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Abstract

We consider orientable sequences over residue group Zq. We prove properties
of a generalized Lempel homomorphism and give an upper bound on periods of
orientable sequences. We generalize the results of [6].

1 Introduction

For positive integers n and q greater than one let Zn
q be the set of all qn vectors

of length n with entries in the group Zq of residues modulo q. An order n de
Bruijn sequence with alphabet in Zq is a sequence that includes only once every
possible string of size n as a subsequence of consecutive symbols. An order
n de Bruijn digraph, Bn(q), is a directed graph with Zn

q as its vertex set and
for two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), (x;y) is an edge if and
only if yi = xi+1 for all i = 1 to n − 1. We then say x is a predecessor of
y and y is a successor of x. Evidently, every vertex has exactly q successors
and q predecessors. Furthermore, two vertices are conjugates if they have the
same successors. A cycle in Bn(q) is a path that starts and ends at the same
vertex. It is called vertex disjoint if it does not visit any vertex more than once.
Two cycles or two paths in the digraph are vertex disjoint if they do not have
a common vertex. A cycle is primitive in Bn(q) if it does not simultaneously
contain a word and any of its translates. A function d : Zn

q → Zq is said to be
translation invariant if d(w + λ) = d(w) for all w ∈ Zn

q and all λ ∈ Zq. The
weight w(s) of a word or sequence s is the sum of all elements in s (not taken
modulo q). Similarly, the weight of a cycle is the weight of the ring sequence that
represents it. Obviously a de Bruijn sequence of order n defines a Hamiltonian
cycle in Bn(q), i.e., a cycle that visits each vertex exactly once and which we
denote as a de Bruijn cycle.

For an integer n > 1 define a map D : Bn(2) → Bn−1(2) by

D(a1, . . . , an) = (a1 + a2, a2 + a3, . . . , an−1 + an)

where addition is modulo 2. This function defines a graph homomorphism and
it is known as Lempel’s D-morphism due to the fact that it was studied in [4].
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We present a generalization to nonbinary alphabets [1]. For a nonzero
β ∈ Zq, we define a function Dβ from Bn(q) to Bn−1(q) as follows. For a =
(a1, . . . , an) and b = (b1, . . . , bn−1), Dβ(a) = b if and only if bi = dβ(ai, ai+1)
for i = 1 to n−1, where dβ(ai, ai+1) = β(ai+1−ai) mod q. Clearly Dβ is trans-
lation invariant. It is also onto under a simple condition that gcd(β, q) = 1.

2 Orientable sequences

Definition 1
We define an n-window sequence S = (si) (see, for example, [5]) to be a periodic
sequence of period m with the property that no n-tuple appears more than once
in a period of the sequence, i.e. with the property that if sn(i) = sn(j) for some
i, j, then i = j mod m, where sn(i) = (si, si+1, . . . , si+n−1).

A de Bruijn sequence of order n over alphabet Zq is then simply an n-window
sequence of period qn (i.e. of maximal period), and has the property that every
possible n-tuple appears once in a period. Since we are interested in tuples
occurring either forwards or backwards in a sequence we also introduce the
notion of a reversed tuple, so that if u = (u0, u1, . . . , un−1) is a q-ary n-tuple,
i.e. if u ∈ Bn(q), then uR = (un−1, un−2, . . . , u0) is its reverse. If a tuple u
satisfies u = uR then we say it is symmetric. A translate of a tuple involves
switching u = (u0, u1, . . . , un−1) ∈ Bn(q) to u = (u0 + λ, u1 + λ, . . . , un−1 + λ),
where λ ∈ Zq. In a similar way, we refer to sequences being translates if one can
be obtained from the other by an addition of a nonzero constant λ. We define
the conjugate of an n-tuple to be the tuple obtained by switching the first bit,
i.e. if u = (u0, u1, . . . , un−1) ∈ Bn(q), then the conjugate û of u is the n-tuple
(u0 + λ, u1, . . . , un−1), where λ ∈ Zq.

Two n-window sequences S = (si) and T = (ti) are said to be disjoint if
they do not share an n-tuple, i.e. if sn(i) ̸= tn(j) for every i, j. An n-window
sequence is said to be primitive if it is disjoint from its complement. We next
give a well known result showing how two disjoint n-window sequences can be
joined to create a single n-window sequence, if they contain conjugate n-tuples.

Lemma 1
Suppose S = (si) and T = (ti) are disjoint n-window sequences of periods l and
m respectively. Moreover suppose S and T contain the conjugate n-tuples u
and v at positions i and j, respectively. Then

[s0, s1, . . . , si+n−1, tj+n, tj+n+1, . . . , tm−1, t0, . . . , tj+n−1, si+n, si+n+1, . . . , sl−1]

is a generating cycle for an n-window sequence of period l +m.
Definition 2

An n-window sequence S = (si) of period m is said to be an q-orientable se-
quence of order n (an OSq(n)) if, for any i, j , sn(i) ̸= sn(j)

R.
Definition 3

A pair of disjoint orientable sequences of order n, S = (si) and S′ = (s′i), are
said to be orientable disjoint (or simply o-disjoint) if, for any i, j, sn(i) ̸= s′n(j)

R.
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We extend the notation to allow the Lempel morphism Dβ to be applied
to periodic sequences in the natural way. That is, Dβ is a map from the set
of periodic sequences to itself; the image of a sequence of period m will clearly
have period dividing m. In the natural way we can define D−1

β to be the inverse

of Dβ , i.e. if S is a periodic sequence than D−1
β (S) is the set of all sequences T

with the property that Dβ(T ) = S.
Theorem 1

Suppose S = (si) is an orientable sequence of order n and period m with the
property that

if s1, . . . , sn is a word in S then − sn,−sn−1, . . . ,−s1 is not a word of S. (∗)

Then
(a) If w(S) = 0 mod q then D−1

β (S) consists of an disjoin set of q primitive
orientable sequences of order n+ 1 and period m satisfying the condition (∗).
(b) If gcd(w(S), q) = 1 than D−1

β (S) is one sequence made of q shifts
T0, T1, . . . , Tq−1, where Ti = Ti−1 + c.

3 An upper bound

We present here the results from the paper [7]. We first introduce a special type
of symmetry for q-ary n-tuples.

Definition 4
An n-tuple u = (u0, u1, . . . , un−1), ui ∈ Zq (0 ≤ i ≤ n− 1), is m-symmetric for
some m ≤ n if and only if ui = um−1−i for every i (0 ≤ i ≤ m− 1).

An n-tuple is simply said to be symmetric if it is n-symmetric. We also need
the notions of uniformity and alternating.

Definition 5
An n-tuple u = (u0, u1, . . . , un−1), ui ∈ Zq (0 ≤ i ≤ n − 1), is uniform if
and only if ui = c for every i (0 ≤ i ≤ n − 1) for some c ∈ Zq. An n-tuple
u = (u0, u1, . . . , un−1), ui ∈ Zq (0 ≤ i ≤ n − 1), is alternating if and only if
u0 = u2i and u1 = u2i+1 for every i (0 ≤ i ≤ ⌊(n− 1)/2⌋), where u0 ̸= u1.

We can then state the following elementary results.
Lemma 2

If n ≥ 2 and u = (u0, u1, . . . , un−1) is a q-ary n-tuple that is both symmetric
and (n− 1)-symmetric, then u is uniform.

Lemma 3
If n ≥ 2 and u = (u0, u1, . . . , un−1) is a q-ary n-tuple that is both symmetric
and (n−2)-symmetric then either u is uniform or n is odd and u is alternating.

The following definition leads to a simple upper bound on the period of an
OSq(n).

Definition 6
Let Nq(n) be the set of all non-symmetric q-ary n-tuples.

Clearly, if an n-tuple occurs in an OSq(n) then it must belong to Nq(n);
moreover it is also immediate that |Nq(n)| = qn − q⌈n/2⌉. Observing that all
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the tuples in OSq(n) and its reverse must be distinct, this immediately give the
following well-known result.

Lemma 4 ([2])
The period of an OSq(n) is at most (qn − q⌈n/2⌉)/2.

As a first step towards establishing our bound we need to define a special
set of n-tuples, as follows.

Definition 7
Suppose n ≥ 2, and that v = (v0, v1, . . . , vn−r−1) is a q-ary (n−r)-tuple (r ≥ 1).
Then let Ln(v) be the following set of q-ary n-tuples:

Ln(v) = {u = (u0, u1, . . . , un−1) : ui = vi, 0 ≤ i ≤ n− r − 1}.

That is Ln(v) is simply the set of n-tuples whose first n− r−1 entries equal
v. Clearly, for fixed r, the sets Ln(v) for all (n − r)-tuples v are disjoint. We
have the following simple result.

Lemma 5
Suppose v and w are symmetric tuples of lengths n− 1 and n− 2, respectively,
and they are not both uniform. Then

Ln(v) ∪ Ln(w) = ∅.

We are particularly interested in how the sets Ln(v) intersect with the sets of
n-tuples occurring in either S or SR, when S is an OSq(n) and v is symmetric.
To this end we make the following definition.

Definition 8
Suppose n ≥ 2, r ≥ 1, S = (si) is an OSq(n), and v = (v0, v1, . . . , vn−r−1) is a
k-ary (n− r)-tuple. Then let

LS(v) = {u ∈ Ln(v) : u appears in S or SR}.

We can now state the first result towards deriving our bound.
Lemma 6

Suppose n ≥ 2, r ≥ 1, S = (si) is an OSq(n), and v = (v0, v1, . . . , vn−r−1) is a
q-ary symmetric (n− r)-tuple. Then |LS(v)| is even.

That is, if |Ln(v)| is odd, this shows that S and SR combined must omit at
least one of the n-tuples in Ln(v). We can now state our main result.

Observe that, although the theorem below applies in the case q = 2, the
bound is much weaker than the bound of Dai et al. [3] which is specific to the
binary case. This latter bound uses arguments that only apply for q = 2. The
fact that q = 2 is a special case can be seen by observing that, unlike the case
for larger q, no string of n−2 consecutive zeros or ones can occur in an OSd(n).
Theorem 2 (Generalization of Theorem from [3])
Suppose that S = (si) is an OSq(n) (q ≥ 2, n ≥ 2). Then the period of S is at
most

(qn − q⌈n/2⌉ − q⌈(n−1)/2⌉ + q)/2 if q is odd,

(qn − q⌈n/2⌉ − q)/2 if q is even.
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Table 1: Bounds on the period of an OSq(n) (from Theorem 2)

Order q = 2 q = 3 q = 4 q = 5
n = 2 0 3 4 10
n = 3 1 9 22 50
n = 4 5 33 118 290
n = 5 11 105 478 1490

We conclude by tabulating the values of the bounds of the above Theorem
for small q and n.

We give an example of the sequence in OS3(4): S = 0001112. Then in the
notation of Theorem 1 (b):
T0 = 0 0 0 0 1 2 3 �0
T1 = 1 1 1 1 2 3 4 �1
T2 = 2 2 2 2 3 4 0 �2
T3 = 3 3 3 3 4 0 1 �3
T4 = 4 4 4 4 0 1 2 �4
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