) ∪

 ∪
Hi∈H̃

root(Hi)⊆G̃

permsπ(u → Hi, groups(Hi) ∩ G̃, u)


if H = G : ũ[H̃], G ∈ G̃, u ∈ ũ∪

Hi∈H̃
root(Hi)⊆G̃

permsπ(Hi, groups(Hi) ∩ G̃, u)

if H = G : ũ[H̃], G ∈ G̃, u /∈ ũ

∅ if G̃ = ∅ or H = ϵ

⊥ otherwise

The function permsπ(H, G̃, u) finds all the paths stemming from the root of the
hierarchy H that contain groups from G̃. If the group at some point in the path
is permitted to act towards purpose u, the permissions of π(u,G) are added to
the resulting permission set; of course, in this case, all following points in its
path(s) –being lower in the hierarchy– are associated with u.

We say that the system S is compliant with, or conforms to, or respects, a
privacy policy P (notation: P ⊢ S) if there are Γ and Θ such that Γ ⊢ S ▷ Θ
and P ⊨ Θ.

Example 3. We build on example 2 by giving the results of type checking for the
systems presented there.

1. Due to space constraints, we will only show a small portion of the typing
judgements: the ones concerning SPurchaseDpt. We use the Γ -Environments

Γ1 = 0− 17 : B.Age · bobage : B.Age · address : T1

ΓPD = Γ1 · sendaddr : Comp&Clients[T1] · Comp&Clients · Company

·OrderDpt · order : OrderDpt[T1] · PurchaseDpt

Γ ′
PD = ΓPD · PurchaseDpt .

and obtain

Γ ′
PD · addr : T1 ⊢ 0 ▷ ∅ (Nil)

Γ ′
PD · addr : T1 ⊢ order ⟨addr⟩ .0 ▷ B.Address : {discOrderDpt} (??)

Γ ′
PD ⊢ sendaddr(addr : T1).order ⟨addr⟩ .0

▷ B.Address : {discOrderDpt, access} (??)

Γ ′
PD ⊢ [bobage ̸= 0− 17]sendaddr(addr : T1).order ⟨addr⟩ .0

▷ B.Address : {discOrderDpt if c0, access if c0} (Cond)

Γ ′
PD ⊢![bobage ̸= 0− 17]sendaddr(addr : T1).order ⟨addr⟩ .0

▷ B.Address : {discOrderDpt if c0, access if c0} (??)

ΓPD ⊢ SPurchaseDpt ▷ B.Address ≫ ⟨ PuchaseDpt[purchase],

{discOrderDpt if c0, access if c0} ⟩
(??)

Using the type checking rules, we can continue this process and infer that
Γ1 ⊢ S1 ▷ Θ1, with

Θ1 = B.Address ≫ ⟨Comp&Clients[Clients[Alice[purchase]]], {disc Comp&Clients}⟩
;B.Address ≫ ⟨Comp&Clients[Company[OrderDpt[PurchaseDpt[purchase]]]],

{access if c0, discOrderDpt if c0}⟩
;B.Address ≫ ⟨Comp&Clients[Company[OrderDpt[ShippingDpt[purchase]]]],

{access, read}⟩ .

Then, it is easy to see that PBob ⊨ Θ1, which means that S1 respects Bob’s
privacy.

2. In a similar fashion to above, we can infer that Γ2 ⊢ S2 ▷ Θ2, with

Γ2 = age : B.Age · 0− 17 : B.Age · readc : Comp&Clients[B.Consent],

Θ2 = B.Address ≫ ⟨Comp&Clients[ThirdParty[Company[MarketingDpt[

marketing]]]], {disc ThirdParty if c0}⟩
; B.Consent ≫ ⟨Comp&Clients[ThirdParty[Company[MarketingDpt[

marketing]]]], {read if c0}⟩

We have

permsπB.Address
(H, {Comp&Clients,ThirdParty,Company,MarketingDpt} ,
marketing) = {access if c0, disc ThirdParty if c0 ∧ c1}

and {disc ThirdParty if c0} ≴ {access if c0, disc ThirdParty if c0 ∧ c1},
so we conclude that S2 does not conform to PBob, as expected.

5 Safety Proofs

By safety of our typing system we mean that when a system of the π-calculus
is judged to respect a privacy policy, it does not actually try to exercise some

permission not allowed by the policy; we also mean that the type system and the
π-calculus semantics are compatible, ie a system that has been proved compliant
by type checking will continue to be so after an arbitrary number of transitions.
We prove our framework’s safety as done in [8]. We only state propositions and
give hints on their proofs; the proofs themselves can be found in [13].

Definition 3.

1. ∆1 ≲ ∆2
def⇔ ∀t : p̃ ∈ ∆1∃t : p̃′ ∈ ∆2 : p̃ ≲ p̃′

2. Θ1 ≲ Θ2
def⇔ dom(Θ1) = dom(Θ2)

∧ ∀t ≫
⟨
H↓, p̃

⟩
∈ Θ1∃t ≫

⟨
H↓, p̃′

⟩
∈ Θ2 : p̃ ≲ p̃′

It is trivial to check that the relations defined above are preorders and that the
auxiliary functions of definition 2 respect the relations of definitions 1 and 3.
Proposition 1 is a direct consequence of the definitions of ≲ and ⊨:

Proposition 1. P ⊨ Θ1 ∧ Θ2 ≲ Θ1 ⇒ P ⊨ Θ2

Notation. For the rest of this section, we use the meta-notation F ::= P | S
and Ξ ::= ∆ | Θ.

Lemma 1. If F is well-typed under Γ , then fn(F) ∪ fg(F) ⊆ dom(Γ).

Proof. By inspection of the typing rules.

Lemma 2. If x is not a context variable value,

Γ · x : T ⊢ F ▷ Ξ ⇒ Γ · y : T ⊢ F {y/x} ▷ Ξ

Proof. The case of x, y /∈ bn(F) can be proved by induction on the structure of
F . The general case follows from the next corollary.

Corollary 1. Type checking respects a-equivalence, ie

Γ ⊢ F1 ▷ Ξ ∧ F1 ≡α F2 ⇒ Γ ⊢ F2 ▷ Ξ

Proof. By induction on the structure of F , using the case of x, y /∈ bn(F) above.

The following two lemmas can be proved by induction on the structure of
the process/system and by inspection of rule (??).

Lemma 3 (Strengthening). Γ · z : T ⊢ x ▷ T ∧ z ̸= x ⇒ Γ ⊢ x ▷ T
and also Γ · z : T ⊢ F ▷ Ξ ∧ z /∈ fn(F) ⇒ Γ ⊢ F ▷ Ξ

Lemma 4 (Weakening). Γ ⊢ x ▷ T ∧ y /∈ dom(Γ) ⇒ Γ · y : T ⊢ x ▷ T
and also Γ ⊢ F ▷ Ξ ∧ y /∈ dom(Γ) ⇒ Γ · y : T ⊢ F ▷ Ξ

Theorem 1.

Γ ⊢ F1 ▷ Ξ ∧ F1
l−→ F2 ⇒ Γ ′ ⊢ F2 ▷ Ξ

′ ∧ Ξ ′ ≲ Ξ ∧ Γ ⊆ Γ ′

Proof. By induction on transition rules, using the lemmas above and corollary 1;
observe that dom(Γ ′) \ dom(Γ) ⊆ fn(F2) \ fn(F1).

The fact that a system is deemed compliant to a policy by the type sys-
tem does not by itself imply something about its safety. We need to formalise
what it means to perform a prohibited action. This is achieved by the following
definition:

Definition 4.

1. Consider a privacy policy P, a Γ -Environment Γ and a system

S ≡ (ν G1)(ν x1 : T 1) (· · · ((ν Gn)(ν xn : T n)Jy op zKP ⟨u⟩ | P ′ ⟨u′⟩) · · · | S1) ,

with the notation (ν x : T) standing for zero or finite (ν xi : Ti) and Jy op zK
standing for zero or finite Jyj opj zjK.
S will be called an error with respect to P and Γ (notation: errorP,Γ (S)), if
one of the following holds, where p̃ =

∪n
i=1 π(u,Gi) and Γ ′ = Γ ·G ·xi : T i:

(a) S is not well-typed under Γ , ie there is no Θ such that Γ ⊢ S ▷ Θ.
(b) There are t ∈ D and context variables Y such that P = t ≫ H,π;P ′,

Γ ′ ⊢ y ▷ Y , P = x(y : t).P ′′ and {read if (Y op z)} ̸≲ p̃.
(c) There are t ∈ D and context variables Y such that P = t ≫ H,π;P ′,

Γ ′ ⊢ y ▷ Y , Γ ⊢ y ▷ t, P = x ⟨y⟩ .P ′′ and {write if (Y op z)} ≴ p̃.
(d) There are t ∈ D and context variables Y such that P = t ≫ H,π;P ′,

Γ ′ ⊢ y ▷ Y , P = x(y : G[t]).P ′′ and {access if (Y op z)} ̸≲ p̃.
(e) There are t ∈ D and context variables Y such that P = t ≫ H,π;P ′,

Γ ′ ⊢ y ▷Y , Γ ⊢ x ▷G[G′[t]], P = x ⟨y⟩ .P ′′, {discG if (Y op z)} ̸≲ p̃.
2. Consider a privacy policy P and a system S. S will be called an error with

respect to P (notation: errorP(S)), if for all Γ -Environments Γ we have
errorP,Γ (S).

Proposition 2. errorP,Γ (S) ∧ Γ ⊢ S ▷ Θ ⇒ P ̸⊨ Θ

Proof. By inspecting the cases (1b), (1c), (1d) (1e) of the definition of errorP,Γ (S).

Theorem 2. P ⊢ S ∧ S
l−→
∗
S′ ⇒ ¬errorP(S′)

Proof. Follows from theorem 1 and propositions 1 and 2.

6 Future Work

We have managed to extend the framework of [8] with the notion of condition,
keeping it backwards compatible with its version of [6]. In the future, we are plan-
ning to work in the direction of obtaining a provingly correct efficient executable
implementation of our framework; this can aid in i) applying it to usecases at
greater scale, which can assist in spotting difficulties in their widespread use,
and ii) automating the proofs of its safety as far as possible, which can assist
in easily extending it while still possessing such proofs. Some first steps in this

direction are presented in [12]. Moreover, we want to make policies more realistic
by adding obligations and giving a hierarchical structure to purposes and data,
in the spirit of Universal P-RBAC [10].

As noted in [7], the computational model of the π-calculus may need to be
replaced by something more agile that can model cases where data is internally
processed (eg aggregated) by entities or when entities need to change their pri-
vacy properties dynamically.

References

1. Berman, J., Mulligan, D.: Privacy in the digital age: Work in progress. Nova L.
Rev. 23, 551 (1998)

2. Byun, J.W., Bertino, E., Li, N.: Purpose based access control of complex data
for privacy protection. In: Proceedings of the tenth ACM symposium on Access
control models and technologies. pp. 102–110. ACM (2005)

3. DeCew, J.: Privacy. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.
Spring 2015 edn. (2015)

4. Floridi, L.: On human dignity as a foundation for the right to privacy. Philosophy
& Technology pp. 1–6 (2016)

5. Jakšic, S., Pantovic, J., Ghilezan, S.: Linked data privacy. Mathematical Structures
in Computer Science pp. 1–21 (2015)

6. Kokkinofta, E., Philippou, A.: Type checking purpose-based privacy policies in the
π-calculus. In: International Workshop on Web Services and Formal Methods. pp.
122–142. Springer (2014)

7. Kouzapas, D., Philippou, A.: A methodology for a formal approach in privacy, to
appear

8. Kouzapas, D., Philippou, A.: Type checking privacy policies in the π-calculus. In:
International Conference on Formal Techniques for Distributed Objects, Compo-
nents, and Systems. pp. 181–195. Springer (2015)

9. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.M., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Transactions on Information and
System Security (TISSEC) 13(3), 24 (2010)

10. Ni, Q., Lin, D., Bertino, E., Lobo, J.: Conditional privacy-aware role based access
control. In: European Symposium on Research in Computer Security. pp. 72–89.
Springer (2007)

11. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks.
In: International Conference on Software Engineering and Formal Methods. pp.
378–392. Springer (2014)

12. Pitsiladis, G.V.: Implementing type checking of π-calculus processes for privacy in
maude, submitted

13. Pitsiladis, G.V.: Type checking privacy policies in the π-calculus and its executable
implementation in Maude. Diploma thesis, National Technical University of Athens
(2016), supervised by Stefaneas P., in Greek

14. Rachels, J.: Why privacy is important. Philosophy & Public Affairs pp. 323–333
(1975)

15. Solove, D.J.: A taxonomy of privacy. University of Pennsylvania law review pp.
477–564 (2006)

16. Tene, O.: Privacy: The new generations. International Data Privacy Law 1(1),
15–27 (2011)

17. Warren, S.D., Brandeis, L.D.: The right to privacy. Harvard law review pp. 193–220
(1890)

