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Abstract— Predicting greenhouse gas emissions is a crucial 

effort in mitigating climate change and reducing the harmful 
effects of these gases. Various machine learning models have 
been employed for intelligent prediction of greenhouse gas 
emissions, both at a macroscopic level and through energy 
demand forecasting. The most popular models include Long 
Short Term Memory (LSTM), Back Propagation Neural 
Network (BPNN), Support Vector Machine (SVM), Extreme 
Learning Machine (ELM), and Random Forest (RF). To 
enhance the performance of these models, numerous 
optimization techniques have been utilized, with those from the 
swarm intelligence group being particularly prominent. 
Current research challenges involve selecting the appropriate 
machine learning model and optimization technique, addressing 
dependency on official data, overcoming model interpretability 
limitations, and dealing with training data constraints. Future 
research opportunities lie in discovering or modifying existing 
machine learning models and optimization techniques, utilizing 
transfer learning to mitigate limited training data issues, and 
leveraging quantum computing-based optimization techniques 
to refine existing machine learning models. 

Keywords — greenhouse gas emission, machine learning, 
sustainability, 

I. INTRODUCTION 
Greenhouse gas emissions refer to the total emissions of 

greenhouse gases (GHG) produced by an individual, product, 
service, place, event, or organization, expressed in units of 
carbon dioxide equivalent (CO2e) [1]. The Greenhouse Gas 
Protocol [2] defines several greenhouse gases: carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), 
hydrofluorocarbons (HFCs), perfluorocarbons (PCFs), sulfur 
hexafluoride (SF6), and nitrogen trifluoride (NF3), which are 
expressed in units of CO2e (carbon dioxide equivalent). Each 
type of GHG has a different source, characteristics, and global 
warming potential (GWP). These GHG emissions can be 
categorized into direct and indirect emissions and divided into 
three emission scopes that can be mapped to these two 
emission categories [2]. Figure 1 shows scopes 1, 2, and 3 of 
greenhouse gas emissions. 

Predicting greenhouse gas emissions is crucial for 
mitigating climate change and formulating intervention 
strategies. Accurate predictions enable targeted efforts, such 
as policy changes or behavioral adjustments, to address 
emission drivers. 

 
Figure 1. Scope 1, Scope 2, and Scope 3 of GHG emissions 

Recent research on greenhouse gas (GHG) emissions 
prediction has explored a range of methodologies, each 
offering unique insights into the complex dynamics of 
emission sources and impacts. Studies utilizing deep learning 
[3] [4] [5] [6] and multiple learners [7] [8] have shown 
promise in enhancing the accuracy of emission forecasts, 
particularly by capturing non-linear patterns in large datasets. 
Research focused on China, the world’s largest GHG emitter, 
has provided valuable case studies [9] [10] [11] [12] [13] [14] 
[15], offering crucial insights into regional emissions 
prediction. Additionally, efforts have been made to develop 
models for predicting daily emissions [16] [17] [18], which 
are essential for real-time monitoring and mitigation 
strategies. Several review papers [19] [20] [21] [22] [23] have 
also examined both macroscopic and energy-based emissions 
prediction techniques, highlighting both the strengths and 
limitations of existing approaches. Despite these 
developments, significant challenges persist in optimizing 
existing models and addressing current limitations, 
underscoring the need for continued research to enhance 
GHG emissions prediction methods. 

This literature review contributes to the field by providing 
a comprehensive analysis of current machine learning models 
used for predicting GHG emissions from a macroscopic and 
energy-based perspective. It explores the optimization 
techniques employed within these models, identifies key 
challenges in existing approaches, and proposes future 
research directions for advancing GHG emissions prediction. 



II. GREENHOUSE GAS EMISSIONS PREDICTION 
Greenhouse gas emissions prediction is divided into two 

approaches: traditional and intelligent approaches using 
machine learning [19]. The traditional approach employs 
artificial empirical formulas and algorithms based on 
mathematical models. It is less integrated with current 
developing technologies, heavily reliant on expert experience, 
and often has slow update rates. On the other hand, the 
intelligent approach utilizes artificial intelligence that mimics 
human learning behavior. This approach relies on machine 
learning, which can autonomously learn from actual case data, 
resulting in much faster updates compared to mathematical 
models. This reduces dependence on human intervention. 

A. Greenhouse Gas Emissions Prediction Models 
According to [19], in the intelligent approach to predicting 

greenhouse gas emissions using machine learning, there are 
five models that are most commonly used. These models, 
ranked by popularity, are Long Short-Term Memory (LSTM), 
Backpropagation Neural Network (BPNN), Support Vector 
Machine (SVM), Extreme Learning Machine (ELM), and 
Random Forest (RF). 

1) Long Short Term Memory (LSTM) 
LSTM (Long Short-Term Memory) is a modification of 
the Recurrent Neural Network (RNN) algorithm that 
addresses issues like gradient disappearance and 
explosion, making it suitable for handling large datasets. 
To reduce the amount of processed information, the LSTM 
architecture incorporates a forget gate that selectively 
filters out irrelevant information from past time steps, 
decreasing the computational load needed. 
LSTM has been used to predict greenhouse gas emissions, 
as noted in [3]. Furthermore, several variations of LSTM 
have been applied to greenhouse gas emission prediction, 
such as LSTM-STIRPAT [9], SSA-LSTM [24], and 
STIRPAT-ARIMAX-LSTM [25]. The integrity and 
accuracy of the data are key factors that influence the 
prediction accuracy of LSTM. Therefore, the recent 
improvements in GHG emission prediction using LSTM 
have focused on data processing and integration [19]. 

2) Back Propagation Neural Network (BPNN) 
The Backpropagation Neural Network (BPNN) consists of 
three layers: the input layer, which receives and transmits 
essential information to the hidden layer for processing, 
and the output layer, which outputs the processed results. 
BPNN trains neural networks by minimizing empirical 
risk through a gradient descent mechanism.  
The performance of BPNN is significantly influenced by 
the number of hidden layer and the number of neurons in 
its hidden layer. Choosing these numbers is vital in 
designing a BPNN to achieve a balance between model 
complexity and effective generalization [19]. BPNN has 
been employed to predict GHG emissions with varying 
numbers of hidden layers, ranging from 6 to 15, in studies 
referenced as [26], [10], [11], and [27]. These studies 
report accuracy results ranging from R2 values of 0.90 to 
0.99.  
BPNN also exhibits constraints in GHG emission 
prediction models, such as slow convergence and 
prolonged training times, particularly when employing a 
low learning rate. BPNN is also susceptible to converging 
to local minima, which does not ensure the attainment of 
the global optimal solution [19]. 

3) Support Vector Machine (SVM) 
Support Vector Machines (SVM) transform input vectors 
into a higher-dimensional space to create a hyperplane 
with maximum margin. SVM searches for a hyperplane 
that maximizes the distance between hyperplanes, 
assuming that greater distances yield better generalization 
performance [19].  
SVM has been applied in various studies: [28] combines 
gross domestic product (GDP) data, urbanization rates, 
and coal fuel consumption from 1990-2015 in Henan 
province, China. [29] predicts greenhouse gas emissions 
using principal component analysis (PCA)-extracted 
features from education and economic data in Shanghai 
from 2000-2016. Meanwhile, [30] uses World Bank data 
on urban and rural populations in EU countries to predict 
GHG emissions from solid, liquid, and gas fuel 
combustion. 
Prediction accuracy heavily depends on selecting penalty 
factor C and kernel function parameter gamma. A superior 
overall predictive performance is often achieved by 
employing the right kernel function.  
Radial Basis Function (RBF) is a kernel function that 
shows a good performance in SVM-based models for 
predicting greenhouse gas emissions. Meanwhile, C and 
gamma are adjusted concurrently to discover optimal 
values. Initially, gamma ranges from 0.0001 to 10, and C 
ranges from 0.1 to 100. The best parameters are 
determined through hyperparameter tuning [19]. SVM 
optimization in [29] utilizes the Improved Chicken Swarm 
Optimization Algorithm (ICSO), and in [30], it employs 
the Firefly Optimization Algorithm (FFA). 

4) Extreme Learning Machine (ELM) 
The Extreme Learning Machine (ELM) enhances the 
BPNN algorithm and utilizes simpler parameter settings to 
increase learning efficiency [31]. During the ELM 
learning process, only weights in the output layer are 
optimized and modified, while the hidden layer node 
weights are either randomly assigned or manually set and 
remain unchanged [19]. 
Several studies optimize ELM models using specific 
optimization techniques. Optimization of ELM using 
Genetic Algorithm is demonstrated in [12], while 
optimization using Particle Swarm Optimizer (PSO) is 
shown in [32]. Optimization of ELM models using 
Mantaray Foraging Optimization (MRFO) is discussed in 
[13], and optimization using Improved Salp Swarm 
Optimization (ISSA) is presented in [16]. 

5) Random Forest (RF) 
Random Forest is an enhanced version of the decision tree 
algorithm that employs multiple decision trees that operate 
independently to improve prediction accuracy. Decisions 
are made through an ensemble learning process, by 
combining the predictions from multiple trees, resulting in 
a more accurate and robust model than using a single 
decision tree.   
Predictions made with RF are well-suited for efficiently 
handling multidimensional data. While its accuracy may 
not match that of some other models, its rapid processing 
speed is a significant advantage, making it highly 
promising for wider application [19]. 
 



RF models are widely used for predicting GHG emissions, 
particularly in predicting emissions from buildings. In 
[33], GHG emissions were predicted based on data from 
38 buildings in the Pearl River Delta region of China. 
Additionally, RF was used in [34], achieving an improved 
prediction accuracy with an R2 value of 0.94, by 
considering spatial factors and the building structure. 

 

B. Model Performance Metrics 
If N is the number of prediction trials, Xi represents the 

actual value for the ith trial, and Yi  represents the predicted 
value for the ith trial, then the performance of the greenhouse 
gas emission prediction model can be measured using the 
following metrics[35][20]: 

1) RMSE (Root Mean Squared Error) 
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RMSE represents the square root of the mean of the 
squared differences between predicted and actual values. 
RMSE values range from 0 to ∞, with a lower RMSE 
indicating a more accurate model.  

2) Mean Absolute Error (MAE) 
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MAE calculates the mean of the absolute differences 
between predicted values and actual values. The range of 
MAE values is from 0 to ∞. A more accurate model is 
indicated by a smaller MAE. 

3) R-Squared (R2) 
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R² indicates how much of the variation in the actual values 
(dependent variable) can be accounted for by the 
predicted values (independent variable) in a regression 
model. According to formula (3), R² values range from -
∞ to 1. The closer R² is to 1, the better the model performs. 

4) MAPE (Mean Absolute Percentage Error) 
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MAPE measures the average percentage of absolute error 
between predictions and actual values. It is used to assess 
the level of relative error in predictions. The range of 
MAPE values is from 0 to ∞. A more accurate model is 
indicated by a smaller MAPE. 

In addition to the four most popular metrics explained, 
other evaluation metrics that can be used to measure the 
performance of GHG emission prediction models include 
Normalized Root Mean Square Error (NRMSE), Coefficient 
of Variation of Root Mean Square Error (CV-RMSE), 
Adjusted R2, Mean Absolute Deviation (MAD), etc [20].  

III.  MACROSCOPIC AND ENERGY-BASED  
GREENHOUSE GAS EMISSIONS PREDICTIONS 

GHG emissions prediction is closely related to predicting 
energy consumption in buildings. Both are closely 
intertwined as building energy consumption represents a 
significant portion of global energy consumption [21], with 
buildings contributing to one-third of GHG emissions [22].  
 

 
(a) 

 
(b) 

Figure 2. The number of publications on macroscopic greenhouse gas 
emissions predictions [19] and building energy consumption prediction 
models using ANN [23] 

Machine learning has been used to predict GHG 
emissions, both directly by using emissions causes on a 
macro scale (macroscopic) and indirectly by predicting 
energy consumption and demand of buildings (energy-
based). Figures 2(a) and 2(b) show the increase in the number 
of publications on macroscopic GHG emission prediction and 
energy-based GHG emissions prediction. The upward 
trajectory shown in both figures signifies that research on 
macroscopic and energy-based greenhouse gas emissions is 
progressive and worth further investigation. 

A. Macroscopic Greenhouse Gas Emissions Prediction 
Macroscopic greenhouse gas emission predictions 

commonly utilize data on economic development, population, 
urbanization energy consumption, industrial structure, and 
technological advancement [19]. These data can be enriched 
with traffic load data, import and export scale, and education 
levels,  to improve the accuracy of the greenhouse gas 
emission prediction models [19]. 

The machine learning models are often optimized using 
optimization techniques. Optimization can be carried out at 
both the algorithm level and the data level, or at both levels 
simultaneously. Table I shows some greenhouse gas emission 
prediction models that have been optimized at both the data 
level and the algorithm level.  

TABLE I.  MACROSCOPIC GREENHOUSE GAS EMISSIONS  
PREDICTION MODEL 

Ref Model Level Optimization Technique 
[25] LSTM Data Principal component analysis 
[24] LSTM Algorithm Sparrow Search Algorithm 
[7] BPNN Data Genetic algorithm 

[10] BPNN Algorithm Particle Swarm Optimization 
[36] SVM Data Principal component analysis 
[36] SVM Algorithm Butterfly Optimization 
[37] SVM Algorithm Lion Swarm Optimizer 

[14] SVM Algorithm Improved Marine Predator 
Algorithm 

[16] ELM Data Ensemble empirical model 
decomposition 

[15] ELM Data Logarithmic average division 
[32] ELM Algorithm Particle Swarm Optimization 
[13] ELM Algorithm Manta Ray Foraging Optimization 
[34] RF Data Pearson Test 
[38] RF Data Generalized additive model 



B. Energy-based Greenhouse Gas Emissions Prediction 
Several approaches are available to conduct energy-based 

greenhouse gas emissions prediction: statistical analysis, 
machine learning, and deep learning [20]. Statistical analysis 
is considered easier to implement but not suitable for 
nonlinear problems and is very affected by outlier data. 
Machine learning is considered to have a relatively fast 
training process, but its accuracy is highly influenced by 
feature selection. Deep learning can automatically select 
features, handle nonlinear problems, and is suitable for large, 
complex data, but its training process is very long, requires 
high computational resources, and needs extensive 
hyperparameter optimization. Universities are the most 
common type of building studied, followed by residential, 
commercial, and office buildings. Most of the training data 
used is building energy consumption data from the last 1-2 
years, and some focus on electrical energy consumption. The 
most popular models used are MLR for statistical analysis 
approaches, SVR for machine learning approaches, and 
LSTM for deep learning approaches [20]. Table II shows 
some examples of models used for each approach to 
greenhouse gas emission prediction through building energy 
consumption prediction.   

TABLE II.  ENERGY-BASED GREENHOUSE GAS EMISSIONS 
PREDICTION 

Approach Model Reference 

Statistical Analysis 

ARIMA [8] 
ARIMAX [17] 

MLR [39] 
LR [40] 

ARMA [41] 

Machine Learning 
RF [42], [41] 

SVM [4] 
ANN [43] 

Deep Learning 

LSTM [5], [44] 
RNN [6] 
CNN [17] 

Hybrid LSTM [45], [18] 
 
A more detailed comparative analysis of 324 articles on 

the Web of Science about building energy consumption 
prediction using deep learning approaches with artificial 
neural networks (ANN) is presented by [23]. Three groups of 
ANN architecture were identified, namely Feedforward 
Neural Network (FFNN), Convolutional Neural Network 
(CNN), and Recurrent Neural Network (RNN). Meanwhile,  
optimization algorithms used to improve the prediction model 
were categorized into 5 categories; Evolutionary-based 
algorithm, Physical or Math-based algorithm, Human-based 
algorithm, and Swarm Intelligence-based algorithm. A 
detailed elaboration of these algorithms is presented in [23]. 
The ANN models are optimized to improve the accuracy of 
the prediction results. These optimization techniques are 
applied to optimize three types of parameters in ANN: (i) 
weights and biases; (ii) input parameters; and (iii) 
hyperparameters. Most studies use swarm intelligence-based 
optimization [23]  

C. The Potential of Transfer Learning 
Transfer learning (TL) involves creating a new model for 

task B by utilizing an existing model initially developed for 
task A as a foundation. The motivation behind the study of 
transfer learning is the observation that humans can use 
previously acquired knowledge to address new problems 
more efficiently or with superior solutions [46].  

Another frequently used term in transfer learning is 
domain adaptation. It involves modifying one or more source 
domains to transfer knowledge and enhance the target 
learner's performance. Various fundamental concepts of 
transfer learning are discussed in [46], while the latest 
developments in domain adaptation are discussed in [47]. 

A common scenario in utilizing transfer learning is when 
there is a large amount of labeled example data available or a 
well-trained model in the source domain is available, but only 
a few labeled examples from the target domain. In this case, 
the goal of transfer learning is to learn a more accurate 
decision function in the target domain.  

The need for transfer learning may also arise when data 
quickly becomes outdated [46]. The current data for 
forecasting GHG emissions is highly intricate, and only a few 
areas possess adequate monitoring systems for these 
emissions. Most regions do not have enough data to create 
accurate prediction models. Transfer learning can 
considerably decrease the data requirements, making it a 
crucial tool for overcoming the challenges associated with 
GHG emission models and paving the way for further 
research opportunities. 

D. The Potential of Quantum-Based Optimization  
Quantum computing uses the principles of quantum 

mechanics to process information, through the phenomenon 
of superposition and entanglement that allows quantum 
computers to have an advantage in the speed of complex 
calculations compared to classical computers [48]. This 
makes quantum computing emerge as an innovation with the 
potential to accelerate and even change the approach to 
handling greenhouse gas emissions. 

Quantum computing offers potential applications in 
various fields and has been widely studied in various 
literature reviews [49] [50] [51]. Quantum machine learning 
is a result of combining quantum information processing with 
classical machine learning[52]. Some quantum machine 
learning algorithms are quantum versions of existing machine 
learning algorithms. These algorithms can be pure quantum 
algorithms, hybrid classical-quantum algorithms, or 
quantum-inspired algorithms, and some of them in certain 
cases show better performance than their classical machine 
learning versions [52]. 

Classical GHG emission prediction models can be 
optimized using several types of optimization techniques, 
both at the data level and algorithm level [19], which are 
currently still dominated by swarm intelligence-based 
optimization [23]. 

One quantum computing approach that can be used for 
optimization tasks is Quantum Annealing (QA). QA utilizes 
the principles of quantum mechanics and is designed to find 
the global minimum of a cost function to solve optimization 
problems [53]. QA has been implemented in various 
optimization tasks, for example, to optimize real-time traffic 
light control[54], assist bike-sharing operators in optimizing 
bike load balancing processes [55], and optimize energy 
consumption in buildings [56]. The wide application 
scenarios and its advantages in certain examples indicate that 
QA has advantages and flexibility in various use cases and 
has great potential to be used to optimize greenhouse gas 
emission prediction models.  



IV. CURRENT CHALLENGES AND OPPORTUNITIES 
Both macroscopic and energy-based GHG emission 

predictions face several challenges, namely: 

1. Dependence on official data such as GDP and 
demographic data that are available in limited quantities 
and require official release by the authorities. 

2. Limited interpretability of the models, especially if the 
models are based on neural networks or deep learning 

3. The need for suitable model architecture, particularly for 
models using artificial neural networks, especially in 
determining the number of hidden layers and the number 
of neurons per layer. 

4. The need for better optimization techniques  
5. Limited data training is available. 

Therefore, several future research opportunities can be 
identified, namely: 

1. Utilizing local monitoring systems to enrich official data 
2. Improving the accountability of prediction models through 

the application of explainable AI (XAI),  
3. Discovering new optimization techniques to achieve better 

model performance, 
4. Utilizing quantum computing-based optimization to 

optimize existing machine learning models, 
5. Utilizing transfer learning to address the lack of available 

training data. 

V. CONCLUSION 
Current research shows that macroscopic greenhouse gas 

emissions prediction often employs models based on LSTM, 
BPNN, SVM, ELM, and RF, each with its own advantages 
and disadvantages. Meanwhile, energy-based greenhouse gas 
emissions prediction is often made using artificial neural 
networks with three architectural groups: FFNN, CNN, and 
RNN. Both macroscopic greenhouse gas emission predictions 
and energy-based greenhouse gas emissions prediction have 
been optimized using various optimization techniques. The 
most popular optimization techniques used come from the 
swarm intelligence algorithm group. 

Some challenges faced in predicting greenhouse gas 
emissions include (1) dependence on official data; (2) limited 
interpretability of the machine learning models; (3) choosing 
the best neural network architecture; (4) the need for 
optimization of existing models; and (5) limited training data 
available. Future research opportunities to address these 
challenges include utilizing local monitoring systems to 
enrich official data, implementing explainable AI, discovering 
new optimization techniques or modifying existing 
optimization techniques to improve model prediction 
performance, utilizing transfer learning to address the limited 
available training data, and leveraging quantum computing-
based optimization techniques to optimize existing machine 
learning models.  
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