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Risk-Aware Safe Optimal Control of Uncertain
Linear Systems

Pouria Tooranjipour, Bahare Kiumarsi, and Hamidreza Modares

Abstract—This paper synthesizes a risk-aware safe optimal
controller for partially unknown linear systems under additive
Gaussian noises. The risk is assessed through the concept of
Conditional Value-at-Risk (CVaR) to account for the extreme low-
probability events that occurred in a one-step cost function without
being overly conservative. The safety of the CVaR optimization
solution is also guaranteed with high probability by imposing
a chance constraint. A state-feedback risk-aware controller is
first obtained that provides an upper bound to the formulated
safe CVaR optimization problem. Then, an online data-driven
quadratic programming (QP) optimization problem is devised
to simultaneously and safely learn the unknown dynamics and
control the system with high probability. As more measurements
are collected, the safety constraint is tightened due to increasing
the confidence in estimating the dynamic model. In the end,
a numerical example is given to elucidate the efficacy of the
proposed method.

I. INTRODUCTION

By increasing the deployment of autonomous systems in
real-world settings, concerns regarding their safety have gained
increasing attention. Formally, the safety is guaranteed if the
closed-loop system trajectory remains within an admissible
subset of its state space, called safe set [1]. Several tools, such
as control barrier functions (CBF) [2], have been developed
to certify the safety of the closed-loop systems. However, a
reliable dynamic model is typically required in CBF-based
approaches which may not be available in real-world settings
due to the uncertainties and unforeseen circumstances.

Uncertainties are typically categorized as epistemic uncer-
tainty (i.e, lack of knowledge) and aleatory uncertainties (i.e.,
randomness). Several risk measures have been leveraged to
deal with aleatory uncertainties [3], [4]. As a risk measure,
the chance-constrained optimization (CCO) has been used to
impose probabilistic safety guarantees [5] in the safe control
design. Besides safety, a risk factor can be imposed on the
objective function of the optimal control design problem
to avoid performance fluctuation. However, guaranteeing an
optimal performance with high probability using the CCO
formulation of the optimal control is a daunting challenge.
Chance constraints have been widely used in stochastic model
predictive control (SMPC) [6] in which the performance and
robustness are balanced by solving a distributionally robust
optimization problem. However, heavy online computations are
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required to solve SMPC. Currently, there are two methods to
handle chance constraints in solving optimal control problems
[7]: probabilistic approximation [8], e.g., using Chebyshev
bounds, and sampling-based or scenario approaches [9].

Another commonly used risk measure is the Conditional
Value-at-Risk (CVaR), defined as the conditional expectation
of the loss function exceeding a predefined threshold [10].
CVaR has gained popularity and acceptance in optimal control
theory [11] due to being a coherent risk measure. Recently,
by applying the worst-case CVaR, a risk-aware optimal
controller is developed [12] for three different quadratic cost
functions, which are stationary, one-step and infinite-time
horizon. However, the safety constraints are ignored in [12].
Also, epistemic uncertainties are not taken into account and
the complete knowledge of system dynamic is required in [12].
Epistemic uncertainties are, however, commonplace in most
real-work applications for which an accurate system model
is not available and must be learned using data. As a result,
designing a data-driven risk-aware safe optimal controller is
lacking in the literature, which motivates this research.

In this paper, a risk-averse safe optimal control design
method is presented for partially unknown linear systems.
Unlike [13], the risk is taken into account in the loss function to
account for the extreme events that might lead the autonomous
systems into the catastrophic conditions. Also, compared
to [12], the proposed controller benefits from the chance
constraints to guarantee the safety with high probability. Thanks
to [13], the proposed method also enjoys safety in simultaneous
learning and control.

A. Notation

Throughout the paper Rn and Rn×m denote, respectively,
the set of n× 1 real column vectors and the set of n×m real
matrices. x+ = max(0, x) for any x ∈ R. Sn+ and Sn++ denote
the set of positive semi-definite and positive definite matrices
in Rn×n, respectively. We use ∥.∥F to denote the Frobenius
norm. Tr(A) denotes the trace of matrix A.

All random variables are defined on a probability space
(Ω,F ,P), where Ω is the sample space, F is its associated
Borel σ-algebra and P is the probability measure. That is P is
a non-negative countably additive set function on F such that
P(Ω) = 1. For a random variable w : Ω −→ Rn defined on
the probability space (Ω,F ,P), with some abuse of notation,
the statement w ∈ Rq is used to state the dimension of the
random variable. EP[.] denotes the expectation with respect to
the distribution P. Finally, w ∼ N (µ,Σ) denotes a multivariate
Gaussian random vector with the mean µ and the covariance Σ.
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Φ−1(.) ≥ 0 is the inverse of cumulative distribution function
of a zero mean unit variance Gaussian random variable.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following discrete-time linear control system

xt+1 = Axt +But + ωt, (1)

where xt ∈ Rnx and ut ∈ Rnu are the state of the system and
control input, respectively. Moreover ωt ∈ Rn represents the
system noise.

Assumption 1. The noise ωt is zero mean Gaussian with
variance Σ. That is, ωt ∼ N (0,Σ)

Assumption 2. There exist some known constants r > 0 and
s > 0 such that ∥A∥F ≤ s and Σ ≤ rI .

Definition 1 (Conditional Value-at-Risk [14]). For a given
measurable loss function L : Rn → R as a function of random
vector ζ ∈ Rn distributed with probability P, and tolerance
ϵ ∈ (0, 1], the CVaR of loss function L at level ϵ with respect
to the probability distribution P is defined as

CV aRP
ϵ (L(ζ)) = inf

β∈R

{
β +

1

ϵ
EP

[
(L(ζ)− β)

+
]}

(2)

Lemma 1 ([12]). Let L(ζ) = ζTPζ+2qTP 1/2ζ+qT q+r, with
P ∈ Sn+, q ∈ Rn and r ∈ R, then the following inequalities
hold.

CV aRP
ϵ (L) ≤ sup

P∈P
CV aRP

ϵ (L) ≤ r +
1

ϵ

(
Tr(ΣP ) + qT q

)
(3)

where P is the set of all probability distributions on Rn that
have the same first- and second-order moments as P.

III. MODEL-BASED RISK-AWARE LINEAR CONTROLLER
DESIGN

In this section, we first define the risk-aware safe optimal
control problem. Then, a suboptimal solution is given for it
assuming that the system dynamics are known. Therefore,
the provided solution only accounts for aleatory uncertainties
and ignores epistemic uncertainties. The subsequent sections
will leveraged the solution provided here to provide a data-
based solution that accounts for both epistemic and aleatory
uncertainties.

Problem 1. Consider the system (1). Find the optimal con-
troller u∗

t that minimizes the CVaR of one-step cost function (4a)
such that the time-varying individual safety chance constraint
(4b) is satisfied.

min
ut∈Rnu

CV aRPω
ϵ [xT

t+1Qxt+1 + uT
t Rut] (4a)

s.t. Pω (Gtxt+1 ≤ ht) ≥ 1− η (4b)

where Pω = N (0,Σ), Q ∈ Snx
+ , R ∈ Snu

++, 0 ≤ η ≤ 0.5, Gt

is a row vector, and ht is a scalar.

Remark 1. In Problem 1, the risk in the objective function
is measured by CVaR to account for the extreme effects of
the Gaussian disturbance on the objective function. Note

that the guarantees are not intended in a deterministic sense
of optimizing against the worst-case realization and safety
satisfaction against all possible closed-loop system responses,
as the robust optimization does. Instead, optimality and safety
guarantees are intended in probabilistic senses of satisfaction of
safety constraints against all but a small fraction of the system
responses accounting for extreme low-probability events that
occur in a one-step cost function. While the robust optimization
can be highly conservative since its focus is on a special ill or
rare situations, and even lead to infeasibility when the support
of the random variable is infinite, the formulated risk-averse
safe optimal control problem seeks to minimize not only the
mean but also the variance of the performance or cost function
while satisfying safety with high probability, leading to a more
predictable outcome (i.e., less variance).

Theorem 1. Let Assumption 1 hold. Then, the following state-
feedback ût(xt) gives an upper bound to the solution of
Problem 1.

ût = −
(
ϵR+BTQB

)−1
(
BTQAxt +

ϵ

2
λTBTGT

t

)
(5)

where λ ≥ 0 is a Lagrange multiplier defined as

λ = A1xt −B1 (6)

with

A1 = 2
Gt

(
A−B

(
ϵR+BTQB

)−1
BTQA

)
ϵGtB (ϵR+BTQB)

−1
BTGT

t

,

B1 =
2
(
ht − Φ−1(1− η)

√
GT

t ΣGt

)
ϵGtB (ϵR+BTQB)

−1
BTGT

t

,

if Gtxt+1 +Φ−1(1− η)
√
GT

t ΣGt > ht, otherwise λ = 0.

Proof. Instead of minimizing the objective function (4a), the
upper-bound of (4a) is obtained according to Lemma 1 as

f(ut) +
1

ϵ
Tr(ΣωQ) (7)

where f(ut) =
1
ϵ (Axt +But)

TQ(Axt +But) + uT
t Rut.

Regarding the safety constraint (4b), one can convert (4b)
into the following convex constraint as [5], [15]

ht −Gxt+1 ≥ Φ−1(1− η)
√
GT

t ΣGt (8)

Since the objective function and constraint are both convex,
we can use the KKT conditions as

2

ϵ
BTQ(Axt +But) + 2Rut + λTBTGT

t = 0 (9)

λT

(
Gt(Axt +But) + Φ−1(1− η)

√
GT

t ΣGt − ht

)
= 0 (10)

As a result, ût(xt) in (5) can be obtained from (9). By
substituting (5) into (10), one has

GtAxt −GtB
(
ϵR+BTQB

)−1
(
BTQAxt +

ϵ

2
λTBTGT

t

)
(11)

− ht +Φ−1(1− η)
√
GT

t ΣGt = 0
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From the above equation, λ can be found as (6).

IV. SAFE CVAR CONTROL DESIGN WITH UNKNOWN
DYNAMICS

If A is unknown, the following procedures are made to
simultaneously estimate the unknown parameter A and design
the control input ut for the safe CVaR problem.

Let θi = AT
i ∈ Rnx , where Ai is the i-th row of matrix A.

Also, (xi)t, and (ωi)t denote i-th entries of vectors xt and ωt.
The system (1) can be rewritten in terms of state-input data
sets as follows

(Xi)t = Ztθi + (Wi)t, i = 1, . . . , nx (12)

where

(Xi)t =

(xi)1
...

(xi)t

−

 uT
0
...

uT
t−1

BT
i , (Wi)t =

 (ωi)0
...

(ωi)t−1

, and

Zt =

 xT
0
...

xT
t−1

.

By using the regularized least square method, one has

(θ̂i)t =
(
ZT
t Zt + λLI

)−1
ZT
t (Xi)t (13)

where (θ̂i)t is the estimate of θi, i = 1, . . . , nx, and λL ≥ 0.
Therefore, the estimation of unknown dynamic A is given as

Ât =

 (θ̂T1 )t
...

(θ̂Tnx
)t

 (14)

System (1) is rewritten as

xt+1 = Âtxt +But + νt + ωt, (15)

where νt =

 (θT1 )t − (θ̂T1 )t
...

(θTnx
)t − (θ̂Tnx

)t

xt.

Lemma 2 ([13]). Let 0 < δ ≤ 1, Vt = ZT
t Zt + λLI , βt(δ) =

r

√
2 log

(
detV

1/2
t /(λ

nx/2
L δ)

)
+λ

1/2
L s, and ζt = ∥V −1/2

t xt∥2.

Under Assumption 2, the following relation is true.

Pω

{(
ωT
t ωt ≤

2rnx

δ

)
∧
(
∥νt∥2 ≤ ζtnxβt

(
δ

2nx

))}
≥ 1−δ

(16)

Problem 2. Consider the system (1) with unknown dynamics
A. Find an online data-driven suboptimal control input ūt with
respect to the CVaR one-step cost function (4a) such that the
safety chance constraint (4b) is satisfied with the probability
of at least 1− δ.

To solve Problem 2, by replacing (15) in (8), the chance
constraint (4b) is converted to

ht−Gt(Âtxt+But+νt+ωt) ≥ Φ−1(1−η)
√
GT

t ΣGt (17)

where ωT
t ωt ≤ 2rnx

δ and ∥νt∥2 ≤ ζtnxβt

(
δ

2nx

)
are held with

the probability of at least 1− δ according to Lemma 2. Thanks

to [13, Theorem 3], a computationally-friendly reformulation
to the constraint (17) is given as

ht −G(Âtxt +But) ≥ Φ−1(1− η)
√
GT

t ΣGt + et+1 (18)

where et+1 =
(
ζtnxβt(δ/(2nx)) +

√
2rnx/δ

)
∥Gt+1∥2 is a

constraint-tightening term.

Remark 2. The constraint-tightening term et+1 consists of
two parts. The first term is related to the estimation error,
and the second one is caused by the disturbance. Under
the persistence of excitation (PE) condition, by collecting
more data sets, the estimation error tends to zero [13],
i.e., limt→∞ ζtnxβt(δ/(2nx)) = 0. In future works, the PE
condition can be relaxed thanks to the concept of concurrent
learning [16].

Theorem 2. Under Assumptions 1-2, the control input ūt

obtained from the following data-driven QP optimization
problem (19) solves Problem 2.

ūt = argmin
ut∈Rnu

uT
t Etut + Ftut (19a)

s.t. Gt(Âtxt +But) + Φ−1(1− η)
√

GT
t ΣGt ≤ ht − et+1

(19b)

where Et = BTQB + R + 2
ϵCtB

TQQTB and Ft =
4
ϵCtx

T
t Â

T
t QQTB with Ct = ζ2t n

2
xβ

2
t (δ/(2nx)).

Remark 3. In the optimization problem (19), we have the
concept of safety in not only the control but also in online
learning, similar to [13]. However, unlike [13], the concept of
risk is given by using CVaR in this research to quantify the
importance of the extreme events in the cost function.

Proof. By applying Lemma 1, and using (7), one can find the
upper bound of (4a) as follows

min
ut∈Rnu

(
1
ϵ

(
Âtxt +But + νt

)T

Q
(
Âtxt +But + νt

)
+ uT

t Rut

)
(20)

where νt ∈ A, and A = {νt|νTt νt ≤ Ct} according to Lemma
2. To deal with the time-varying estimation error νt which
belongs to the closed-set A, we consider the worst-case scenario.
Therefore, the following min-max optimization problem is
given as

min
ut∈Rnu

max
νt∈A

(
1
ϵ

(
Âtxt +But + νt

)T

Q
(
Âtxt +But + νt

)
+ uT

t Rut

)
(21a)

s.t. Gt(Âtxt +But) + Φ−1(1− η)
√

GT
t ΣGt ≤ ht − et+1

(21b)

First, we solve (21) for νt by fixing the control policy ut.
Therefore, one has

max
∥νt∥2≤

√
Ct

1

ϵ

(
νTt Qνt + 2

(
uT
t B

T + xT
t Â

T
t

)
Qνt

)
(22)
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Algorithm 1 Online Data-driven Safe CVaR Control Problem
1: Input: Control matrix B, Risk factor ϵ, Chance constraint

probability level η, Confidence level δ, Number of time-
steps T , Regularization parameter λL, Number of states
nx, Constants r and s.

2: for t = 1 to T do
3: Store the state-input data sets in (Xi)t, i = 1, . . . , nx,

and Zt.
4: Find (θ̂i)t, i = 1, . . . , nx, by using the regularized least

square method (13).
5: Find Ât as the estimation of the unknown dynamic A

by stacking (θ̂i)t as (14).
6: Solve the data-driven QP optimization problem (19) for

ūt.
7: Apply ūt to the system (1), and store the next state

xt+1.
8: end for

By applying Hölder’s inequality, one can rewrite (22) as

1

ϵ

(
νTt Qνt + 2

(
uT
t B

T + xT
t Â

T
t

)
Qνt

)
≤ (23)

λmax(Q)

ϵ
νTt νt + 2

∥∥∥(uT
t B

T + xT
t Â

T
t

)
Q
∥∥∥
2
∥νt∥2 ≤

λmax(Q)

ϵ
νTt νt + 2

∥∥∥(uT
t B

T + xT
t Â

T
t

)
Q
∥∥∥2
2
νTt νt

Therefore, one has

max
∥νt∥2≤

√
Ct

λmax(Q)

ϵ
νTt νt + 2

∥∥∥(uT
t B

T + xT
t Â

T
t

)
Q
∥∥∥2
2
νTt νt

(24)

=
λmax(Q)

ϵ
Ct + 2

∥∥∥(uT
t B

T + xT
t Â

T
t

)
Q
∥∥∥2
2
Ct

Considering (24) along with (21b) results in (19).

To implement the proposed safe CVaR data-driven controller,
Algorithm 1 is given to illustrate the detailed procedure.

V. NUMERICAL EXAMPLE

Consider the discretized linear model of steering system in
autonomous vehicles as [17]

A =

[
1 0.2
0 1

]
, B =

[
0.06
0.20

]
(25)

The performance constants are defined as R = 1 and Q =
10I2×2. The safety constraint is imposed on the heading angle
such that G =

[
0 −1

]
and h = 0.1. The initial condition

is defined as x1 = [1, 1]T . The covariance of the Gaussian

disturbance is Σ =

[
0.010 0.003
0.003 0.020

]
. The system is simulated

for T = 200 time steps. Figure 1 depicts the evolution of
the heading angle versus time-steps T for different safety
probability levels η = 0.2 and η = 0.5, and a fixed risk level
ϵ = 0.2 . The chance constraint (4b) is plotted with the red
dotted line. The system is expected to satisfy this constraints
with at least 80% (left hand figure) and 50% probability (right
hand figure). As can be seen from Fig. 1, by decreasing the
probability level η, the number of trajectories violated the

safe constraints is decreased, which means the probability of
violation is decreased.

𝜂 = 0.2 𝜂 = 0.5

Fig. 1. The evolution of the heading angle for different safety probability
levels. Shaded blue areas represent the 50% and 75% confidence bounds for
500 independent experiments. The safety constraint is plotted with the red
dotted line.

To illustrate the efficacy of using CVaR in the proposed
method, Fig. 2 depicts the histogram of loss function evaluated
by 500 independent experiments with a fixed safety probability
η = 0.2. The left-hand side histogram is plotted for risk-neutral
case in which the expectation of loss function is considered.
On the other hand, the risk is considered in the right-hand side
figure to capture the extreme effects of the noise on the loss
function. As can be observed from this figure, the risk-neutral
case has a long tail compared to the risk-averse one.

Risk-neutral, 𝜀 = 1 Risk-averse, 𝜀 = 0.1

Fig. 2. Histograms of loss function for different risk levels.

In Fig.3, the control input ut is plotted for different risk
levels. As can be observed from this figure, the risk-averse
controller has tight confidence bounds compared to the risk-
neutral case.

(a) Risk-neutral, 𝜀 = 1 (b) Risk-averse, 𝜀 = 0.1

Fig. 3. The evolution of ut for different risk levels.
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VI. CONCLUSIONS

This paper is focused on designing a risk-aware safe sub-
optimal controller for unknown linear systems under additive
Gaussian noises. To measure the risk in the loss function, which
is here a one-step quadratic cost function, the concept of CVaR
is leveraged to account for the extreme events that might lead
the autonomous systems into catastrophic conditions. In the
meanwhile, the safety is guaranteed in probability thanks to
applying chance constraints. To solve this problem, a state-
feedback sub-optimal controller is designed, and we have shown
that the safety is guaranteed in probability. Also, a data-driven
method is devised by providing a QP optimization problem
in which the safety is guaranteed in simultaneous learning
and control. Finally, the proposed controller is examined by a
numerical example.
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