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Abstract. Human activity recognition using MEMS on mobile devices has be-
come one of the most compelling solutions owing to the miniaturization of sen-
sors. A crucial challenge is to recognize precisely activities when they are chang-
ing. Sliding window is a type of common methods. However, the interference of 
historical data in the sliding window is harmful to insight into changing of actions 
or uncommon behaviors. This paper proposes a fine-grained activity recognition 
method and designs a corresponding system farer. It employs features of action 
subsegments and incremental broad learning to precisely distinguish the altera-
tions of actions and abnormal movements. Firstly, farer achieves the accurate 
segmentation of activities as data preprocessing. A neighborhood extreme value 
method (NEV) is adopted to avoid the intervention of peaks and valleys of data. 
Secondly, the current action is partitioned to fine-grained subsegments to elabo-
rately abstract subtle features. We propose a feature extraction technique based 
on adjacent difference (FETAD), and furthermore reduce its resulting dimension 
through the complete two-dimensional principal component analysis (C2DPCA). 
Finally, broad learning theory is employed to construct the activity recognition 
model, especially incremental learning for unusual behaviors. Extensive experi-
ments demonstrate that farer could accurately recognize activities when they ab-
ruptly change, and its performance is considerable stability. Meanwhile, it can 
quickly establish a valid incremental model that only needs a short sampling time 
for special activities. The overall accuracy of farer is 97.91% with 90.14% for 
changed activities, which is far superior to the current mainstream methods.  

Keywords: Fine-grained recognition; Broad learning; Action subsegments; In-
cremental model 

1 Introduction 
Human Activity Recognition (HAR) has been widely applied in some scenarios, e.g. 
industry and medicine [1]. For instance, it could be used for early warning when factory 
operators carry out dangerous behaviors, and exhibiting the accuracy degree of mobility 
impairments patients’ performed actions for physical therapy. The basis pattern of HAR 
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is to collect actual data of specific activities and then achieve accurate recognition 
through comparison and classification. In generally, feature extraction by sliding win-
dow is an effective activity recognition paradigm. The basic essence of this type of 
method is to design a sliding window which contains the perception data of the activity 
to be recognized, then extract features of the window data to represent the activity, and 
design an effective classifier for activity recognition. However, in the above special 
scenarios, most of them require the deployment of dedicated sensing systems, such as 
IoT devices and sensor networks [2-4], resulting in high cost and poor universality. 

The development of wireless communication technology [5] and the miniaturization 
of sensors [6] have enabled smart devices [7] embedded with many MEMS sensors 
(such as smart phones, tablets, etc.) to have good data collection capabilities. In the 
meanwhile, in-depth research in the field of deep learning has further improved the 
accuracy of activity recognition [8]. However, the popularization of mobile devices 
puts forward higher requirements for activity recognition in complex scenarios. Partic-
ularly, mobile devices must quickly and accurately perceive activity changes, and 
recognition methods must be oriented to the special behavior habits of different users. 
To this date, the main challenges that activity recognition still faces are as follows: 1) 
The raw data collected by the accelerometer contains much noise. 2) The influence of 
historical data on current activity data. Too much historical data is not conducive to the 
recognition of activity changes. 3) Special behavior habits are not easy to accurately 
recognize. 

To address the above challenges, in this paper, we propose a fine-grained activity 
recognition method and designs a corresponding system farer. The system implements 
effective preprocessing of the source data by smoothing and filtering the sampled data 
and segmenting activities into individual actions. Then deeply mine the features of ac-
tions through fine-grained subsegment division, feature extraction and dimensionality 
reduction. Finally, an incremental activity recognition model based on broad learning 
(BL) is constructed to realize accurate activity recognition and satisfy incremental 
model update. The main contributions of this paper are summarized as follows: 

1) Realize accurate segmentation of activities. By smoothing and filtering the 
source data, a neighborhood extreme value method is proposed to avoid the in-
terference of peaks and valleys. 

2) Deeply mine the features of action subsegments. The action data is partitioned 
to fine-grained subsegments according to changes of acceleration, and a feature 
extraction technique oriented to adjacent difference is designed. 

3) The farer system based on BL is designed with stable performance and good 
practicability. After a series of experimental verifications, the system has a high 
recognition rate for different activities under the condition of stable activities, 
with an overall recognition rate of 97.91%. Under the condition of changed ac-
tivities, the recognition accuracy is 90.14%, far exceeding other methods. 

2 Related Work 
Recognizing human activities based on sensor data is essentially a pattern classification 
problem. When using a sliding window for activity recognition, it is required to process 
the noise generated during the sampling process, select an appropriate sliding window, 
and design an effective activity classifier. These are all key factors that determine the 
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recognition performance. This section mainly introduces the current research status of 
three aspects in the case of activity recognition: the processing of data noise, the setting 
of sliding window and the construction of classifier model. 

Since the data collected by the sensor often contains high-frequency noise, it needs 
to be processed, otherwise it will affect the accuracy of activity recognition. Yang et al. 
[9] used Gaussian filtering algorithm to eliminate the influence of noise. Garcia-Ceja 
et al. [10] used the average smoothing method, replacing each original data with the 
average of two adjacent data points. Khan et al. [11] used a third-order moving average 
filtering algorithm to remove noise. These methods cannot eliminate the interference 
extreme points to a great extent. 

The collection of human activity data often takes a long time. In the activity recog-
nition stage, the sensor data stream needs to be segmented by windows. Because the 
fixed-size sliding window segmentation technology is simple to operate, it is adopted 
by most researches. In the terms of sliding window setting, Fida et al. [12] tested the 
window of 0.5 seconds to 3 seconds, and achieved the best result in 1.5 seconds. Elsts 
[13] adopted a 2.56 second sliding window to design the energy-saving activity recog-
nition framework. Shuvo [14] and Xia [15] adopted a sliding window of 2.56 seconds 
with a step length of 1.28 seconds, achieving the recognition accuracy of more than 
95%. Cha et al. [16] adopted a window length of 1 to 4 seconds and found that using 4 
seconds achieved the best accuracy of 96.1%. Pienaar et al. [17] adopted a large win-
dow of 10 seconds with a step length of 1 second to segment data and achieved the 
recognition accuracy of 94%. The above methods verify that the selection of the action 
window will greatly affect the recognition performance of the activity. The traditional 
method of fixed-size sliding window is oriented to the recognition of a single stable 
activity, while ignoring the change of the activity. 

In the terms of classifier construction, researchers manually extract features from 
activity sensor data and employ them in various traditional machine learning algo-
rithms. Since these data fragments cannot adequately represent complex human activi-
ties, they have become the performance bottleneck of the classifier [18]. To further 
improve the accuracy of activity recognition, methods based on deep learning are em-
ployed by more and more people, such as Convolutional Neural Network (CNN) [19], 
Long Short-Term Memory (LSTM) [20] and their joint improved models CNN-LSTM 
[21] and ConvLSTM [22]. Although these models show good performance, their de-
signs are more complex. In addition, the amount of calculation is large and hardware 
requirements are high. More importantly, these models are constructed based on train-
ing data, so they have poor perception of activity changes and lack robustness [23]. 

To solve the problems of accurate recognition and flexibility of activities, we pro-
pose effective data preprocessing and employ fine-grained features of action subseg-
ments, which improve the accuracy of activity recognition, especially for changed ac-
tivities. Incremental model construction based on broad learning is also proposed to 
realize the incremental update of the special activity behavior, without using the source 
data to retrain the entire model. 

3 Proposed Method 
For complex activity situations, we propose a fine-grained activity recognition method 



4 

based on features of action subsegments and incremental broad learning. The corre-
sponding recognition system named farer is also designed. The system contains three 
sub-modules, namely data preprocessing, feature extraction based on fine-grained sub-
segment, and incremental recognition model based on broad learning. First, smooth and 
filter the sampled data, and design a peak and valley recognition method to accurately 
segment activities into individual actions. Then deeply mine the features of action sub-
segments through the fine-grained segmentation of the action data, targeted feature ex-
traction and dimensionality reduction. Finally, build an incremental activity recognition 
model based on broad learning to realize the accurate recognition of activities and sat-
isfy the incremental model update. The framework of farer is shown in Figure 1. 

 

Fig. 1. farer framework. 

3.1 Data Preprocessing 

Data Smoothing and Filtering. According to the travel characteristics of pedestrians, 
the sensor data changes smoothly in a relatively short period. Since people cannot main-
tain a fixed posture when traveling, the sensor perceives irregular changes during the 
collection process, resulting in abnormal points. Without changing the trend of data 
changes, we employ the neighborhood smoothing method to filter the source data.  

Assuming that the sampled data at time 𝑡 is 𝑥# , its neighborhood interval is [𝑡 −
𝜑, 𝑡 + 𝜑] and the interval range is 𝜇 = 2𝜑 + 1. Construct a k-order polynomial to fit 
the points in the interval. Denote 𝑠/、𝑠0、⋯、𝑠2  as the polynomial coefficients, then 
the data 𝑥# can be expressed as 
      𝑥# = 𝑠/ + 𝑠0𝑡 + 𝑠3𝑡3 + ⋯+ 𝑠2𝑡2 (1) 

The least square fitting of the neighborhood interval 𝑋 = 5𝑥#67,⋯	, 𝑥#,⋯	, 𝑥#97:
;
 

is calculated as 
𝑋< = 𝑃(𝑃;𝑃)60𝑃;𝑋 (2) 
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The method of smoothing and filtering the source data saves the change information 
of the signal and eliminates outliers, which makes the data curve smoother. After fil-
tering, the value of 	𝑥# is 𝑋<(𝜑 + 1). 

Activity Segmentation. The periodicity of activities makes the acceleration data in the 
vertical direction sampled by the sensor show regular changes in peaks and valleys, so 
dividing activities by identifying peaks and valleys is the basic way of activity segmen-
tation. The activity data is filtered to eliminate abnormal signal points, making the en-
tire data stream smoother. However, there are still multiple extreme interference points 
at the peak and valley of activities, which seriously affects the accurate segmentation 
of activities. 

We design a neighboring extremum value method (NEV) to more accurately identify 
the real peaks and valleys and avoid the interference of extreme points. Denote 𝑋 =
(𝑥0, 𝑥3,… , 𝑥H) as the acceleration sampling data in the vertical direction. Then,  
1. Calculate extreme points. 
Obtain all maximum points 𝑋IJK = (𝑥IJK0 , 𝑥IJK3 ,… )  and minimum points 
𝑋ILH = 5𝑥ILH0 , 𝑥ILH3 ,… :. 
2. Filter extreme interference points. 
We employ the altitude, prominence and isolation of the peaks and valleys to filter the 
noise at the extreme points.  

Assuming that the altitude threshold is 𝛤N, the prominence threshold is 𝛤O and the 
isolation threshold is 𝛤P. Denote 𝑡(𝑥) as the time (data volume) scale of point 𝑥. The 
specific filtering process is as follows: 

1) Altitude. Eliminate lower peaks or shallower valleys. 
• When the peak maximum point set 𝑋IJK  satisfies 𝑥IJKL < 𝛤N, the point 𝑥IJKL  is 

eliminated, i.e. 𝑋IJK − {𝑥IJKL }. By traversing 𝑋IJK, 𝑌IJK  that meets the predeter-
mined altitude is obtained. 

• When the valley minimum point set 𝑋ILH  satisfies 𝑥ILH
U > −𝛤N, the point 𝑥ILH

U  is 
eliminated, i.e. 𝑋ILH − W𝑥ILH

U X. By traversing 𝑋ILH , 𝑌ILH  that meets the predeter-
mined altitude is obtained. 
2） Prominence. Eliminate peaks with less convexity or valleys with less concavity. 

• In the peak maximum point set 𝑌IJK , if there is a minimum natural number 𝑎 that 
satisfies 𝑦IJKL < 𝑦IJKL6J , then denote 𝑦ILH

U[  as the minimum valley in the data interval 
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[𝑡(𝑦IJKL6J ), 𝑡(𝑦IJKL )]. Meanwhile, if there is a minimum natural number 𝑏 that satis-
fies 𝑦IJKL < 𝑦IJKL9] , then denote 𝑥ILH

U^  as the minimum valley in the data interval 
[𝑡(𝑦IJKL ), 𝑡(𝑦IJKL9] )] . If 𝑚𝑖𝑛b𝑦IJKL − 𝑦ILH

U[ , 𝑦IJKL − 𝑦ILH
U^ c < 𝛤O , then the maximum 

point 𝑦IJKL  is eliminated, i.e. 𝑌IJK − {𝑦IJKL }. By traversing 𝑌IJK , 𝑍IJK that meets 
the predetermined prominence is obtained. 

• In the valley minimum point set 𝑌ILH , if there is a minimum natural number 𝑐 that 
satisfies 𝑦ILHL > 𝑦ILHL6f , then denote 𝑦IJK

Ug  as the maximum peak in the data interval 
[𝑡5𝑦ILHL6f :, 𝑡5𝑦ILHL :]. Meanwhile, if there is a minimum natural number 𝑑 that satis-
fies 𝑦ILHL > 𝑦ILHL9i , then denote 𝑥IJK

Uj  as the maximum peak in the data interval 
[𝑡5𝑦ILHL :, 𝑡5𝑦ILHL9i:]. If 𝑚𝑖𝑛{𝑦IJK

Ug − 𝑦ILHL , 𝑦IJK
Uj − 𝑦ILHL } < 𝛤O , then the minimum 

point 𝑦ILHL  is eliminated, i.e. 𝑌ILH − W𝑦ILHL X. By traversing 𝑌ILH , 𝑍ILH that meets the 
predetermined prominence is obtained. 
3） Isolation. Eliminate the smaller point of two peaks that are close in horizontal 

distance or the larger point of two valleys that are close in horizontal distance. 
• When there are adjacent points 𝑧IJKL  and 𝑧IJKL90  in 𝑍IJK, and the horizontal distance 

between the two points satisfies 𝑡(𝑧IJKL90 ) − 𝑡(𝑧lmnL ) < 𝛤P, eliminate the smaller max-
imum point, i.e. 𝑍IJK −𝑚𝑖𝑛{𝑧IJKL , 𝑧IJKL90 }. By traversing 𝑍IJK, 𝑋IJKo  that meets the 
predetermined isolation is obtained. 

• When there are adjacent points 𝑧ILHL  and 𝑧ILHL90  in 𝑍ILH, and the horizontal distance 
between the two points satisfies 𝑡(𝑧ILHL90 ) − 𝑡(𝑧lpqL ) < 𝛤P, eliminate the bigger mini-
mum point, i.e. 𝑍ILH −𝑚𝑎𝑥W𝑧ILHL , 𝑧ILHL90 X. By traversing 𝑍ILH, 𝑋ILHo  that meets the 
predetermined isolation is obtained. 

3. Segment activities into individual actions. 
When the vertical acceleration direction is upward and gradually increases from 0, it is 
defined as the starting point of the action. Then the peak and valley are reached. After 
reaching valley, when the vertical acceleration direction is downward and decreases to 
0, it is defined as the ending point of the action. Thus, the activity data is segmented 
into individual action data. 

Different from the traditional activity recognition, we set the size of the sliding win-
dow to the size of the complete action segment, so each window has a different size. 
We call the sliding window here the action window. The action window only contains 
the data of the current action, without historical data, and it slides a complete action 
window every time. Our design avoids the influence of historical data on current data.  

3.2 Feature Extraction Based on Fine-grained Subsegments 

Fine-grained Subsegment Feature Extraction. To extract fine-grained features of 
segmented actions, we design an activity recognition method based on fine-grained 
subsegments. We perform fine-grained subsegment division of actions to realize fine-
grained cognition of actions, that is, the action window is evenly divided into several 
subsegments. The fine-grained division of the action window shows the change of the 
behavior state.  

In order to fully mine the action characteristics to realize the fine-grained cognition 
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of the action data, we design a feature extraction technique based on adjacent difference 
(FETAD) for 3 axes acceleration. The change of measured data is relatively stable in a 
short period due to the continuity of the action. Therefore, when the action is fine-
grained divided, the difference in adjacent subsegments changes most smoothly. Ac-
cording to this principle, the steps of FETAD are as follows: 

1) The action window is evenly divided into 𝑘s  subsegments and the length is  
𝑙I. The three-axis data vectors are 𝐺wx

K = y𝑔(L,0)K , 𝑔(L,3)K ,⋯ , 𝑔(L,wx)
K { , 𝐺wx

| =
}𝑔(L,0)

| , 𝑔(L,3)
| ,⋯ , 𝑔(L,wx)

| ~, 𝐺wx
� = y𝑔(L,0)� , 𝑔(L,3)� ,⋯ , 𝑔(L,wx)

� {, where 1 ≤ 𝑖 ≤ 𝑘s. 
2) Adopt the difference between the data in adjacent subsegments as the data of 

the previous subsegment, i.e. 𝐺wx
K = 𝐺wx��

K − 𝐺wx
K , 𝐺wx

| = 𝐺wx��
| − 𝐺wx

| , 𝐺wx
� =

𝐺wx��
� − 𝐺wx

� , where 1 ≤ 𝑖 < 𝑘s. Each axis gets 𝑘s − 1 difference vectors. 
3) Extract features for each difference vector of each coordinate axis. Denote  𝑛s 

as the number of features to be extracted. The feature vector of the difference 
vector is 𝐷wx = y𝑑L(1), 𝑑L(2),⋯ , 𝑑L5𝑛s:{. 

4) Combine the features of 𝑘s − 1 difference vectors on each coordinate axis into 
a new feature vector. The feature vectors of the three coordinate axes are ex-

pressed as 𝐷K = �𝐷w�
K , 𝐷w�

K ,⋯ ,𝐷w����
K �

;
, 𝐷| = �𝐷w�

| ,𝐷w�
| ,⋯ ,𝐷w����

| �
;

 and 𝐷� =

�𝐷w�
� ,𝐷w�

� ,⋯ , 𝐷w����
� �

;
. 

5) Finally, the feature vectors of the three coordinate axes are combined into a two-
dimensional matrix as 𝐷K|� = [𝐷K,𝐷|,𝐷�];. The size is 3 × [5𝑘s − 1: × 𝑛s]. 

Feature Matrix Dimensionality Reduction. To improve the speed of activity recog-
nition, we further extract the effective information of the three-axis features. First, per-
form feature extraction on the combined matrix 𝐷K|�  of the 𝑥, 𝑦 and 𝑧 three axes. Aim-
ing at the obtained two-dimensional feature matrix, we adopt complete two-dimen-
sional principal component analysis (C2DPCA). C2DPCA reduces the dimensionality 
of the matrix from two aspects: row projection and column projection. Then, flatten the 
principal component matrix of the three axes to obtain a one-dimensional vector to meet 
the input requirements of BLS. 

Denote 𝐷 as the feature matrix set of  𝑁 actions. The feature matrix of the i-th ac-
tion is 𝐷L ∈ 𝑅�×�, 𝑖 ∈ [1,𝑁]. To realize the complete two-dimensional principal com-
ponent analysis of 𝐷L, it needs to be projected from two angels of row and column. The 
column divergence matrix and row divergence matrix of 𝐷 are formulated as 𝐺O =
∑ 5𝐷𝑖 − 𝐷�:5𝐷𝑖 − 𝐷�:

𝑇𝑁
𝑖=1  and 𝐺� = ∑ 5𝐷𝑖 − 𝐷�:

𝑇5𝐷𝑖 − 𝐷�:𝑁
𝑖=1 , where 𝐷� = 0

�
∑ 𝐷L�
L�0  

is the average value of the feature matrix set 𝐷. 
By choosing proper eigenvectors of the matrices 𝐺O  and 𝐺�, the projection of 𝐷L is 

as dispersed as possible. The numbers of eigenvalues of 𝐺O  and 𝐺� are calculated as 𝑛O 
and 𝑛�. The eigenvalues of 𝐺O  and 𝐺� are sorted in descending order. The eigenvalue 
set of 𝐺O  are 𝛼 = y𝛼0, 𝛼3,⋯ , 𝛼H�{ , and the corresponding eigenvector set is 
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y𝜇0, 𝜇3,⋯ , 𝜇H�{. The eigenvalue set of 𝐺�  are 𝛽 = }𝛽0, 𝛽3,⋯ , 𝛽H�~, and the corre-

sponding eigenvector set is }𝜈0, 𝜈3,⋯ , 𝜈H�~. Since 𝐺O  and 𝐺�  are both non-negative 
definite matrices, their eigenvalues are not less than zero. 

If the first 𝑛0 eigenvalues of the eigenvalue sequence 𝛼 of 𝐺O  satisfy ∑ 𝛼L
H�
L�0 ≥ 𝜕O ∙

∑ 𝛼L
H�
L�0 , where 𝜕O  is the column hash threshold. Select the eigenvectors corresponding 

to 𝑛0 eigenvalues to form the column projection of 𝐷L, i.e. 𝛲 = y𝜇0, 𝜇3,⋯ , 𝜇H�{
;
. The 

size of 𝛲 is 𝑛0 × 𝑝. Similarly, if the first 𝑛3 eigenvalues of the eigenvalue sequence 𝛽 
of 𝐺� satisfy ∑ 𝛽U

H�
U�0 ≥ 𝜕� ∙ ∑ 𝛽U

H�
U�0 , where 𝜕� is the row hash threshold. Select the ei-

genvectors corresponding to 𝑛3 eigenvalues to form the row projection of 𝐷L, i.e. 𝑄 =
y𝜈0, 𝜈3, ⋯ , 𝜈H�{. The size of 𝑄 is 𝑞 × 𝑛3. 𝛲 and 𝑄 respectively project 𝐷L to obtain the 
principle component analysis matrix is 𝐻 = 𝑃 ∙ 𝐷L ∙ 𝑄. The size of 𝐻 is 𝑛0 × 𝑛3. 

After the principal component analysis of the three-axis combined feature matrix, 
the dimensionality of the action feature matrix is reduced. This is conducive to the in-
cremental learning of farer. Furthermore, in consideration of facilitating the construc-
tion of training samples, the matrix 𝐻 after dimensionality reduction needs one-dimen-
sional processing. We employ a flattening method to transform the matrix into a one-
dimensional vector. After flattening, each one-dimensional vector matches the corre-
sponding activity label as a training sample for the recognition model. 

3.3 Recognition Model Construction and Incremental Update Based on BL 

 
Fig. 2. Broad learning system model. 

Broad learning system was proposed by Chen [24] in 2018. It is a structure of a single 
hidden layer including an input layer, a hidden layer and an output layer. Among them, 
the hidden layer includes a feature layer and an enhancement layer. First, the input layer 
receives the activity features which are extracted by windows. Then, the feature layer 
linearly maps activity features to construct feature nodes and the enhancement layer 
employs non-linear activation function for the feature nodes to obtain enhancement 
nodes. The feature nodes and the enhancement nodes are combined to form the hidden 
layer matrix. Finally, the output layer obtains the output coefficients by the method of 
pseudo inverse, and gives the learning results. The model architecture of BLS is shown 
in Figure 2. 
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Recognition Model Construction Based on BL. We adopt broad learning to build an 
activity recognition model. Suppose the training data sample set is 𝑋 = [𝑥0,𝑥3,⋯ , 𝑥H]; 
and each sample has 𝑚  dimensions. The sample category label set is 𝐶 =
[𝑐0, 𝑐3,⋯ , 𝑐H];. The construction process of the recognition model is as follows: 
1. Input layer. 
Reduce the dimensionality of the action feature matrix and flatten it to obtain targeted 
one-dimensional data, which is employed as the training sample of the input layer. 
2. Feature layer. 
Suppose there are 𝑚¥ groups of feature mapping and each group has 𝑛¥ feature nodes. 
The i-th group of feature mapping is calculated as follows: 

𝐹L = 𝜓L(𝑋𝑊L + 𝛽L)                                                   (3) 
where 1 ≤ 𝑖 ≤ 𝑚¥,  𝜓L is linear transformation function, 𝑊L is a randomly generated 
matrix and 𝛽L  is a randomly generated vector. The integrated feature node matrix is 𝐹 =
[𝐹0|𝐹3|	⋯	|𝐹Iª]. 

3. Enhancement layer. 
The main purpose of the enhancement layer is to increase the non-linear factor of the 
entire network. Since the feature nodes are all obtained in a linear manner, the BL 
recognition model introduces enhancement nodes to supplement it. Suppose there are 
𝑚« groups of enhancement nodes and each group has 𝑛« enhancement nodes. The j-th 
group of enhancement nodes is calculated as follows: 

𝐸U = 𝜉U(𝐹𝑊®¯ + 𝛽U)                                                  (4) 

where 1 ≤ 𝑗 ≤ 𝑚«,  𝜉L is nonlinear transformation function, 𝑊®¯ is a randomly gener-
ated orthogonal matrix and 𝛽U  is a randomly generated vector. The integrated feature 
node matrix is 𝐸 = [𝐸0|𝐸3|	⋯	|𝐸I±]. 

Finally, the feature node matrix 𝐹 and the enhancement node matrix 𝐸 are integrated 
to generate the hidden layer input matrix Λ = [𝐹|𝐸]. 
4. Output layer. 
The output layer mainly realizes the mapping from the input matrix of hidden layer to 
the label matrix. Since the category label matrix is 𝐶 and the input matrix is Λ, if the 
mapping matrix Ω satisfies 
 Λ ∙ Ω = 𝐶 (5) 
then Ω can be obtained by matrix inversion. However, it should be noted that since Λ is 
generally not a square matrix, its pseudo-inverse can be solved as  
 Λ60 = (Λ;Λ + 𝛿𝐼)60Λ; (6) 
where 𝐼 is the identity matrix, 𝛿 is the regularization coefficient and the value of 𝛿 
is close to zero.  

Incremental Update. When the recognition objects are some special users, such as 
lameness, large swing during the activity, etc., the false alarm rate of the model will 
increase, resulting in a poor user experience. Simply matching the activity characteris-
tics of a special user to the recognition model makes it difficult to guarantee the recog-
nition rate of the special activity. In addition, it also affects the accurate recognition of 
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the trained actions. On the other hand, if the special user’s activity data is added to the 
source data and the model is retrained, a lot of model construction time is spent. To 
achieve targeted activity recognition, the recognition model needs to be updated incre-
mentally. 

By incrementally fusing the characteristics of user’s behavior, we realize effective 
recognition of personalized activities. Our system farer has incremental learning capa-
bilities and can be updated on the trained model without retraining historical data. This 
method satisfies activity recognition scenarios in more complex situations.  

Denote 𝑋̇ as the special activity data set and 𝐶̇ as special activity label. The feature 
node matrix 𝐹·̇ and the enhancement node matrix 𝐸·̇ of 𝑋̇ are given by the random ma-
trix of farer. The hidden layer matrix is Λ·̇ = [𝐹·̇|𝐸·̇], and its pseudo-inverse is  

Λ·̇60 = [Λ60 − 𝜙 ∙ 𝜎)|𝜙] (7) 

where 𝜙 = º 𝜔60 𝜔 ≠ 0
(Λ60) ∙ 𝜎 ∙ (𝐼 + 𝜎; ∙ 𝜎)60 𝜔 = 0	 , 𝜎 = Λ·̇ ∙ Λ60 , 𝜔 = Λ·̇ − 𝜎; ∙ Λ, 

𝐼 is the identity matrix. 
After getting the incremental pseudo-inverse, the output of farer is calculated as 

Ω̇ = Λ·̇605¾¾̇: = Ω + 𝜙 ∙ 5𝐶̇ − Λ·̇ ∙ Ω: (8) 
Therefore, the system in this paper can achieve rapid incremental update of the orig-

inal model through matrix operations. 

4 Experiment and Analysis 
4.1 Experimental Settings 

Table 1. Experimental parameter settings. 

Parameter meaning Value Parameter 
Smoothing filter window	 51 𝜇 

Polynomial order	 3 𝑘 
Altitude threshold 0.5 𝛤N 

Prominence threshold 1.2 𝛤O 
Isolation threshold 55 𝛤P 

Number of action windows 6 𝑘s 
Column hash threshold 99.95% 𝜕O 

Row hash threshold 99.95% 𝜕� 
Number of features	 13 𝑛s 

regularization coefficient	 2-30	 𝛿	
Number of feature windows 10	 𝑚¥	

Number of feature nodes 12 𝑛¥ 
Number of enhancement windows 1 𝑚« 

Number of enhancement nodes 2000 𝑛«	
Zoom scale 0.8 𝛾	

To verify the recognition advantages of farer, we not only compare the classification 
effect of the traditional machine learning method SVM [25], but also compare the con-
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volutional neural network CNN, LSTM, and their joint model CNN-LSTM and Con-
vLSTM. 

We collect a large amount of three-axis accelerometer data of activities. There are 
1556436 pieces of sampling data, and the sampling frequency is set to 180Hz. There 
are 7 activity states collected in the experiment, namely trickling, walking, brisk walk-
ing, jogging, upstairs, downstairs and jumping. 

The action window is divided into 6 subsegments, employing typical features in the 
activity recognition research, which are the maximum, minimum, average, median, 
standard deviation, variance, interquartile range, skewness, kurtosis, root mean square, 
sum, range and entropy. The feature vector size of each coordinate axis is 1×65. 

4.2 Performance Evaluation 

System Recognition Accuracy. Table 2 shows the comparison of the activity recogni-
tion effect and model training time between farer and other methods. In the table, SA 
represents single activities and CA represents changed activities. According to the ex-
perimental results, the performance of farer is the best, with an overall recognition ac-
curacy of 94.03%, which surpasses other recognition methods. Compared with single 
activity recognition, the accuracy of farer is 97.91%. More importantly, the recognition 
performance of farer is stable. It has high recognition accuracy for different activities, 
and there is no tendency deviation. In contrast, the recognition rate of other methods is 
either lower than that of farer, or has a higher false alarm rate for certain activities. For 
example, for downstairs, LSTM achieves 100% recognition accuracy, which exceeds 
98.99% of farer. However, in the recognition of two more common activities, walking 
and brisk walking, the recognition rates of LSTM are only 73.98% and 78.20%, while 
the rates of farer are 96.64% and 97.78%. 

Table 2. Comparison of the activity recognition effect. 

 farer SVM CNN LSTM CNN-LSTM ConvLSTM 

SA 

trickling 96.71% 96.58% 99.65% 97.90% 100.00% 100.00% 
walking 96.64% 93.33% 88.21% 73.98% 89.84% 96.34% 

brisk walking 97.78% 93.66% 93.23% 78.2% 92.48% 97.74% 
jogging 98.01% 98.94% 99.04% 99.05% 99.05% 98.1% 
upstairs 98.88% 98.23% 94.33% 98.38% 97.17% 94.33% 

downstairs 98.88% 98.09% 98.72% 100.00% 99.15% 99.15% 
jumping 100.00%	 96.64% 98.29% 99.15% 100.00% 99.15% 
Overall 97.91%	 96.4% 95.69% 92.33% 96.71% 97.74% 

CA Overall 90.14% 72.22% 76.67% 67.78% 81.11% 77.78% 
SA/CA average 94.03% 84.31%	 86.18% 80.06% 88.91% 87.76% 

Comparing the situation of activity changes, the overall recognition rate of farer is 
90.14%, which is much higher than other recognition methods. This is because other 
methods are affected by historical data. The historical data leads to a great reduction in 
recognition accuracy. The sliding window of farer only represents the current action, 
so it effectively avoids the interference of historical data. For example, the recognition 
accuracy of ConvLSTM which recognizes a single activity more accurately is reduced 
to 77.78%. LSTM’s recognition of downstairs reaches 100%, but the recognition of 
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changed activities is only 67.78%. At the same time, the training time of these two types 
of models is much longer than farer. 

Performance Comparison of Different Windows. The experiment in this section 
compares the three types of stable activities, activity changes slowly (S) and activity 
changes quickly (Q), as shown in Table 3. To verify the improvement of the activity 
recognition rate, we employ window data of different durations, namely 1.28s, 2.56s, 
4s, 6s, 8s, and 10s. The sliding step of them is 1/2. 

Table 3. Recognition accuracy of different sliding windows for activity scenes. 

  Action window 1.28s 2.56s 4s 6s 8s 10s 
Stable 97.91% 94.29% 95.41% 97.41% 97.12% 96.52% 97.91% 

Changed 
S 84.97% 65.71% 63.22% 65.46% 52.78% 37.04% 33.33% 
Q 95.75% 72.97% 69.57% 68.97% 60.53% 39.29% 31.82% 

According to the experiment results, when the activity is stable, the recognition abil-
ity of action window is slightly higher than that of the fixed-size sliding window. How-
ever, when the activity changes, the advantage of the former increases significantly. As 
the window duration increases, the historical data has an increased influence on the 
feature extraction of the activity to be recognized. This results in a sharp drop in the 
recognition rate for fixed-size sliding windows.  

When the activity changes slowly, such as trickling to walking, there is more inter-
ference data in the window because of the long switching time, resulting in a lower 
recognition rate. More importantly, the activity changes slowly, except for reasons of 
their own behavior habits, mostly because the front and back activities are similar. 
These changes further increase the difficulty of recognition. When the activity changes 
quickly, such as walking to upstairs, the difference between the front and back activities 
is generally large. As the activity changes quickly, the interference data in the window 
becomes less. The old activity is quite different from the new activity, so the recognition 
rate is increased. 

Performance Comparison of Feature Matrix Dimensions. We adopt FETAD to ex-
tract features of the action data, and adopt C2DPCA to reduce the dimensionality of the 
three-axis feature matrix. According to the above parameter settings, the number of 
fine-grained subsegments is 6 and the number of features is 13. Thus, the number of 
features of each axis is (6 − 1) × 13 = 65. The size of action feature matrix is 3 × 65.  
We compare different dimensionality reduction results, as shown in Figure 3. 

Figure 3 shows the recognition accuracy of the three dimensionality reduction 
curves. The dimensionality of the feature matrix is reduced from 3 × 65 to 3 × 𝑛, 
2 × 𝑛, and 1 × 𝑛, where 2 ≤ 𝑛 ≤ 65. Experimental results show that the recognition 
rate of 3 × 𝑛 is higher than that of the two categories. The experiment in this section 
further compares the difference between the two processing methods of flattening and 
square root of sum of squares (srss) when the row dimension is 3 after data dimension-
ality reduction. 

Table 4 compares the highest recognition rate and the lowest recognition rate when 
the feature dimension drops to different sizes, as well as the corresponding row and 
column values. It can be seen from the table that the row dimension of 3 has the best 
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effect. Especially the lowest recognition rate is much higher than other cases. Consid-
ering the recognition accuracy and speed of farer, the column hash threshold and row 
hash threshold are both set to 99.95%. The size of the feature matrix after dimension-
ality reduction is 3 × 21. The recognition accuracy of the system is 97.91%. 

 
Fig. 3. Dimensionality reduction effect of farer. 

Table 4. The maximum and minimum accuracy in the dimensionality reduction process. 

C2DPCA Row Column Accuracy (Max) Column Accuracy (Min) 
flatten	 1 51 94.39% 2 26.72% 
flatten	 2 59 95.08% 2 48.10% 
flatten	 3	 61 98.28% 2 69.48% 
srss	 3	 49 95.59% 2 20.22% 

Performance Comparison of Incremental Update. Some users’ behavior habits are 
different from most people’s common activities. For traditional neural network, a lot of 
special behavior data need to be sampled as new training samples. These new training 
samples are appended to the original training samples. Then the model is retrained, 
which takes a long time. Even worse, it requires users to perform special activities for 
a long time to obtain adequate behavior samples. Obviously, this update method brings 
a lot of trouble to users and is impractical. 

To effectively and quickly recognition special activities of different users, farer in-
crementally updates the recognition model. Based on the original model, it directly up-
dates the model parameters according to the new activity data. The incremental update 
of farer greatly reduces users’ activity sampling time and model training time, and en-
sures the balance of recognition accuracy. farer achieve a balance of the three. 

We compare farer with traditional machine learning and deep learning from the per-
spective of recognition accuracy and model training time under the same sampling time. 
In the experiment, volunteers perform special behaviors and acts continuously for 30 
minutes. In the sampling process, each learning model uses the activity data of this 
period to update the model at regular intervals. Among them, farer employs an incre-
mental update method, while other systems mix the sampled data with the original 
training data and retrain models. 

Figure 4 shows the recognition accuracy of special activities of different durations, 
with an interval of 5 minutes. It can be seen from the figure that the recognition accu-
racy of this system is the highest when the sampling time is the same. farer is growing 
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faster than other methods.  

 
Fig. 4. Recognition accuracy of special activities with different durations 

5 Conclusion 
By studying the problem of poor accuracy of activity recognition for sliding windows, 
we propose a fine-grained activity recognition method, which employs fine-grained 
subsegments and incremental broad learning. We also design the corresponding activity 
recognition system farer. The system can effectively process the activity data, realize 
the accurate segmentation of activities and ensure the effectiveness of the action feature 
extraction. Furthermore, the fine-grained subsegment division is used to dig deeply into 
the action features and reduce the dimensionality to ensure the recognition rate of the 
activity. In the process of activity recognition, the incremental recognition model based 
on broad learning is adopted to learn the activity behavior of special users, which im-
proves the user experience. After a large number of experiments, the performance of 
farer is better than that of other recognition methods. The recognition rates for stable 
activities and changed activities are 97.91% and 90.14%. Particularly, the activities of-
ten change during actual applications. farer has a recognition accuracy far exceeding 
other methods for this situation. Meanwhile, our system requires only a small amount 
of special activity data, and after a short period of training, it achieves a high recogni-
tion rate. Therefore, farer can face more complex situations and has good practicability. 
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