ﬁ EasyChair Preprint

Ne 13938

A Novel Efficient Maximum Searching Algorithm
in ReRAM Array

Wenging Wang, Ziming Chen, Quan Deng and Liang Fang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 11, 2024

A Novel Efficient Maximum Searching Algorithm
in ReRAM Array

Wenqing Wang” @, Ziming Chen”, Quan Deng™, and Liang Fang

National University of Defense Technology, Changsha, 410073, China
{wangwenqing, chenzimingl8, dengquanl2, lfang}@nudt.edu.cn

Abstract. Computing in Memory (CIM) is a promising architecture
that accelerates applications by eliminating the data movement between
memory and processing units. Memristor-Aided Logic (MAGIC) offers
massive parallelism, flexible computing, and non-volatility. We propose a
novel algorithm to find the maximum value in a set of numbers, leverag-
ing the MAGIC NOR gate and the parallel structure of memristor arrays.
Our experiment result shows that the proposed algorithm is 3.2x faster
than AritPIM for finding the maximum of 8-bit value in 512 numbers.
Additionally, this algorithm can accelerate the accumulation of floating-
point vector multiplication.

Keywords: Maximum - MAGIC NOR gate - Memristor array.

1 Introduction

Emerging applications, such as Machine Learning, Large Language Models (LLM)
, and Graphic Processing are developing rapidly, requiring both significant com-
putational and memory resources. Computing in Memory (CIM) is a promising
architecture to accelerate these applications by eliminating the data movement
between memory and processing units. Memristor-Aided Logic (MAGIC) NOR
[1] achieves massive parallelism, flexible computing, and non-volatility. Finding
the maximum in a set of numbers is a common computational problem. For ex-
ample, we need to find the maximum exponent in a set of floating-point numbers
in the floating-point accumulation process. We propose a novel algorithm that
utilizes the MAGIC NOR gate and the parallel structure of memristor arrays
to find the maximum in a set of numbers. Our experiment result shows that
the proposed algorithm is 3.2x faster than the traditional tree-based parallel
comparison method for finding the maximum of 8-bit value in 512 numbers.

- Wenging Wang and Ziming Chen contribute equally to this work.
® Quan Deng is the corresponding author.

Supported by NSFC-62172155, U22A2027,NSFC-62202481, ZK22-05 and 22-TDRCJH-
02-006.

https://orcid.org/0000-0002-0990-0588

2 W. Wang et al.

(o]l JL] el L] dxe]l L]
S I Y I e =1
\\\\ \'\':

e I e I

@ Parallel compute K, = NOR(X ¢, Xzc... Ximc), ¢ €(1, 1)
@) Repeat parallel compute n times, ffromnto 1

Xge = KXo + NOT(K)* XX, ¢ €(1, 1), q €(1, m)
®) Parallel compute M, = OR(Xi¢,Xsc... Xme), ¢ €(1, n)

Fig.1. The proposed algorithm to find the maximum number computation in the
512x512 ReRAM array. Red represents row transistors and green represents column
transistors.

2 Maximum Searching Algorithm

The conventional way to find the maximum in a set of numbers is to compare
numbers one by one. We propose a novel algorithm to find the maximum number
that leverages the ReRAM array’s logic function and parallelism. The key idea is
to compare numbers from the most significant bit (MSB) to the least significant
bit (LSB). If there is one and only one number whose MSB is 1, this number is
the maximum. Then, set others to 0. If there is more than one number with MSB
being 1, set the other numbers with 0 in MSB to 0. Then, compare the next bit
among the remaining numbers. If MSBs of all numbers are 0, compare the next
bit. The next bit is compared in the same way as MSB. After comparing from
MSB to the LSB, only the maximum number remains.

The proposed algorithm to find the maximum number computing process in
a 512x512 ReRAM array is illustrated in Fig.1. Each array row is divided into
32 partitions by row transistors, and each column is divided into 64 partitions by
column transistors. The numbers are stored row by row in the ReRAM array with
each bit occupying a separate partition within each row. Firstly, compute the
NOR of all the same position bit of these numbers, obtain the value K¢, where f
represents the bit position; Secondly, for each bit X . (representing number X,
in position ¢ bit) of these numbers, the operation K;Xgc + NOT(K;)XgrXqc is
performed. Ky is 1 indicating all numbers in the f position are 0. The value of
each bit remains unchanged. Ky is 0, indicating that there is at least one number
in the f position that is 1. If X, is 1 (indicating number X, in position f bit is
1), the value of this number remains unchanged. If X,s is 0 (indicating number
X4 in position f bit is 0), then the number X, will be set to 0. Following the
computation from the highest position to the lowest position, all numbers will
be 0 except the largest one remains. Finally, perform an OR operation on all bits
at the same position across these numbers, and the resulting value will indicate
the largest number. The original X, is still retained without overwriting. Due

A Novel Efficient Maximum Searching Algorithm in ReRAM Array 3

®
INOR(X; to Xy)

NOR (8 inputs)

E.
EEEEEEEE £

Partial OR

Fig. 2. Multiple inputs of NOR operation within a column.

to the NOR being complete logic, the above logic function can be combined with
NOR logic.

The computing process of finding the maximum number in the array involves
a multitude of inputs NOR/OR operations in columuns, as well as broadcast, and
parallel computing of logic functions in partitions. The broadcast and parallel
computing method in partitions is detailed in MultPIM[3]. Regarding multiple
inputs NOR operations, ideally, the inputs could number in the hundreds, as
described in [1]. However, considering practical circuit constraints, we implement
NOR operations with up to 4 inputs to parallelize the computation of a column’s
NOR value. The process of parallel computing multiple inputs NOR at columns
is shown in Fig.2. The initial state is each bit within each partition is in the same
columns. Firstly, a bit is shifted to another column by performing a double NOT
operation to create space for the NOR operation within the column. Secondly,
the result of the partial NOR operation is moved to another column by a NOT
operation, and the result is a partial OR. Thirdly, the value of the partial OR
is NOR-ed with the shifted bits to obtain the result of an 8-input NOR. Since
the array is column-partitioned, we can parallelize these operations. Fourthly,
using the partial result succeeds parallel NOR operation, we obtain the NOR, of
position q bit. All positions NOR of the entire column value can be computed in
parallel. The operation of multiple inputs of OR is the NOT of multiple inputs
of NOR operation. In addition, since this method destroys the column data, if
the column data is needed, it must first be copied to another column.

To demonstrate the efficiency of the proposed algorithm for determining the
maximum of group numbers, we compare it with the state-of-the-art AritPIM
bit-parallel subtraction approach [2], which is inspired by parallel-prefix carry-
look ahead adders with a tree-based parallelism structure. We identify the max-
imum of 8-bit values in 512 numbers using the proposed algorithm, which is 3.2
x faster than the state-of-the-art AritPIM bit-parallel subtraction approach [2]
with a tree-based parallelism structure. This speedup is due to the algorithm
taking full advantage of array parallelism and logical capabilities. Fig.3 shows
the latency of floating-point vector multiplication by the naive design (AritPIM

4 W. Wang et al.

144 1367 I Naive
[Our design

Latency (us)
w

EN

FP32S12 FP32256 FP32_128 FPI6_SI2 FPI6_25 FPI6_128 BFI6_S12 BF16_25 BF16_128

Fig. 3. The latency of Floating-Point Vector Multiplication by naive design (AritPIM
bit-parallel subtraction approach with a tree-based parallelism structure) and our de-
sign.

bit-parallel subtraction approach with a tree-based parallelism structure) and
our design with the switching latency of the memristor set to 1ns [4].

3 Conclusion

We present a novel algorithm optimized for memristor array operations to find
the maximum number in a set of numbers efficiently. This algorithm leverages
inherent parallelism and logical capabilities of the memristor array to achieve
a significant speedup over traditional methods. The experiment result shows
that the proposed algorithm is 3.2x faster than the state-of-the-art AritPIM
bit-parallel subtraction approach when identifying the maximum 8-bit value in
512 numbers. This work finding the maximum in a set of numbers can accelerate
the floating-point accumulation process, as it requires determining the maximum
exponent in the set of floating-point numbers.

References

1. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G.,
Kolodny, A., Weiser, U.C.: Magic—memristor-aided logic. IEEE Transactions on
Circuits and Systems II: Express Briefs 61(11), 895-899 (2014)

2. Leitersdorf, O., Leitersdorf, D., Gal, J., Dahan, M., Ronen, R., Kvatinsky, S.: Arit-
pim: High-throughput in-memory arithmetic. IEEE Transactions on Emerging Top-
ics in Computing 11 (2023)

3. Leitersdorf, O., Ronen, R., Kvatinsky, S.: Multpim: Fast stateful multiplication
for processing-in-memory. IEEE Transactions on Circuits and Systems II: Express
Briefs 69(3), 1647-1651 (2022). https://doi.org/10.1109/TCSII.2021.3118215

4. Truong, M.S.Q., Chen, E., Su, D., Shen, L., Glass, A., Carley, L.R., Bain, J.A.,
Ghose, S.: Racer: Bit-pipelined processing using resistive memory. MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (2021), https:
//api.semanticscholar.org/CorpusID:239011568

https://doi.org/10.1109/TCSII.2021.3118215
https://doi.org/10.1109/TCSII.2021.3118215
https://api.semanticscholar.org/CorpusID:239011568
https://api.semanticscholar.org/CorpusID:239011568

	A Novel Efficient Maximum Searching Algorithm in ReRAM Array

