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Abstract. Lattice-based blind signature ensures that users can generate
a signature on a message while interacting with the signer without re-
vealing any information about the message, and resists quantum attacks.
However, the existing lattice-based blind signature schemes did not fully
address the threat of key exposure, lacking in their provision for both
forward and backward security. In this paper, we propose a lattice-based
puncturable blind signature (PBS) scheme that employs puncturable
pseudorandom functions to achieve bidirectional security. The implemen-
tation of puncturing technique not only enables fine-grained revocation of
signing capabilities, effectively safeguarding against key leakage attacks
and thereby ensuring bidirectional security, but also markedly decreases
the computational complexity involved in key updates, reducing it from
O(n) to O(1). Furthermore, the security of the proposed PBS scheme
under the SIS hard assumption is validated in the random oracle model.

Keywords: Lattice-based signature · Blind signature · Key exposure ·
Puncturable pseudorandom function · Bidirectional Security.

1 Introduction

Blind signature, introduced by Chaum [1], allows a user to generate a signature
on a message by interacting with a signer in a way that the signer gains no infor-
mation about the signed message. This property, known as blindness, effectively
preserves privacy in applications such as electronic auctions, e-cash systems, and
electronic voting [2–4]. With the continuous development of quantum computers,
traditional public-key cryptographic algorithms, which are based on mathemat-
ical challenges such as integer factorization and discrete logarithm, can be easily
solved by quantum computing. This renders cryptographic algorithms based on
these mathematical problems insecure in the quantum era. To address this chal-
lenge, cryptographic research is shifting its focus towards the development of
quantum-resistant methodologies. In the field of cryptography, the techniques
widely considered to be resistant to quantum attacks include hash-based, code-
based, multivariate-based, lattice-based, and isogeny-based cryptographic algo-
rithms. Among these, lattice-based cryptography is currently regarded as the
most promising.

The progressing of lattice-based cryptography has also given birth to the
development of lattice-based blind signature. Rücker et al. [5] introduced the
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first lattice-based blind signature scheme, which is built upon Lyubashevsky’s
identification scheme stemming from the short integer solution (SIS) hardness as-
sumption [6]. Chen et al. [7] used the matrix-vector-blinding technique to create
two hierarchical ID-based schemes resilient to quantum attacks with improved
efficiency and shorter keys. Fuchsbauer et al. [8] introduced structure-preserving
signature on equivalence classes for efficient round-optimal blind signature in
the standard model. Zhang et al. [9] combined proxy signature and blind sig-
nature to develop a novel lattice-based identity-specific proxy blind signature
scheme independent of random oracles. Gao et al. [10] designed an identity-based
blind signature scheme resilient to selective identity and chosen-message attacks
over the SIS assumption under the random oracle model, ensuring unconditional
blindness. Subsequently, Le et al. [11] constructed the first lattice-based blind
ring signature scheme, which were provably secure under the SIS hardness as-
sumption in the random oracle model. Furthermore, Alkadri et al. [12] enhanced
these methods based on the ring-SIS hardness assumption. Beullens et al. [13]
presented a practical, efficient, and round-optimal blind signature scheme based
on standard lattice assumption.

In addition to resisting quantum computing attacks, blind signature also
needs to consider the risk of key leakage. For instance, if a signer’s secret key
is compromised or stolen, any individual possessing this secret key can illicitly
forge a signature attributed to the said signer [14]. Fortunately, forward secu-
rity ensures the validity of signature that was signed prior to the disclosure of
secret key [15, 16]. In other words, even if the current secret key of the signer is
compromised, the previous sessions maintain their security.

Most forward-secure blind signature schemes were based on bilinear groups
or integer lattices. Duc et al. [17] presented the first blind signature scheme with
forward security based on bilinear pairings, followed by Sherman et al. [18] and
Yu et al. [19]. In a recent study, Yang et al.[20] presented a novel forward-secure
lattice-based Fiat-Shamir signature scheme that boasts a reduced secret key size
and efficient key evolution. In a significant stride, Le et al. [21] proposed the first
forward-secure blind signature scheme in the lattice setting, utilizing a binary
tree structure for key updates.

1.1 Motivation and Contribution

For digital signature, the best solution to the risk of key disclosure is to have
both forward and backward security. In other words, even if the signing secret
key is leaked, previous and future signatures are not affected, thus improving
the security and stability of the entire signature system. Similar work has been
done on digital signature [22] and [23], which are either vulnerable to attacks
or require substantial improvements in performance. However, there is no re-
search work on backward security of blind signature. Inspired by Xiang et al.’s
bilateral-secure signature [22] that was based on the work of Le et al. [21], this
paper gives the definition of bidirectional security, which satisfies both forward
and backward security, and proposes a blind signature scheme with bidirectional
security based on the standard lattice hypothesis. The proposed scheme uses a
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puncturable pseudorandom function to achieve fine-grained retractable key sig-
nature capability. Furthermore, the proposed scheme can resist the key exposure
attack and ensure its own security. The contributions are as follows.

1. We introduce the concept of bidirectional security, which “encapsulates” both
forward and backward security.

2. We propose a puncturable blind signature scheme based on lattices. Under
the random oracle model and the SIS hardness assumption, the proposed
scheme is proved to satisfy bidirectional security.

3. Compared to the existing forward-secure anti-key leakage methods, the com-
putational complexity of key update is reduced from O(n) to O(1), signifi-
cantly improving computational efficiency while maintaining the security of
the proposed scheme.

2 Preliminaries

In this section, we provide some notations and introduce some fundamental
knowledge.

2.1 Notations

The notations used in this paper are given in Table 1.

Table 1. Parameters of the proposed scheme

Parameters Descriptions

λ Security parameters
n,m; q; l Dimension parameters; prime modulus; positive integer
σ1, σ2, σ3 Standard deviations for different gaussian distributions
x,v;a,b,d; r1, r2 Vector; random blinding factors; random vector
c, com Commitment
A,F,K,S,T,W Public matrices
(e, z) The blinded message and its blind signature
[l] The set {1, 2, · · · , l}
‖ · ‖ The norm of a vector or a matrix
M[i] The i-th column of M

2.2 Lattice and hard assumption

Lattice. Integer lattice is a discrete subgroup of Zm. Formally, a lattice denoted
by L with the space Zm is defined as

L = L(B) := {
n∑
i=1

bixi : xi ∈ Z, i = 1, · · · , n},
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where L(B) ⊆ Zm, B = [b1, · · · ,bn] ⊆ Zm×n, B is the basis of L, n is the rank
of L. When n = m, we say L is a full-rank lattice.

Let A ∈ Zm×n and u ∈ Znq , define two lattices:

Λ⊥q (A) = {e ∈ Zm | Ae = 0 (mod q)},
Λu
q (A) = {e ∈ Zm | Ae = u (mod q)}.

If v belongs to the lattice Λu
q (A), then Λu

q (A) can be expressed as the sum
of Λ⊥q (A) and v. When S = {s1, · · · , sk} ⊆ Rm, we have ‖S‖ = max‖si‖.
S̃ = {s̃1, · · · , s̃k} is the Gram-Schmidt orthogonalization of vectors si(i ∈ [1, k]).

Definition 1. The Shortest Independent Vectors Problem, SIVP ([24])
Let Λ ⊆ Zm, where the dimension is n and full rank. B represents a set of
basis vectors. If S is a solution to the SIVPγ problem, then we have |S| ≤
γ(n) · λn(Λ(S)).

Definition 2. Gaussian Distribution ([24]) Let v and s be vectors of the lat-
tice Λ and a positive parameter on R, respectively. ρs,v(x) = exp(−π‖x− v‖2/s2)
and ρs,v(Λ) =

∑
x∈Λ ρs,v(x) are the discrete Gaussian distributions over this lat-

tice with center at vector v and parameter value s for any x.

For simplicity, we refer to ρs and DΛ,s as ρ0,s and DΛ,s,0, respectively. In the
case of s = 1, we may substitute ρ for ρ1. Additionally, we can express Dm

s,v and
Dsm as DZm,s,v and DZm,s correspondingly.

Lemma 1. ([25]) For any v ∈ Zm, if s is equal to α times the norm of v, the
probability of Pr[Dm

s (x)/Dm
s,v(x) ≤ e12/α+1/(2α2)] is at least 1− 2−100, where α

is a positive number and x is selected from Dm
s .

Trapdoors and Trapdoor Delegation. Alwen et al.[24] proposed an algorith-
m to generate a compact basis TA for the lattice Λ⊥q (A), by sampling a matrix
A from the set of matrices uniformly distributed in Zn×mq .

Theorem 1. ([24]) Assuming an odd value q (where 3 ≤ q). One matrix A
approximates a uniformly distributed integer matrix modulo q, while the other
matrix TA serves as a basis for the orthogonal complement lattice Λq(A). The
generated TA satisfies two conditions: its norm ‖T̃A‖ is upper bounded by
O(

√
n log(q)), and its norm ‖TA‖ is upper bounded by O(n log(q)). These

conditions hold with almost negligible probability when considering parameter
n.

Lemma 2. ([25]) Let m,n, q be positive integers, where q is a prime number
and m ≥ 2n log q. Then, for almost all matrices A ∈ Zn×mq (except for a fraction
of only 2q−n), and for any value of s greater than or equal to ω(

√
logm), the

distribution of u := Ae(mod q) is very close to being uniformly distributed over
Znq . Here, e ← DZm,s represents the random variable drawn from the discrete
Gaussian distribution. Additionally, when given that Ae = u(mod q) holds true,
the conditional distribution of e← DZm,s becomes exactly equal to DΛu

q (A),s.
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Lemma 3. ([26]) Consider the matrix [A1‖A2‖A3], denoted as A. Assuming
that TA2

is a basis for Λ⊥q (A2), there exists a deterministic algorithm called
ExtBasis. When given the inputs of the matrix A and the basis TA2 , ExtBasis
algorithm outputs a basis TA for the lattice Λ⊥q (A), such that the norm of T̃A

is equal to the norm of T̃A2
.

Lemma 4. (Rejection Sampling [25]) Let V be a given set, and h : V → R
and f : Zm → R represent probability distributions. Assume the existence of a
family of probability distributions indexed by v→ V , denoted as gv : Zm → R,
such that for all v ∈ V and z ∈ Zm, there exists a constant M ∈ R satisfying
the inequality M · gv(z) ≥ f(z). Given this condition, the output distributions
of the following two algorithms cannot be distinguished from each other:

1. v← h, z← gv, output (z,v) with a probability of f(z)/(M · gv(z)).
2. v← h, z← f , output (z,v) with a probability of 1/M .

Definition 3. ([25]) Given a random matrix A ← Zn×mq , find a vector z ∈
Zm\{0} such that Az=0(mod q) and ‖z‖ ≤ β.

Lemma 5. ([11, 25]) For d � qm/n, the SISq,n,m,β distribution is statistically
close to uniform over Zn×mq ×Znq . Given (A,u) from the SISq,n,m,β distribution,
there are many possible solutions s satisfying As = u.

Commitment Functions. ([9, 11]) A commitment function com maps a pair
of strings (µ,d) ∈ {0, 1}n × {0, 1}n (called committed string) to a commitment
string C := com(µ, d) ∈ {0, 1}n.

2.3 Puncturable pseudorandom function

As a special form of constrained pseudorandom functions [27–29], Boneh et al.
[30] constructed the puncturable pseudorandom functions (PRFs) from standard
lattice assumptions. Generally, PRFs has three probabilistic polynomial time
(PPT) algorithms PRFs=(F.Setup, F.Puncture, F.Eval), where

– F.Setup(1λ)→ k, where k ∈ K is the key space.
– F.Puncture(k, (x, sta)) → kx, where x ∈ X , kx ∈ Kp, sta is the status of x,

and Kp is a punctured key space.
– F.Eval(kx, (x′, sta) = F(k, (x′, sta)) where x′ 6= x, kx ∈ KP , x′ ∈ X , and
kx ← F.Puncture(k, (x, sta)). If x′ = x, then abort.

3 Formal definition of puncturable blind signature

3.1 Syntax of puncturable blind signature

We present a formal framework for the puncturable blind signature, which con-
sists of five algorithms: Setup,KeyGen,Punc,BSign, andVerify. The frame-
work is illustrated in Figure 1 and described as follows:
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– Setup (1λ) → (pp, vk, skinit). vk is a verifiable public key and skinit is an
initial secret key.

– KeyGen (pp, vk, skinit, i) → ski. ski is the secret key at the time point i,
where i ∈ [1, · · · , ‖T‖] and ‖T‖ is the total number of time period.

– Punc (skinit, µ, i)→ sk′i. µ is a message that is to be signed, and the secret
key ski is punctured to sk′i at the time point i. And then set ski ← sk′i.

– BSign(pp, ski, µ, i)→ (e, z). An interactive process requires the cooperation
between a user U and a signer S as follows.
1. Blinding:(µ, a) → e. U blinds the message µ with a blinding factor a to

get e, and then sends it to S.
2. Signing: (e, ski) → z. S generates a corresponding blind signature z by

using the punctured secret key ski, and sends z to U .
3. Unblinding: (z, a) → z′. U uses the blinded signature z with the blind

factor a to derive a valid signature z′ for the original message µ.
– Verify (pp, vk, i, e, z)→ {0, 1}. Using the public key vk to verify the signa-

ture z of the blinded message e, the algorithm returns 1 if the signature is
valid, and 0 otherwise.

Fig. 1. Puncturable blind signature: the blind signature process is encapsulated by
the blue border, whereas the secret key puncturable process is delineated by the red
border.

The correctness implies that for any (pp, vk, skinit) ← KeyGen(1λ) and
(e, z)← BSign(pp, ski, e, i), the blindeed message/signature pair are valid, and
Verify algorithm fails with negligible probability. In other words:

Pr[Verify(pp, vk, i, e, z) = 1] = 1− negl(λ).

3.2 Security Notions for Puncturable Blind Signature

The security of a blind signature scheme encompasses the properties of one-
more unforgeability, which prevents a malicious user U∗ from producing more



Lattice-based puncturable blind signature scheme with bidirectional security 7

signatures than those requested, and blindness, which ensures that a malicious
signer S∗ cannot obtain any useful information about the user’s message [21, 33,
34, 39–41]. A PBS scheme, which introduces the puncturable property to blind
signature, also adheres to these security properties.

Definition 4. (Blindness) Let AdvblindPBS be the advantage of S∗ wins in the
blindness game BlindS

∗

PBS,

AdvblindPBS,S∗ = Pr[BlindS
∗

PBS(b′ = b)] ≤ 1/2 + negl(λ).

The PBS scheme is blindness if AdvblindPBS,S∗ is exactly 1/2.

A blindness game BlindS
∗

PBS between a challenger C and a malicious S∗ con-
sists of three phases as follows.

– Initialization. A malicious S∗ picks a security parameter λ, generates the
common parameters pp, an initial secret key skinit, and a verifying key vk.

– Challenge. S∗ selects two messages, denoted as µ0 and µ1, randomly choos-
es a bit b from {0, 1}, and then sends a message/signature pair (eb, zb) cor-
responding to µb to C. The challenger, in turn, sends a pair of messages
(µb, µ1−b) to S∗. In this interaction, S∗ serves as the role of the signer. Us-
ing its knowledge, S∗ ultimately obtains two message/signature pairs: the
original (eb, zb) and a newly created (e1−b, z1−b) corresponding to µ1−b.

– Output. S∗ outputs a bit b′ ∈ {0, 1}, and wins the game if b′ = b.

Definition 5. (One-More Unforgeability) Let AdvOmfPBS,U∗ be the advantage
of U∗ that gets l + 1 valid message/signature pairs.

AdvOmfPBS,U∗ = Pr[OmfU
∗

PBS(Verity(pp, vk, i, e, z) = 1] ≤ negl(λ).

The PBS scheme is one-more unforgeability if AdvOmfPBS,U∗ is negl(λ).

The one-more unforgeability game OmfU
∗

PBS consists of three phases [21].
During the time period i, the malicious entity U∗ is permitted to make poly-

nomially bounded random oracle queries and signing queries adaptively. Within
the time period i, the forger executes a puncturing query to acquire the new
secret key S′i corresponding to the time period i.

– Setup. The forger U∗ sends security parameter λ to the challenger C. C runs
Setup(1λ) to generate pp and key pair (vk, skinit), and sends pp and vk back
to U∗, while keeping skinit secret.

– Queries.
1. Puncturing key query QK(i) during the time period i: if ī ≤ ‖T‖ − 1,

the challenger retrieves and provides the new secret key S′i. Otherwise
ī = ‖T‖ − 1, an empty string is returned as sk′‖T‖−1.

2. Puncturing signature query QS(i,V) during the time period i, where
i ≤ ‖T‖ − 1: the challenger responds with a randomly generated value.
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3. Break-out query QB (̄i), which can only be made once: the challenger
sends an empty string, effectively ending the query phase and transiting
to the output phase.

– Forge. U∗ outputs o forgery message/signature pair (e∗, z∗) at the time
period i∗ < ī. It wins if QS(e∗, z∗) has never been queried, and (e∗, z∗) is
valid.

3.3 Bidirectional Security

In the context of digital signature security, forward and backward security are
pivotal, ensuring the safety of past and future signature, respectively, despite a
current key breach. Nevertheless, modern digital landscapes demand more robust
security measures. This paper introduces a novel security attribute: bidirectional
security, amalgamating forward and backward security. Significantly, we show-
case the proposed puncturable blind signature scheme, leveraging “puncturable”
techniques to deliver bidirectional security. This adaptability equips it to ad-
dress more intricate security challenges. Essentially, if a key is compromised at
any point, the proposed scheme can selectively invalidate it, maintaining the
integrity of all other keys throughout their lifespan. This enhances the signature
system’s resilience against a wider array of attacks.

Definition 6. (Bidirectional Security) A puncturable blind signature scheme
is bidirectional security if for any malicious user U∗, a valid message/signature
pair cannot be forged successfully at the puncture point j 6= i. Let AdvBidiPBS (U) be
the advantage of U∗ that gets a valid message/signature pair.

AdvBidiPBS (U) := Pr[BidiU
∗

PBS(pp, vk, j, e, z∗) = 1] = negl(λ).

A puncturable blind signature scheme is bidirectional security if BidiU
∗

PBS is negl(λ).

The bidirectional security game BidiU
∗

PBS comprises three distinct phases.

– Setup
1. Firstly, the total lifetime of keys, denoted by T , is defined.
2. Then, the challenger C declares the puncture point ti.
3. Next, C selects a security parameter λ and computes the verification key
vk and the initial secret key skinit. The public parameters pp and vk are
subsequently submitted to the malicious user U∗, while keeping skinit
private.

4. Additionally, the set representing the lifetime of the puncturable blind
signature is established as T = {t0, t1, . . . , tT−1}, where each tj corre-
sponds to a specific secret key for the respective time period, except for
the puncture point ti.

– Queries
1. In this phase, the set T is partitioned into three subsets: Tpre = {t0, t1, · · · , ti−1},
{ti}, and Tpost = {ti+1, · · · , tT−1}.
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2. The malicious user U∗ is permitted to perform signature queries adap-
tively at any time point other than the puncture point ti. These queries
are limited to time period within Tpre and Tpost.

3. During the query phase, U∗ can make up to ‖T‖ − 2 signature queries
in a random and sequential manner from either Tpre or Tpost.

– Forgery
1. Finally, in the forgery phase, the malicious user U∗ generates a valid

message/signature pair (e, z∗) at the time period tk.
2. U∗ is considered successful if the pair satisfies the following conditions:

(a) The verification process succeeds, i.e., Verify(pp, vk, k, e, z∗) = 1,
where k is a time period in T but not equal to i.

(b) The time period k has not been queried before and belongs to either
Tpre or Tpost.

4 The puncturable blind signature scheme

We utilize a binary tree structure for key generation. Each time period is allo-
cated to a leaf node, and keys are derived from the root node using the ExtBasis
delegation mechanism. The lattice-based puncturable blind signature scheme
comprises five main algorithms: PBS={Setup, KeyGen, Punc, BSign, Verify}.
Figure 2 depicts the signing process.

The algorithm initializes the matrix Fti by concatenating the matrices {A0,
At1

1 · · · A
tl
l } and subsequently generates the secret key Sti ∈ Z(l+1)m×k for a

designated time period t, leveraging the trapdoor TFti
and associated parame-

ters σ and K. Subsequently, random vectors r1 ∈ Zlm and r2 ∈ Zm are sampled
from discrete Gaussian distributions Dlm

σ2
and Dm

σ2
, respectively. These vectors

are concatenated to form r ∈ Z(l+1)m sampled from D
(l+1)m
σ2 . The ciphertext

x ∈ Zqn is then computed through multiplication with Fti and reduction modulo
n. Finally, the resulting ciphertext x is transmitted to the user.

– Setup(1λ, 1l): For a security parameter λ and a binary tree depth l, this
phase initializes with the selection of a prime q, dimensions n, k, and other
parameters. Matrices K and Ab

i are randomly generated from Zn×kq and
a trapdoor pair (A0,TA0

) is obtained via TrapGen. Additionally, a one-
way hash function H and a computationally binding, statistically hiding
commitment function com are defined. The final output consists of public
parameters pp, a public key vk encompassing the matrices, and an initial
secret key Sinit set as the trapdoor TA0

.
– KeyGen(pp, vk,Sinit): This algorithm mainly refer to the method in [21].

As mentioned earlier, based on binary-tree data structure, for any leaf tt, the
secret key can be computed by its ancestorąŕs secret key. It finally output the
matrix Fti = [A0‖At1

1 ‖ · · · ‖A
tl
l ] ∈ Zn×(l+1)m

q as public key and Sti as secret
key which is computed by SampleKey, at the time period t = (t1, · · · , tl).
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– Punc(Sinit, ti, e): The puncture algorithm is performed locally by the signer
without interactions. In fact, Punc is a key updating algorithm, we can
use the puncturable PRF get the new secret key that we required: Sti ←
F.Puncture(Sinit, ti, e′). Finally, we have the punctured key Sti .

– BSign(pp, vk, ti, e, z): This is an interactive blind signing algorithm between
the signer and the user, Figure 2 illustrates the interactive phase. At the time
period ti, the blinded message e is provided to the signer, who then returns
the blinded signature z.

– Verify(pp, vk, ti, e, z): For the time t = (t1, · · · , tl), the algorithm accepts
signature z on the message e, output 1 if and only if ‖z′‖ ≤ σ3

√
(1 + l)m

and ê = e′, where

Σ = (d, e′, z′), Fti = [A0‖At1
1 ‖ · · · ‖A

tl
l ] ∈ Zn×(l+1)m

q ,

c := com(µ+ d), ê := H(Ftiz
′ −Ke′ mod q, c).

Otherwise, return 0.

5 Security analysis of PBS scheme

5.1 Correctness

Theorem 2. The puncturable blind signature scheme is correct after at most e2
restarts with probability at least 1− 2−100.

The proof of correctness can be accessed in Appendix A.

5.2 Blindness

Theorem 3. The PBS scheme is blindness, if com is a statistically hiding com-
mitment and H is a one-way and collision-resistant hash function.

The proof of blindness can be accessed in Appendix B.

5.3 One-more unforgeability

Theorem 4. (One-moreUnforgeability) Suppose there is an adversary (qH ,
qS , δ)-forger A, which is against one-more unforgeability of the puncturable blind
signature with non negligible probability δ, qH and qS are the number of queries
to the random oracle H and blind signing oracle, respectively. Then there exists
a polynomial-time algorithm B, that can find a solution to l2-SISq,n,(1+2l)m,β

problem with β = max{(2σ3 + 2σ
√
k)
√

(1 + l)m, (2σ3 + σ2)
√

(1 + l)m}.

The proof of one-more unforgeability can be accessed in Appendix C.
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The signer S(pp, Sinit, ti) The User U(pp, vk, µ)
Phase 1:
01. Fti := [A0‖At1

1 ‖ · · · ‖A
tl
l ]

02. Sti ∈ Z(l+1)m×k ← SampleKey(Ft,TFti , σ,K)

03. r1 ∈ Zlm ← Dlm
σ2 , r2 ∈ Zm ← Dm

σ2

04. r = (r1‖r2) ∈ Z(l+1)m $← D
(l+1)m
σ2

05. x = Fti · r ∈ Zqn
06. Send x to the user

Phase 2:
07. Fti := [A0‖At1

1 ‖ · · · ‖A
tl
l ]

08. a← D
(l+1)m
σ2 , b← Dk

σ2

09. d $← {0, 1}n, c := com(µ+ d)
µ = Ftia + x + Kb(mod q)

10. e′= H(µ, c) ∈ (R)kH , e := e′ + b
11. Output e with probability

min={
Dmσ1

(e)
M1·Dmσ1,e′

(e) , 1}

12. Send e back to the signer.
Phase 3:
(13. Puncture: Sti ← Punc(Sinit, ti, e))
13. z = r + Stie
14. Output z with probability

min={ D
(l+1)m
σ2

(e)

M2·D
(l+1)m
σ1,Sti

e(z)
, 1}

15. Send z to the user
Phase 4:
16. z′ = z + a
17. If z′ with probability

min={ D
(l+1)m
σ3

(e)

M2·D
(l+1)m
σ3,z (z′)

, 1}

(17′. else ⊥ and restart from Phase 1)
18. Send Σ = (ti, µ, (d, e′, z′)) to the signer.
19. Output the view: Σ = (ti, µ, (d, e′, z′))

Phase 5:
20. Output: the view V = (ti, r, e, z)

Fig. 2. The signing process of PBS.
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5.4 Bidirectional security

In the puncturable blind signature scheme, a bidirectional security model is es-
tablished through interactions between a malicious user U∗ and a challenger C
following the selection of a puncturing point by U∗. The essence of the bidi-
rectional security proof lies in the inability of U∗ to forge signature for chosen-
message at the non-puncturing time nodes, even after the puncturing event,
thus ensuring the PBS system’s bidirectional security. More precisely, within
this signature scheme, the compromise of the secret key at the i-th time period
precludes an adversary from forging signatures for messages before or after this
period. The bidirectional security is depicted in Figure 3.

Fig. 3. Bidirectional security

Theorem 5. The bidirectional security of the puncturable blind signature scheme
is defined such that the probability that a malicious user U∗, successfully forges
signatures at the non-puncturing time nodes is defined as negligible.

Proof. According to the definition of bidirectional security, it ensures that even
if the key is compromised at a specific point in time, known as the “puncturing
point”, it will not affect the validity of signatures made before that point and will
not reveal any key information from signatures made after. In practice, malicious
users will choose to attack at a time that falls before or after this puncture point.
The unforgeability of signatures is essentially a reflection of both forward and
backward security.

– Setup The malicious user U∗ declares the challenged puncture point i (where
i ∈ [‖T‖ − 1]) and receives the secret key Sti from the challenger. Subse-
quently, the user adaptively selects a node j for signature inquiries (where
j ∈ [‖T‖ − 1] and j 6= i), with a maximum of ‖T‖ − 2 inquiries allowed.

– Query
1. Based on the blind signature interaction rules outlined in Phase 2 of

Appendix A.2, the challenger C returns the corresponding signature.
2. The user U∗ announces the end of the queries.

– Forgery At time node tk, the user U∗ forges a message/signature pair (e,
z∗) such that Verify(pp, vk, k, e, z∗) = 1. The time node k must not have
been previously queried and belong to either Tpre or Tpost.
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1. If tk ∈ Tpre, due to the inherent One-more Unforgeability property of
blind signatures, this ensures the forward security of the PBS scheme.

2. If tk ∈ Tpost, it implies that the adversary has a non-negligible probability
of solving the SIS problem. This ensures the backward security of the
PBS scheme.

5.5 Comparisons

The focus of our work lies in contrasting with existing signature schemes, such
as forward-secure blind signature (FBS). In terms of efficiency, a comparison can
be easily made by referring to Figure 4.

Fig. 4. In the punctured blind signature scheme, when the secret key is leaked at a
certain period, we only need to update the leaked secret key independently and in a
fine-grained manner

In the FBS scheme, if the adversary acquires the secret key during the time
period t010, all subsequent keys must be updated. However, in the proposed
punctured blind signature scheme, even if the same scenario occurs, key updates
are only necessary at t011 due to the precise nature of these updates, thereby sig-
nificantly reducing the computational complexity from O(n) in the FBS scheme
to O(1) in the proposed method.

6 Conclusions

In this paper, we have proposed a puncturable blind signature scheme based on
lattices with bidirectional security. Our approach employs puncturable pseudo-
random functions for efficient and targeted key revocation, offering computation-
al efficiency and flexible key updates, thus effectively tackling key leak challenges.
Future research can build upon this foundation, exploring PBS construction in
the standard model, adaptive message signing, and scenarios involving multiple
compromised keys.
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A Proof for Correctness

Theorem 6. The punctured blind signature scheme guarantees correctness after
a maximum of e2 restarts, with a probability of at least 1− 2−100.

Proof. Referring to Figure 4, from the user’s perspective, we are able to obtain
the message/signature pair (e′, z′). It is readily verifiable that:

H(Ftz′ −Ke′ (mod q), com(µ,d)) = e′.

Furthermore, in the absence of restarts during the rejection sampling process,
given the relationship µ = Fta + x + Kb (mod q), we have:

Fta = µ̂− Ftz−Ke′(mod q)⇒ µ= µ̂− Ftz + Ke′ + x + Kb(mod q),

and
µ =µ̂− Ftz + Ke′ + x + Kb(mod q)

=µ̂− Ft(r + Sie) + Ke′ + x + Kb(mod q)

=µ̂− FtSie + Ke′ + Kb(mod q)

=µ̂−Ke + Ke′ + Kb(mod q)

=µ̂.

Hence H(Ftz′ −Ke′(mod q), com(µ,d)) = e′. Note that, with overwhelming
probability, for all i ∈ [l] we have

Dm
σ (e)

M ·Dm
σ,c(e)

≤ e1+1/288

M
, ‖z′‖ ≤ σ3

√
(1 + l)m

with probability at least 1 − 2−100, if c = 12‖σ‖. Being used in the rejection
sampling, we requires that

Dm
σ (e)

M ·Dm
σ,c(e)

≤ 1.

We can get the best choice M ≈ e1+1/288. The rejection sampling approach has
applied in Phases 3 and 4, to ensure PBS scheme can output a valid signature,
after at most M2 ·M3 ≈ e2 restarts.

B Proof for Blindness

Theorem 7. The proposed PBS scheme is Blindness, if com is a statistically
hiding commitment and H is a one-way and collision-resistant hash function.

Proof. As defined in Definition 4 of Blindness, the malicious signer S∗ sub-
mits two messages, µ0 and µ1, to the challenger. Subsequently, the challenger
randomly selects a bit b ∈ {0, 1} and engages in an interaction with S∗. To fa-
cilitate the signing of both messages, µb and µ1−b, the challenger C assumes the
roles of two users: Ub = U(pp, vk, µb) and U1−b := U(pp, vk, µ1−b). Throughout
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this process, the signer S∗ acquires two message/signature pairs: (eb, zb) and
(e1−b, z1−b) corresponding to the users Ub and U1−b, respectively. We contend
that the knowledge of (eb, zb) and (e1−b, z1−b) bears no correlation to the spe-
cific messages µb and µ1−b. In essence, this signifies that the signer S∗ remains
oblivious to the identity of the user with whom they are interacting.

Indeed, for A = (t, rb, eb, zb) (b ∈ {0, 1}), since zb and z1−b are produced
by S∗ itself, so we only to analyze the eb and e1−b. In Phase 2, e = e′ + b
and output it with probability min=(Dm

σ1
(e)/M1D

m
σ1,e′(e), 1), by the rejection

sampling, we can make sure the eb and e1−b are independent of the same message
being signed.

As for the signature (db, e′b, z
′
b), and (d1−b, e′1−b, z

′
1−b), which is similar to eb

and e1−b, we only to analyze the z′b and z
′
1−b. In Phase 4, uses the rejection sam-

pling, z′ = z+a and output it with probability min=(D(l+1)m
σ3 (z′)/M3D(l+1)m

σ3,z , 1),
by the rejection sampling, we can make sure the zb and z1−b are independent of
their corresponding messages being signed.

C Proof for One-more unforgeability

For brevity, we designate the (qH , qS , δ)-forger A as a polynomial-time algorithm
B that violates the one-more unforgeability of our PBS protocol with a significant
probability δ, utilizing a maximum of qH hash queries and qS sign blind queries.
The theorem asserts that the existence of such a forger enables the construction
of an SIS problem-solving algorithm.

Theorem 8. (One-moreUnforgeability) Suppose there is an adversary (qH , qS , δ)-
forger A which is against one-more unforgeability of our blind signature PBS with
non negligible probability δ, qH and qS are the number of queries to the random
oracle H and blind signing oracle, respectively. Then there exist a polynomial-
time algorithm B, that can find a solution to the l2-SISq,n,(1+2l)m,β problem with
β = max{(2σ3 + 2σ

√
k)
√

(1 + l)m, (2σ3 + σ2)
√

(1 + l)m}.

Proof. – Instance. Assume that B wants to solve an instance of the SISq,n,(1+2l)m,β

problem
F ·V = 0 log q, ‖V‖ ≤ β, F ∈ Zn×(1+2l)m (1)

– Guessing the target. B guesses the target time period t∗ that A wants to
attack by choosing randomly t∗ = (t∗1, · · · , t∗l )

$← {0, · · · , τ −1}. The success
probability of guessing t∗is 1/τ .

– Initialize. B sets common parameters pp as in the Setup algorithm. B sets
the public key vk to A.

– Queries. B plays the role of signer and interacts with A. B responds to A
queries as follows:
1. Key update queries QK(t) with t = (t1, · · · , tl): If t ≤ t∗, B halts the

query. Otherwise, it computes an extended basis for a matrix incorpo-
rating historical and current key updates, from which it derives all keys
in skt using the actual key update algorithm.



Lattice-based puncturable blind signature scheme with bidirectional security 19

2. Hash queries QH(µ, c): Upon receiving a hash query, B checks its hash
list LH . If the query exists, it returns the stored hash value. Otherwise, it
selects an unused random value from a predefined set, stores the query-
hash pair in LH , and forwards the hash value to the forger A.

3. Signing queries QS(t, µ): B constructs a matrix Ft based on key updates
and checks if t 6= t∗. If so, it computes an extended basis for Ft and
samples a signing key accordingly. If t = t∗, it simply assigns the preset
key S∗.

4. Break-out signing queries QB(t): When A makes such a query, if t ≤ t∗,
B halts. Otherwise, it sets the break-out time t to t and responds to A
with the secret key St, similar to key update queries.

– Forge. Eventually, A outputs a forgery (t′1, µ
∗
1, Σ

∗
1 ). B checks if t′1 = t or

not. If not, then B aborts. Otherwise, B accepts the forgery. For the forgery
(t∗, µ∗1, Σ

∗
1 ), we have:

1. Σ∗1 = (d1, e′1, z′1);
2. e′1 := H(Ft∗−Ke′1mod q, com(µ∗1, d

′
1)), where Ft∗ = [A0‖A

t∗1
1 ‖ · · · ‖A

t∗l
l ] ∈

Zn×(1+l)m;
3. ‖z′1‖ ≤ σ3

√
(1 + l)m.

If e′2 = e′1, B aborts and replaysA(pp, pk, ρ′) at most qqsH times using different
random tapes ρ′ and different hash queries. If e′2 6= e′1, then B returns

Ft∗z′1 −Ke′1, com(µ∗1, d
′
1), Ft∗z′2 −Ke′2, com(µ∗2,d

′
2) (2)

Since the pair in Equation 2 are both coming from the same hash query and
com is computationally binding, we have µ∗2 = µ∗1,d

′
1 = d′2 and

Ft∗z′1 −Ke′1 = Ft∗z′2 −Ke′2(mod q)

or equivalently,

Ft∗(z′1 − z′2 − S∗(e′1 − e′2) = 0(mod q)(mod q)

Set v̂ := z′1−z′2−S
∗(e′1−e′2) . Signing interaction (with In particular, we show

that if A can produce a forgery by restarting the signing interaction (with
B), then B is able to find a solution to the l2-SIS problem given by Equation
(1). Indeed, to restart the signing interaction, A delivers result:=(a,b, e′, c)
to B. Now B with its view V = (t, r, e, z), will check whether all

e− b = e′ = H(x+ Ft∗a +Kb(mod q), c) (3)

e′ = H(Ft∗a + Ft∗z−Ke′(mod q), c) (4)

‖z + a‖ > σ3
√

(1 + l)m (5)



20 No Author Given

hold or not. If all are satisfied, B restarts the interaction with A. Let assume
that afterwards A successfully produces a valid signature Σ̂ = (d̂, ê′, ẑ′). Let
b̂ ∈ Dm

σ1
be such that e = ê′ + b̂. Then, the following relations have to hold

e− b̂ = ê′ = H(x + Ft∗a +Kb̂(mod q), c), (6)

ê′ = H(Ft∗ ẑ−Ke′(mod q), com(µ∗, d̂)), (7)

‖ẑ‖ ≤ σ3
√

(1 + l)m. (8)

Now, if ê′ 6= e′, then B aborts. Otherwise, Equations 3 and 6 give Ft∗a +
Ft∗z(mod q) = Ft∗ ẑ(mod q). We insert zeros into the corresponding position
of v̂ to get the desired solution v to the problem given by Equation 1.
Obviously, F ·v = 0(mod q), and ‖v‖ = ‖v̂‖. Let v̂ := a+z− ẑ′, then v̂ 6= 0.
This is true as otherwise a + z = ẑ′, which implies that ‖z + a‖ ≤ ησ3

√
m

(by Equation 7.)
This contradicts Equation 4. Again, we have Ft∗ · v̂′ = 0(mod q) , v̂ 6= 0

and ‖v̂‖ ≤ ‖a‖+ ‖z‖+ ‖ẑ‖ ≤ (2σ3 + σ2)
√

(1 + l)m.
To summarise, we have shown that B can solve the l2-SISq,n,(1+2l)m,β

problem, with

β = max{(2σ3 + 2σ
√
k)
√

(1 + l)m, (2σ3 + σ2)
√

(1 + l)m}.


