
EasyChair Preprint
№ 10168

The Effectiveness of Software Complexity
Metrics in Predicting Software Performance
Bottlenecks

Pasindu Madhuwantha, Chamod Kodithuwakku,
Ashen Jayarathne, Manisha Karunanayake, Dilshan De Silva and
Samitha Vidhanaarachchi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 15, 2023

The Effectiveness of Software Complexity Metrics

in Predicting Software Performance Bottlenecks

Madhuwantha M.G.P, Kodithuwakku D.R.G.C.W, Jayarathne A.H.B, Karunanayake M.L, D. I. De Silva, Samitha Vidhanaarachchi

1 Department of Computer Science & Software Engineering

 Faculty of Computing, Sri Lanka Institute of Information Technology,

 New Kandy RD, Malabe, Sri Lanka
1Corresponding Author: mpasindu72@gmail.com

Abstract—Customer demands for software services must be

met in terms of reaction speed, productivity, accessibility, and

availability. Software engineers refer to these issues as

performance bottlenecks, particularly in terms of software systems

when they refuse to operate at the required level of services.

Software, and even hardware resource constraints, as well as badly

written programming, may function as a bottleneck to software

performance.

To address these challenges, this paper proposes the use of

software complexity metrics to evaluate the complexity of software

code and identify potential performance bottlenecks. The paper

identifies three different types of complexity metrics, including

McCabe's cyclomatic complexity metrics, NPATH complexity

metrics, and the complexity of Halstead software science metrics.

These metrics are used to quantify various aspects of software

complexity, including data flow, control flow, and size.

The paper argues that software complexity metrics can be a

valuable tool for identifying and managing performance

bottlenecks in software systems. Excessive complexity can lead to

poor software performance, and regular monitoring and

management of complexity can help prevent performance

bottlenecks. While high complexity can be an indicator of potential

issues, other factors such as hardware limitations or external

factors could also come into play.

In addition to identifying performance bottlenecks, software

complexity metrics can be used to track complexity over time,

which can help identify trends and potential areas for

optimization. The paper recommends that software organizations

regularly monitor and manage software complexity using these

metrics to ensure that software systems perform at the required

level of service.

The paper also discusses the importance of accurately

measuring software complexity and the challenges involved in

doing so. Different programmers might have different perceptions

of what constitutes "complex" code, or different methods for

measuring complexity might produce conflicting results. The

authors suggest that integrating complexity metrics into existing

development processes could help overcome some of these

challenges.

Finally, the paper highlights the potential benefits of using

software complexity metrics beyond identifying performance

bottlenecks. For example, tracking complexity over time could

help identify trends and potential areas for optimization. The

paper concludes that software complexity metrics can be a

valuable tool for software organizations looking to ensure that

their systems perform at the required level of service.

Keywords—complexity metrics, McCabbe’s cyclomatic

complexity metrics, NPATH complexity metrics, complexity of

Halstead software science metrics

I. INTRODUCTION

Enhancing software quality is a quantifiable indicator of
software code excellence. Given that the software complexity
could be calculated on widely recognized software
parameters, the testing stage of the procedure is likely to take
less time and expense to estimate, particularly because that
stage could only be operated after the completion of software
coding. This may be done by defining metrics, the parameters
of which may be determined by looking at how a programme
or source code is written. There are nonetheless many
software metrics that are employed often in the software
business that are still poorly comprehended [1].

Software engineers may not have the skills and resources

needed to guarantee the precision and dependability of the

programs they develop. Software metrics have been created to

give a standardized method of monitoring software

development in order to meet this problem. These metrics may

be used in a variety of software development fields, including

healthcare, banking, and e-commerce, to make sure that

software meets the necessary standards for functionality and

quality. The fundamental objective of this software

complexity metrics to ensure that bottlenecks are found

during the SDLC process and clients are satisfied during the

whole development process, rather than just at release. Thus,

by comparing McCabbe's cyclomatic complexity metrics,

NPATH complexity metrics, and the complexity of Halstead

software science metrics, this paper aims to identify the

metrics that can predict software bottlenecks earlier and

faster.

Although software metrics have shown themselves to be

a useful tool for controlling and monitoring software

development, putting them into practice presents certain

difficulties. For instance, some elements of software

development, including intricate mathematics, images, and

tables, could be difficult to quantify using conventional

measurements. To make sure that these components are

monitored and handled properly in such circumstances,

software engineers may need to establish their own unique

tailored metrics.

Software metrics should be versatile and adaptive to

various development settings to assist overcome these issues.

To guarantee that the metrics are appropriate for the current

project, it is necessary for project managers, software

developers, and other stakeholders to work closely together.

Programs for education and training can also assist

developers in becoming more familiar with the application of

software metrics and their possible advantages.

Software metrics are a crucial instrument for verifying the

precision, dependability, and functionality of software

products, to sum up. However, their implementation might be

difficult, and developers may have to alter the metrics to meet

certain requirements. Software metrics may be a useful tool

for enhancing the effectiveness and efficiency of software

development processes with the right planning, coordination,

and training.

Despite this fact, certain software complexity measurements

were put forward more than 30 years ago, while others came

later. Sometimes, the complexity of the source code is used

to measure software progress. Multiple measurements are

employed, making it impossible to distinguish between

methods and outcomes. Additionally, evaluating for a

specific source code is not practicable or easy [2]. Software

complexity refers to how challenging it can be to use and

understand a programme [3]. The extent in which the

qualities that make maintenance difficult have been identified

and are influenced by programme complexity is known as

software maintainability [3]. Figure 1 depicts these

interdependencies.

Software complexity metrics are created to assess the
degree of complexity and maintainability of software systems.
These indicators can be used to spot possible performance
bottlenecks in the software development cycle. Developers
and testers may optimize software performance and improve
the efficiency and caliber of their testing by being aware of the
elements that affect it.

The purpose of this study is to evaluate the performance of
three software complexity metrics—McCabbe's cyclomatic
complexity metrics, NPATH complexity metrics, and the
complexity of Halstead software science metrics—in
identifying software performance bottlenecks. The number of
separate pathways that may go through a piece of code is
counted using McCabbe's cyclomatic complexity metrics,
which can reveal both the complexity of the code and any
possible performance problems. In order to provide a more
thorough understanding of software complexity, NPATH
complexity measurements count all potential routes through a
program. Finally, the complexity of Halstead software science
metrics assesses the code's complexity using variables such
the quantity of operators and operands, adding still another
degree of understanding to software complexity and possible
performance problems.

This study offers useful insights into how software
developers and testers may optimize software performance
and enhance testing effectiveness and quality by looking at the
usefulness of these three software complexity measures in
anticipating performance bottlenecks. These indicators enable
developers to see possible performance problems early on in
the development cycle, cutting costs and raising the overall
quality of the software product.

II. LITERATURE REVIEW

Software metrics are described as the on-going
implementation of calculation-related methodologies to the
entire SDLC procedure and its final products for providing
valuable and promptly available information to management,
in addition to the implementation of such methods to enhance
the procedure and its merchandise [4].

Gill and Grover say that the level of complexity in
assessing, testing, developing, and altering software is known
as software complexity [5]. Grady emphasizes that the main
application of software metrics pertains to decision-making
processes [6]. According to him, software metrics are
employed to gauge particular features of a software procedure
or application. Metrics assist developers in choosing between
two decisions. This term also identifies one of the issues with
modern software advancement, which is a shortage of data for
forecasting and assessing projects related to software.

The below figure shows the connection between software
complexity metrics and software systems.

Fig. 1. Connection between software complexity metrices and software

systems

Software complexity may either be seen as the resources
required for the endeavor or as the efficacy of the work.
According to this method, the level of difficulty of an issue
may be described as the quantity of resources needed for an
ideal resolution. The materials to carry out a particular
approach can subsequently be utilized to determine how
difficult the answer is. These materials include at least two
components, which are time and space. Time refers to the
man-hours or time used by the computer while space refers to
the memory of the computer [4].

McCabe postulated that the cyclomatic frequency of the
program's flowgraph may be used to gauge software
complexity. One benefit of this metric is that it can be quite
simple to calculate from the programme code and flow
diagram. McCabe's cyclomatic value is supported by the
majority of code measurement software equipment, which is
an indication of how user-friendly it is [7].

The metric encourages a top-down approach to
development to manage module difficulty at the conceptual
stage, or before any coding is done. Additionally, it may be
employed to calculate the complexity of programme modules
in relation to McCabe's suggestion of a maximum of 10.
Additionally, it may be used to discover the most basic

programme design and as an example for distributing testing
resources in controlling alternative programme design [8].

It might be difficult for a person to comprehend a
programme with an excessive amount of cyclomatic
complexity, yet it might not be as difficult for a machine to
comprehend it, according to some researchers who claim that
it just evaluates psychological difficulty and not the amount of
computing power [9].

Furthermore, it sees both iterative and selective predicates
as adding the exact same level of difficulty. It continues to be
one of the most often used metrics of software complexity
regardless of all of its drawbacks, most likely since it is
straightforward to comprehend and apply [9].

III. METHODOLOGY

Qualitative research is an important method for assessing
software complexity measures since it enables a thorough
review of the advantages and drawbacks of various metrics.
Three distinct forms of software complexity measures—
McCabbe's cyclomatic complexity metrics, NPATH
complexity measurements, and the complexity of Halstead
software science metrics—are compared, contrasted, and
evaluated in this study using qualitative research.

Software developers frequently utilize McCabbe's
cyclomatic complexity metrics because they offer a
straightforward yet accurate technique to gauge the
complexity of code. On the other side, NPATH complexity
measurements provide a more thorough view of software
complexity by assessing all potential pathways through a
program. Finally, by counting the number of operators and
operands in the code, the complexity of Halstead software
science metrics adds another degree of understanding to the
concept of software complexity.

The comparison and assessment of three distinct forms of
software complexity metrics—McCabbe's cyclomatic
complexity metrics, NPATH complexity metrics, and
complexity of Halstead software science metrics—provided in
this study will be very helpful to software developers and
testers. This research gives helpful insights into the benefits
and drawbacks of each statistic by contrasting and comparing
these diverse methodologies.

The software development industry favors McCabbe's
cyclomatic complexity metrics because they offer a quick and
accurate approach to gauge the complexity of code. By
analyzing all potential pathways through a program, NPATH
complexity metrics provide a more thorough picture of
software complexity. Last but not least, by assessing the
quantity of operators and operands in the code, the complexity
of Halstead software science metrics offers an extra degree of
insight into software complexity.

Software testers and developers may select the measure
that best fits their specific requirements and streamline their
software development process by being aware of the
advantages and disadvantages of each metric. As a result,
testing efficiency and quality may increase while software
development costs may decrease.

In addition to helping software developers and testers, this
research advances the discipline of software engineering by
illuminating the numerous software complexity measures and
their applications in foretelling bottlenecks in program

performance. Overall, this study emphasizes the value of
periodically tracking software complexity using the right
metrics and using the best statistic for the job.

 Metrics for Software Lifecycle, sometimes referred to as
management metrics, should be considered first when
comparing various forms of software complexity metrics. This
category entails evaluating a number of software development
process elements, including methodology, reuse, effort, cost,
and progress metrics. Metrics for methodology concentrate on
the techniques and methods utilized in software development.
The amount of code reused during the software development
process is measured by reuse metrics, while the resources
needed to finish the project are evaluated by effort metrics.
Progress metrics track the project's advancement over time,
whereas cost indicators assess the costs related to software
development. In general, these indicators offer perception into
the software development process and aid in making sure the
project is on track to meet its objectives.

Metrics for Software Product makes up the second
category. Program characteristics are measured by
programme process metrics, often known as quality metrics.
These criteria include style, complexity, size, cost, reusability,
portability, effectiveness, performance, functionality,
usability, and dependability metrics. These criteria evaluate
how challenging the program's size, scope, or written
documentation are..

The number of Code Lines (LOC) in the program is the
third category of software complexity measures. This statistic
indicates the difficulty of the program's development. Many
academics see it as an essential unit of measurement for
software complexity. This measure is simple to grasp since it
simply counts the number of source instructions necessary to
solve a problem. However, lines used for blank commands
and remark lines are not tallied when calculating the number
of instructions. While this statistic is valuable, it is vital to
evaluate other metrics as well, because some programs may
have many code lines owing to lengthy comments or other
non-functional code.

The scale and complexity of modern software systems
need the use of efficient testing methods. Size characteristics
are terms used for defining things like physical size and mass.
Size measures include code lines and Halstead's software
science [10], which is a measure that M. Halstead suggested.

A. McCabbe's cyclomatic complexity

 One statistic that focuses on the control and data flow more
than the programme size is this method, which supports a 1976
model of a specification flow graph created by Thomas J.
McCabb. [11] In this model, control flow is illustrated via a
programme graph. The borders indicate control flow between
nodes, while nodes indicate processing tasks. A great instance
of control flow measurements is McCabe's metrics [12]. The
following approaches can be used to calculate the cyclomatic
number via V (G). McCabb's Complexity has a flaw in that it
cannot differentiate between several control flow architectures
and its conditional statements. Moreover, it disregards the
degree of layering across different control flow topologies.
NPATH is superior to the McCabb's metric [13].

B. NPATH complexity metric for control flow

The management framework of a programme serves as the
basis for the control flow difficulty measurements. The control

flow metric NPATH, developed by Nejmeh [14], quantifies
the total amount of operation pathways that pass through a
function's parameters. It quantifies acyclic execution
pathways. One illustration of control flow indicators is
NPATH. NPATH complexity (NC), one of the most used
software complexity metrics. The drawbacks of McCabe's
measure, which do not distinguish between distinct types of
flow controls and nesting layers mechanisms, are solved by
NPATH, another measure of software complexity.

C. The complexity of Halstead software science

Software science metrics for complexity measurements of
software products were first proposed by M. Halstead [10].
The foundation of Halseatd's software science is an
improvement on counting the lines of code when estimating
programme size. The total amount of operands, operators, and
their corresponding occurrence in the programme (code) are
all counted using Halstead's metrics. When calculating the
time, difficulty, effort, estimated length, volume, vocabulary
and length of the programme, the following calculations
should take these operands and operator combinations into
account. Because control flow complexity is impossible to
calculate during quick and simple computation, this
complexity measurement has a significant flaw.

IV. RESULTS AND DISCUSSION

 The paper uses a static analysis of control flow and size
measures to measure software complexity. This means that the
analysis is done without actually running the program.
Instead, it looks at the program's structure and measures its
complexity based on that. The paper specifically looks at three
types of complexity metrics commonly used in the literature:
NPATH, McCabe complexity, and Halstead's complexity
metrics. These metrics can help identify potential bottlenecks
in the program and optimize its performance. It is important
to note that the performance of the program's source code is
not directly related to the statistical evaluation of metrics.
However, using these metrics can help identify potential areas
for improvement and guide the development and testing
process.

 When it comes to measuring software complexity, this
paper adopts a static analysis approach that takes into account
control flow and size metrics. The study examines three
popular complexity metrics found in the literature, namely
NPATH, McCabe complexity, and Halstead's complexity
metrics, with the aim of identifying bottlenecks and
optimizing the software development process.

The three elements that can effect software performance are
program size, data organization, and control flow. Bottlenecks
can be predicted by each of these criteria in different ways.
NPATH, for example, counts the total number of processing
pathways via a function and evaluates their acyclic nature.
Halstead's metrics, on the other hand, count the number of
operators, operands, and their occurrences in the code to
assess the complexity, effort, expected length, volume,
vocabulary, and length of the program.

McCabb's complexity metrics, on the other hand, use a
program graph to represent the control flow. The graph has
nodes that represent processing tasks, each consisting of one
or more code statements, and edges that indicate the control
flow between the nodes.

While these indicators can aid in identifying possible
bottlenecks and improving software development, they do not
directly evaluate program performance. Nonetheless, by
examining these data, software developers and testers may get
useful insights into their code's strengths and shortcomings
and adjust their development process appropriately.

V. CONCLUSION

Software complexity metrics play a crucial role in
software development by assessing the quality of the software
being produced. With the increasing complexity of software
systems, the need for efficient testing methods is becoming
more crucial. Software complexity metrics can help testers by
counting the number of acyclic execution paths through a
program, leading to better testing and higher quality software.

In this context, software complexity measurements such as
NPATH, McCabb's complexity metrics, and Halstead's
Software Science Complexity can aid in the identification of
bottlenecks and the improvement of software development.
NPATH counts the number of acyclic execution pathways in
a function, assessing their acyclic nature and assisting testers
in identifying potential issues. McCabb's complexity metrics
reflect control flow using a program graph, with edges
denoting control flow between nodes and nodes representing
processing jobs. Potential bottlenecks can be found by
examining the complexity of the control flow. Halstead's
Software Science Complexity counts the number of operators,
operands, and their occurrences in the program, enabling for
the calculation of time, difficulty, effort, predicted length,
volume, vocabulary, and length.

Developers and testers can detect bottlenecks and enhance
software quality by comparing the results of certain software
complexity indicators. This can assist to reduce software
development costs while also enhancing testing effectiveness
and software quality. In conclusion, software complexity
measures are critical for measuring software quality, and their
application may assist guarantee that software development is
productive, efficient, and generates high-quality outputs.

REFERENCES

[1] T. J. M. Cabe, A complexity measure, IEEET Ransactions on Software

Engineering, vol. 2, 1976

[2] I. Herraiz, J. M. G. Barahona, and G. Robles, Towards a theoretical
model for software growth, in 29th International Conference on
Software Engineering Workshops (ICSEW'07).

[3] W. Harrison, K. Magel, R. Kluczny, and A. Dekok, Applying Software
Complexity Metrics to Program Maintenance Compute, vol. 15, pp. 65-
79, 1982

[4] Goodman, P. Practical Implementation of Software Metrics. London:
McGrawHill, 1993

[5] Grover, P.S. & Gill, N.S. Composite Complexity Measures (CCM). In
Lee, M., Barta, B.-Z., & Juliff, P. (Eds.), Software Quality and
Productivity: Theory, Practice, Education and Training (pp. 279-283).
London: Chapman & Hall, 1995

[6] Grady, R. B. Practical Software metrics for Project management and
Process Improvement. New Jersey: Prentice Hall, 1992.

[7] McCabe, T. A software complexity measure, IEEE Transactions on
Software Engineering, SE-2(4), 308-320, 1976.

[8] Fenton, N. E. & Pfleeger, S. L. Software Metrics – A Rigorous and
Practical Approach. London: International Thomson Computer Press,
1996.

[9] Zuse, H. Software Complexity – Measures and Methods. Berlin:
Walter de Gruyter & Co, 1991

[10] M. Halstead, Elements of Software Science. North Holland, 1977

[11] T. A. McCabe, A complexity measure, IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[12] A. Fitzsimmons and T. Love, A review and evaluation of software
science, Computing Survey, vol. 10, no. 1, March 1978.

[13] E. E. Millis, Software metrics, SEI Curriculam Module SEI- CM. vol.
12, no. 2.1, Dec, 1988.

[14] B. A. Nejmeh, NPATH: A measure of execution path complexity and
its applications, Comm. of the ACM, vol. 31, no. 2, pp. 188-210,
February 1988

