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Abstract. In maritime supply chain management, challenges such as material 

traceability, environmental sustainability, and economic efficiency significantly 

hinder effective materials management and limit the opportunities for recycling 

and reusing ship components. This study presents a framework that integrates 

blockchain technology (BT), smart contracts (SC), and artificial intelligence (AI) 

to address critical challenges in maritime supply chain management, such as ma-

terial traceability, environmental sustainability, and economic efficiency. This 

framework represents a precursor to a more complex and advanced development. 

The main objective of the study is to analyze existing technologies and evaluate 

how they can be implemented more efficiently and practically in the maritime 

sector. The framework enhances the lifecycle management of ship components, 

promotes circular economy practices, and improves overall logistics operations. 

The integration of digital twin (DT) technology further supports real-time moni-

toring and decision-making, creating a scalable and adaptable ecosystem that op-

timizes resource use and maximizes residual value. The research outlines the po-

tential benefits and practical implementation challenges of this advanced digital 

framework in the maritime sector, offering a pathway toward more sustainable 

and efficient supply chains. 

Keywords: Digital Twin, Blockchain Technology, Artificial Intelligence, 

Smart Contracts, Circular Economy, Maritime Supply Chain. 

1 Introduction 

Ships, as intricate systems, necessitate continuous oversight to maintain maritime safety 

and efficiency. To meet this demand, sophisticated computerized tracking and moni-

toring systems have been created to handle various stages of a ship's lifecycle, from its 

design and daily operations to its eventual dismantling and recycling. This emphasizes 

the critical role of thorough documentation in maritime transport (Okasha et al., 2010). 

Moreover, this complex operational framework mandates diligent information and 

metadata management involving multiple operators. Historically, the maritime sector 
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has relied on preventative maintenance, dictated by fixed schedules for parts replace-

ment or maintenance work. This strategy, however, often resulted in unnecessary down-

time and costs, or equipment failures due to sparse maintenance intervals (Pahl, 2022). 

Currently, there is a shift towards proactive maintenance, facilitated by digital advance-

ments and data analytics. Emerging technologies such as smart contract (SC), block-

chain technology (BT), and digital twin (DT) are increasingly essential for enhancing 

the reliability and serviceability of maritime equipment (Farah et al., 2024; Taghavi & 

Perera, 2024). Technological innovations are significantly transforming the maritime 

sector by automating processes and enhancing large-scale transport infrastructure man-

agement. The integration of AI into maritime operations marks a significant advance-

ment, with technologies like neural networks and algorithms enhancing navigational 

safety and operational efficiency. Over the past decade, these AI applications have be-

come increasingly vital in addressing navigational and structural challenges in the in-

dustry. Figure 1 illustrates a comprehensive management system based on DT, which 

supports the entire lifecycle of ship components and materials tracked and evaluated 

from a circular economy and value creation perspective, enriched by AI and IoT data 

insights. Throughout their operational life, ships generate vast amounts of data. AI lev-

erages this data to optimize operations and enhance environmental sustainability. By 

continuously processing and learning from this data, AI not only supports real-time 

decision-making but also anticipates future needs, enabling proactive maintenance and 

efficient resource utilization. 
 
The main purpose of this work is to examine how emerging technologies can promote 

a circular economy in the maritime sector, enhancing sustainability and operational ef-

ficiency throughout the entire lifecycle of a ship, from design and construction to its 

Figure 1 Digital Twins-based management system. 
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dismantling and recycling. The document aims to provide a clear overview of the op-

portunities and challenges associated with the adoption of these technologies, through 

a critical review of traditional maintenance strategies and an analysis of innovative so-

lutions currently in development. 

The article is organized as follows: the first section presents a literature review on the 

technologies contributing to the digitalization of the maritime sector. In the following 

sections, recent developments in the digitalization of the ship lifecycle will be analyzed. 

The focus will then shift to emerging technologies, such as smart contracts, blockchain, 

and digital twin, with an in-depth analysis of their potential impact on maritime opera-

tions management and navigational safety. Finally, the document concludes with a re-

flection on the future implications of these technologies for the sector, with particular 

emphasis on the use of AI and the formulation of a framework that can ensure efficiency 

in the shipping industry. 

2 Literature Review 

The primary objective of this literature review is to provide a comprehensive overview 

of the key technologies—digital passport (DP), BT, SCs, DTs, and predictive models—

applied in the management of ship components. This review will elucidate how each 

technology contributes to enhancing operational efficiency, safety, and sustainability 

in the maritime industry. By synthesizing the current state of research and practice, this 

review aims to identify existing gaps and propose a unified framework that integrates 

these technologies for improved maritime asset management. 

DPs are pivotal tools designed to promote product sustainability and lifecycle trans-

parency. These digital documents serve as comprehensive repositories of a product's 

lifecycle information, from manufacturing to disposal, facilitating the traceability. In 

the maritime industry, DPs can record and manage detailed information about ship 

components, akin to the Digital Battery Passport (DBP) introduced in the battery in-

dustry. The DBP provides a standardized data model for tracking the lifecycle of bat-

teries, capturing data on manufacturing processes, materials used, and recycling infor-

mation. Similarly, a DP for ship components can include data such as material specifi-

cations, operational performance, and compliance with environmental regulations, 

thereby supporting circular economy initiatives (Gianvincenzi, Marconi, Mosconi, & 

Tola, 2024). In the literature, studies conceptualizing the development of a DP for the 

useful life of ships are limited. In maritime settings, studies like those by Adisorn et al., 

2021, have explored frameworks for DPs that facilitate data sharing within the supply 

chain to support circular practices. Sterling, 2014, developed a related database for in-

tegrating material information into a ship's 3D model, improving material traceability. 

BT is founded on the principles of immutability and decentralization. It operates as 

a distributed ledger that records transactions across multiple nodes in a network, ensur-

ing that data, once recorded, cannot be altered retroactively. This characteristic of im-

mutability enhances the security and trustworthiness of the data. Irannezhad, 2020 has 

delved into the use of BT in logistics and transportation, highlighting its potential to 
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streamline process coordination, information sharing, and data security through encryp-

tion. Oloruntobi et al., 2023 examined the potential adoption of BT in global maritime 

container logistics, highlighting benefits for trading partners and shipping companies. 

Other researchers have explored BT applications in maritime logistics, focusing on trust 

issues within supply chains. Andersson & Leander Bachelor, 2019; Zhou et al., 2020. 

identified significant trust issues such as lack of communication, opportunistic behav-

ior, distrust in information, and high interdependence among actors Loklindt et al., 

2018; Tijan et al., 2019further evaluated the adoption of BT for shipping information 

exchange and proposed decentralized data storage solutions for the maritime sector. 

SCs are self-executing contracts with the terms of the agreement directly written into 

code. They automatically execute and enforce the terms of a contract when predefined 

conditions are met, eliminating the need for intermediaries. This automation leads to 

increased efficiency, reduced costs, and enhanced reliability in executing contractual 

agreements. Study by Editors et al., 2023  shows that SCs can automate processes such 

as verifying goods receipts at ports, triggering actions like delivery confirmations and 

invoice generation. This not only streamlines financial operations but also ensures on-

going, real-time monitoring of cargo, which is vital in maritime logistics. Khalid et al., 

2023 have demonstrated how SC code (chaincode) can be customized for the specific 

needs of maritime logistics, offering enhanced privacy and scalability. This customiza-

tion is particularly advantageous for maritime businesses requiring a controlled, adapt-

able BT environment.  

DTs are defined as virtual replicas of physical assets, systems, or processes that mir-

ror their real-world counterparts in real-time. These digital models integrate data from 

various sources, including sensors (e.g. IoT), to simulate the physical asset’s behavior, 

performance, and condition. The structure of a DT typically includes a digital model of 

the asset, real-time data inputs, and advanced analytics capabilities to provide insights 

and predictive maintenance recommendations(Madusanka et al., 2023). The benefits of 

such DT technology include enhanced safety (Sepehri et al., 2022) increased opera-

tional efficiency, less environmental impacts (Ang et al., 2017) and the sustainability 

of shipping operations, along with the potential for developing new and innovative 

business models within the shipping industry (Lambrou et al., 2019). 

Machine learning (ML) techniques play a crucial role in predictive analytics, 

providing sophisticated tools for data analysis and forecasting across various sectors, 

including maritime operations. ML encompasses supervised learning methods like re-

gression and classification, unsupervised learning such as clustering and dimensionality 

reduction, and reinforcement learning. These techniques analyze large datasets to iden-

tify patterns and predict future events effectively. In the maritime industry, ML is em-

ployed to anticipate maintenance requirements, optimize routing, and boost operational 

efficiency (Kaklis et al., 2023).. DTs benefit significantly from predictive models, as 

they use ML algorithms to process historical and real-time data, predicting the perfor-

mance of ship components and systems. Case studies have shown that predictive mod-

els can accurately forecast the failure of critical components, preventing expensive 

downtime, and enhancing decision-making, reducing operational costs, and improving 

safety in maritime operations (Troupiotis-Kapeliaris et al., 2022) 
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The literature highlights several gaps in the use of advanced technologies in mari-

time operations. A key issue is the lack of a universal and adaptable data model for 

DPs, which impedes standardized application across different sectors (Gianvincenzi, 

Marconi, Mosconi, & Tola, 2024). The security and traceability of DTs also need en-

hancement, potentially through BT integration, to ensure data integrity and system re-

liability (Zheng & Tian, 2022). Furthermore, the precision of predictive models under 

extreme conditions is limited, necessitating improvements for effective use in complex 

maritime environments (Troupiotis-Kapeliaris et al., 2022).. There's also an absence of 

integrated frameworks that effectively combine DPs, BT, SCs, DTs, and predictive 

models, which limits the realization of their combined potential. Developing such 

frameworks is crucial for advancing the management of ship components and opera-

tions, as shown by early efforts like Hyundai's "Smart Ship" project and the "Smart 

Maritime Network” (Chen & Guedes Soares, 2021). A unified approach is proposed to 

optimize ship management and enhance maritime operations' efficiency, safety, and 

sustainability. 

3 The Comprehensive Framework for Maritime Sector 

This section outlines a comprehensive framework designed to enhance the management 

and lifecycle tracking of ship components by integrating advanced technologies. The 

framework utilizes digital DPs, BT, SCs, DTs, and predictive models to improve data 

transparency, regulatory compliance, operational efficiency, and environmental impact 

within the maritime industry. The primary goal is to ensure that ships are effectively 

monitored and managed throughout their lifecycle, preserving their intrinsic value. The 

framework is structured in layers, each with a specific role, to manage all phases from 

design and material acquisition to construction, operational management, maintenance, 

repair, and recycling. The layers are as follows:  

• Blockchain layer. At the core of the framework, BT acts as an integrity enabler, 

securely immutable recording key historical evidence for transactions throughout 

the ship's lifecycle. 

• Computing layer. It leverages data processing capabilities to define and charac-

terize the DT, providing real-time or near real-time accounts of the system's con-

ditions, such as maintenance and operational use. 

• Data management layer. It includes the information management framework 

and user interfaces, enabling project participants to interact with the DT applica-

tions. 

• Connection layer. It interfaces with the physical world through APIs and sen-

sors, facilitating real-time data collection. 

 

Figure 2 visually depicts the structure of the comprehensive framework, highlighting 

the cyclical nature of a ship's lifecycle—from design and manufacturing to operations, 

maintenance, demolition, and recycling. Each phase is interconnected by the flow of 

project data, supporting a circular economy. The framework is represented in layers: 

the blockchain layer (dark blue) ensures data integrity and traceability, the computing 

layer (purple) handles computational processes, the data management layer (blue) 
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manages data handling and user interfaces, and the connection layer (green) manages 

physical data inputs and outputs.

 
Fig. 2. The Framework Structure and layers representation. 

The subsequent sections will detail each layer of the framework. The Blockchain Layer 

ensures data integrity, security, and transparency throughout the ship's lifecycle using 

BT. This layer integrates with the DP to facilitate effective tracking and management. 

Next, the Computing Layer manages and processes complex data using advanced com-

putational techniques and AI to optimize lifecycle management, enhance operational 

efficiency, and ensure regulatory compliance. This layer builds on a structured data 

model to handle parameters derived from technological, legislative, and lifecycle anal-

yses. The Data Management Layer (DML) collects, stores, manages, and analyzes data 

across all lifecycle phases, from design to demolition. Supported by the Computing and 

Connection Layers, the DML enables optimized operations, improved safety, and reg-

ulatory compliance. It handles data collection, archiving, access control, production 

planning, real-time monitoring, and integration with resource management systems. Fi-

nally, the Connection Layer facilitates communication between all components and 

systems throughout the ship's lifecycle. It ensures connectivity, real-time monitoring, 

and data integration to support predictive maintenance and operational efficiency. This 

layer integrates with the Computing Layer to provide the necessary computing power 

for data processing and predictive analytics. Each section will analyze the technologies 

involved, their integration within the framework, and their contributions to enhancing 

ship lifecycle management. 

 

3.1 Blockchain Layer 

The blockchain layer serves as the cornerstone of the framework, ensuring data integ-

rity, security, and transparency throughout the ship's lifecycle. By leveraging BT, the 
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framework records every transaction related to the ship's lifecycle in an immutable 

ledger. This layer addresses the challenges of traditional product lifecycle management 

systems, such as data silos, lack of transparency, and difficulties in ensuring data integ-

rity. BT mitigates these issues, facilitating effective tracking and management of prod-

ucts throughout their lifecycle, which is critical for achieving sustainability goals and 

complying with regulations. To address the inherent challenges of traditional lifecycle 

management systems, such as data silos, lack of transparency, and data integrity issues, 

we propose integrating BT and SCs into the DP. This integration will enable immutable 

and transparent recording of all lifecycle events, from the construction to the decom-

missioning of ship components, ensuring comprehensive traceability and accountabil-

ity. This proposed solution has been prototyped to test its effectiveness, demonstrating 

how its core features can overcome these challenges. The proposed system defines spe-

cific roles for different stakeholders to ensure a fully decentralized yet accessible and 

user-friendly DP management process. The key roles include: 

• Owner. The entity that creates the DP and has primary control over its initial setup 

and registration. This role can operate in private, consortium, or public BT settings. 

• Updater. Stakeholders responsible for updating the information in the DP. This 

can include manufacturers, operators, and recyclers who add or modify data as the 

product moves through its lifecycle. 

• Public and Private Stakeholders. Entities such as regulatory bodies and the pub-

lic can view the information in the DP for transparency and compliance purposes, 

while authorized entities such as maintenance providers and suppliers need access 

to specific data within the DP to perform their functions. This differentiation is 

based on the Battery Regulation (EU)2023/1542, which regulates the battery DP, 

including publicly accessible data points and different levels of data privacy to 

ensure that certain sensitive information is only accessible to authorized personnel. 

• Verifying Body. An external entity responsible for verifying and validating the 

information contained in the DP to ensure its accuracy and compliance with rele-

vant regulations. 

The system workflow is designed to allow each actor to manage the data model, interact 

with the SC, and engage with the verifying body, ensuring a seamless and secure pro-

cess, and maximizing decentralization. The use of an XML-based data model allows 

for flexibility, consistency, and interoperability, facilitating seamless data exchange 

and integration across various systems and stakeholders. This ensures that the data man-

agement process is robust, secure, and user-friendly, enhancing the overall efficiency 

and reliability of the lifecycle management system. The system workflow is the follow-

ing: 

Creation and Initialization. The Owner downloads the XML template and the dig-

ital tool from the verifier's platform. After entering the necessary information into the 

XML, the file is hashed using a selected hashing algorithm, and this hash is recorded 

on the BT via a SC. The SC ensures that only authorized updates are recorded and that 

each transaction is immutable. This interaction is managed through a digital interface 

that automates the process of hashing and BT transactions. Subsequently, the Owner 

re-uploads the XML to the verifier's platform, which automatically verifies the hash 

and saves it in its database. 
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Data Entry and Management. The Updater adds and modifies data within the 

XML file using a similar procedure. The Updater downloads the latest version of the 

XML related to the existing DP and uses the digital tool's function dedicated to updat-

ers. The updated file is hashed, and the hash is recorded on the BT. The updated XML 

is then re-uploaded to the verifier's platform for automatic hash verification and data-

base storage. 

Verification. The Verifying Body manages the platform, which interacts with the 

various actors, and the database where all DP are archived. The platform automatically 

compares the hash of the current XML file with the hash recorded on the BT. If the 

hashes match, the update is verified; if not, the update is rejected and flagged for further 

review. 

Public and Private Access. Public Stakeholders can access read-only data from the 

DP through a web interface developed using a suitable framework. Private Stakeholders 

can access specific sections of the data relevant to their roles, ensuring that sensitive 

information is protected while still being accessible to those who need it. 

 

3.2 Computing Layer 

The computing layer is fundamental to the framework, enabling the management and 

processing of complex data to optimize the lifecycle management of ship components. 

This layer leverages advanced computational techniques and AI to analyze vast 

amounts of data, providing actionable insights that enhance operational efficiency, reg-

ulatory compliance, and sustainability. Building on the data model proposed by Gian-

vincenzi, M. et al., (2024) the framework can be adapted to the maritime sector through 

Ship Ecosystem Analysis (SEA). SEA comprises three main components: technologi-

cal analysis, legislative analysis, and lifecycle analysis, each essential for structuring, 

populating, and managing the Foundational Data Model (FDM).  

The FDM acts as a foundational tree structure data model that can be customized ac-

cording to the specific requirements of different products and serves as the core element 

of the DP. It organizes complex product information into a hierarchical structure, con-

sidering the products as modular. Its flexibility facilitates interoperability and supports 

the creation of comprehensive Life Cycle Inventories (LCI) for external environmental 

lifecycle assessments (LCA), offering new eco-design opportunities. Through the SEA 

process, the FDM is meticulously defined. 

Technological Analysis maps out the complex structure of a ship, identifying its var-

ious components and subsystems. This step ensures that the FDM accurately represents 

all relevant parts and systems. A ship's hierarchical structure includes the Hull, Decks, 

and Superstructures, each encompassing various critical systems and components. Dis-

tinguishing between raw materials, such as steel plates for hull construction, and semi-

finished products, like prefabricated bulkheads, is crucial for detailed lifecycle tracking.  

Legislative Analysis identifies the regulatory parameters necessary to populate the 

data model. By examining relevant European and international maritime regulations, 

such as SOLAS, MARPOL, the European Union Marine Equipment Directive (MED), 
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and the Hong Kong International Convention, the FDM includes all necessary compli-

ance data. These regulations set standards for safety, pollution prevention, equipment 

compliance, and recycling processes.  

Lifecycle Analysis ensures that all stages of a ship's lifecycle are documented and 

managed within the data model. Various stakeholders populate the data model at dif-

ferent stages, enabling detailed tracking, compliance with regulatory standards, and op-

timized operational efficiency. The workflow for data population includes material se-

lection, manufacturing, assembly, operation, and end-of-life stages. Each stage in-

volves specific data entry to ensure comprehensive management. 

Starting from this structured data model, the computing layer can handle complex 

parameters derived from technological, legislative, and lifecycle analyses. By leverag-

ing AI, the computing layer optimizes component management in several ways. Ini-

tially, simple parameters are collected, such as material properties, usage hours, mainte-

nance records, environmental conditions, and regulatory compliance status. For a ship's 

hull, these initial parameters might include the type of steel used, its source, hours of 

operation, maintenance logs, and compliance with safety regulations. AI processes 

these simple parameters to derive complex parameters that provide deeper insights and 

predictive capabilities. Analyzing usage patterns, environmental conditions, and 

maintenance records allows AI to predict the likely failure points of components, facil-

itating proactive maintenance scheduling. For predictive maintenance, AI would ana-

lyze the steel's wear rate, operational stress data, and historical maintenance logs to 

predict when the hull might require reinforcement or repair. Operational efficiency is 

enhanced by processing data on component conditions and usage patterns, allowing AI 

to suggest adjustments to improve performance and extend the lifespan of ship compo-

nents. Data on fuel consumption, engine performance, and voyage conditions can be 

analyzed to optimize operational settings and reduce wear and tear. Additionally, AI 

continuously monitors compliance with safety and environmental regulations, integrat-

ing compliance data such as safety equipment status, emission levels, waste manage-

ment records, and documentation of maintenance activities to ensure adherence to 

standards. Resource optimization is another significant benefit. AI can optimize the use 

of materials and energy, minimizing waste and enhancing sustainability. This includes 

suggesting efficient recycling methods and identifying valuable materials for recovery. 

AI can analyze material composition, recycling efficiency, and environmental impact 

to propose optimal recycling strategies. Throughout the ship's lifecycle, data on manu-

facturing processes, assembly details, operational performance, and end-of-life han-

dling are integrated into the FDM. AI uses this data to provide insights into the most 

effective lifecycle management practices, ensuring that every stage from design to de-

commissioning is optimized. 

 

3.3 Data Management Layer 

The Data Management Layer (DML) for a general ship production model is crucial for 

managing data throughout the entire ship life cycle. This layer is responsible for col-

lecting, storing, managing, and analyzing data from different phases and processes of 



10  F. Author and S. Author 

 

ship production. The Data Management Layer is crucial to ensure integrated and effi-

cient data management throughout all phases of ship life. Supported by the Computing 

and Connection Layers, the DML enables optimized operations, improved safety, and 

regulatory compliance. The components of the DML are different depending on the 

phase in which it is used.  

There are various activities in the design phase, such as: (1) Data collection, which 

includes CAD/CAM drawings, technical specifications, safety regulations, and cus-

tomer requirements; (2) Archiving, using databases to store designs, 3D models, and 

technical documentation; (3) Access and versioning, through version management to 

track changes and ensure controlled access to data. 

Indeed, the construction phase requires: (1) Production planning, with the introduc-

tion of enterprise resource planning (ERP) systems to plan and monitor production ac-

tivities; (2) Monitoring and control, by collecting real-time data through IoT sensors 

and monitoring systems; (3) Integration, with the provision of linkage with resource 

management systems (materials, personnel, machinery) to optimize production pro-

cesses; (4) Operational: (4a) Fleet management, with tracking of vessels through GPS 

and AIS (Automatic Identification  System) systems; (4b) Predictive maintenance, 

thanks to data analysis and machine learning to predict failures and optimize mainte-

nance activities; (4c) Performance management, through continuous monitoring of op-

erational performance, including fuel consumption and operating conditions; (5) Dem-

olition: (5a) Material tracking, with management of material information for recycling 

or disposal; (5b) Documentation, in relation to the management of decommissioning 

data, including  inspection reports and compliance with environmental regulations.  

The DML, moreover, is connected with other Layers, particularly the Computing 

Layer and the Connection Layer. The first one enables, on the one hand, data pro-

cessing, supporting the DML by providing computing capabilities for processing large 

volumes of data, real-time analysis, and simulations; on the other hand, it allows ad-

vanced analytics to be conducted, using machine learning and AI to analyze the col-

lected data and provide useful insights to optimize processes. The second one ensures 

connectivity between all system components, including IoT sensors, ERP systems and 

monitoring platforms. It also facilitates system integration by facilitating communica-

tion between different systems and platforms, ensuring that data is shared and synchro-

nized efficiently. Finally, it is responsible for security, enabling the implementation of 

security protocols to protect data during transmission and access. 

As also pointed out in (Bronson et al., 2024), the lack of a consistent understanding 

of a ship product's data model, from design to operations, is currently a limiting factor 

in the implementation of more efficient ship lifecycle management and design pro-

cesses. This calls for useful reflection to understand how current the topic of Ship Data 

Model evolution is with respect to computational data model paradigms. In fact, Bron-

son et al., 2024 brings out how only recently there has been the release of specific rec-

ommended practices DNV, 2023 to optimally manage the reliability of DTs, addressing 

all phases from conception to product operation. This is because the DML allows the 

DT ecosystem to be perimetered through various layers, starting right from the DML. 
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3.4 Connection Layer 

In the context of building a ship, the Connection Layer plays a key role in ensuring that 

all components and systems communicate effectively throughout the ship's lifecycle, 

from design to demolition. There must be Collaboration and Integration: during the 

design phase, the Connection Layer facilitates collaboration between different engi-

neering and design teams. Using data management platforms and 3D modeling tools 

(such as CAD), design data can be shared and updated in real time, ensuring that all 

changes are immediately visible to all parties involved. This Connection Layer manages 

data flows between the various software used for design and other phases of the ship's 

life cycle. During the construction phase, automation and control dictate that the Con-

nection Layer manages communications between automated construction equipment, 

such as cranes and welding robots. This allows remote control and real-time monitoring 

of construction activities, improving efficiency and reducing downtime. For example, 

sensors installed on equipment can send status data and diagnostics to central systems, 

enabling timely interventions in case of problems. 

In the operational phase of the ship, there is a need to focus on navigation and cargo 

management; once the ship is operational, the Connection Layer maintains communi-

cations between the navigation and cargo management systems. These systems need to 

continuously exchange data to ensure that the ship is following the optimal course, and 

that the cargo is properly distributed to maintain the stability and safety of the ship. 

Crucial, again in this phase, is monitoring and maintenance: sensors distributed 

throughout the ship constantly monitor the status of various components, such as en-

gines, cooling systems, and hull structures. The Connection Layer then becomes re-

sponsible for collecting this data and sending it to predictive maintenance systems, 

which can predict failures and plan preventive maintenance actions, thanks to the con-

struction of machine learning algorithms that can be collectors of data collected on 

more than one ship in the reference fleet. 

In the last phase of scrapping, there is the management of historical data. At the end 

of the ship's life cycle, the Connection Layer facilitates the collection and analysis of 

historical data regarding the ship's construction, operation, and maintenance. This data 

can be used to improve future design and construction processes, and to ensure that 

demolition takes place in a safe and environmentally compliant manner. Thanks to such 

historical data, it is also possible to predict, through external monitoring of specific 

commercial and market parameters (in turn analyzed and integrated on specially de-

fined machine learning systems), a residual value of the ship that is to be scrapped, as 

a complex system consisting of a series of parts, in turn made of certain materials, that 

follow a specific market with quotations that could be appropriately determined with 

precision from a predictive perspective and in line with the timeframe for dismantling 

and recycling the same materials. Therefore, the complex system of a ship is trans-

formed, at the end of its life, into a digital model that gathers all essential characteristics. 

As with the DML, the Connection Layer must also integrate with the Computing 

Layer that provides the computing power needed to process the data collected from the 

various systems and sensors. This layer, as mentioned earlier, uses machine learning 
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and data analysis techniques to improve the accuracy of maintenance predictions and 

optimize ship operations. 

The role of the Connection Layer becomes indispensable in ensuring the smooth and 

secure communication required for all systems involved in the construction and opera-

tional activities of a cargo ship. This necessity arises from the need to improve effi-

ciency, enhance safety, and maintain reliability throughout the entire lifecycle of the 

ship. 

3.5 The specific role of AI integrated into the DT 

A framework for the shipping sector that integrates Digital Twin, AI, and IoT ena-

bles the creation of a real-time virtual model of ships, replicating their physical behavior 

and improving efficiency and safety. IoT sensors installed on ships and port infrastruc-

ture collect real-time data on various parameters (e.g., weather conditions, engine sta-

tus, wear and tear), which AI algorithms analyze to optimize routes, predict mainte-

nance, and reduce energy consumption. 

IoT sensors monitor structural integrity and system performance, while NFC/RFID 

technologies ensure component traceability and operational security. For example, IoT 

sensors can be placed along the hull to monitor deformation, corrosion, water pressure, 

and structural integrity. The collected data helps detect any damage or wear over time, 

allowing maintenance to be planned. RFID devices can be strategically placed on the 

hull to identify and track specific components, such as panels and welds, facilitating 

the monitoring of their condition over time and lifecycle management. In propulsion 

systems and the engine, IoT sensors for temperature, pressure, vibration, and fuel con-

sumption monitor engine performance in real-time, identifying potential failures or in-

efficiencies. This data is essential for the Digital Twin, which can simulate performance 

and suggest optimizations. NFC/RFID devices and related tags can be used to identify 

engine components such as pistons, shafts, and filters. The ship’s beams and supporting 

structures can be monitored by sensors detecting mechanical stress, torsion, and vibra-

tions. This data helps assess the ship’s structural integrity in the Digital Twin, prevent-

ing structural failures. RFID sensors are placed on beams and other structural compo-

nents to facilitate their identification and maintenance, helping to maintain an accurate 

record of quality control and maintenance operations. The ship’s deck can be equipped 

with a wide range of IoT sensors that monitor weather conditions, ship stability, GPS 

position, and speed. 
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3.6 The benefit of integrating AI to DT in the circular economy 

The integration of AI with data collected from IoT sensors on board a ship, in combi-

nation with DTs, represents a powerful tool for optimizing naval operations and sup-

porting circular economy practices. Through automated models based on machine lear-

ning algorithms, AI can analyze this data to identify patterns and anomalies that may 

signal the onset of problems, such as an abnormal increase in vibrations, indicative of 

engine component wear, as well as consumption predictions at different speeds. AI can 

predict when a component is at risk of failure, enabling scheduled maintenance before 

a problem occurs, improving the ship’s reliability and reducing waste associated with 

emergency repairs. Additionally, AI can monitor the lifecycle of components on board, 

suggesting optimizations in the use of these resources. It can also identify components 

or materials that, instead of being discarded, can be recycled or reused in other parts of 

the ship, in other ships of the fleet, or even resold. This process is supported by RFID 

or NFC tags that track the usage history and composition of materials. 

Another challenge that AI can effectively address is corrosion management. Thanks 

to IoT sensors, which detect indicators such as pH, temperature, humidity, electrical 

potential, and the presence of chlorides or dissolved oxygen, AI can analyze data in 

real-time and identify patterns and trends that could indicate an acceleration of the cor-

rosion process. AI also plays a crucial role in assessing the residual value of a ship after 

many years of service, integrating internal operational data with external contextual 

information. This advanced approach offers an accurate and dynamic estimate of the 

ship’s value, considering not only its technical condition but also economic, regulatory, 

certification, and market factors. These valuations can be dynamically updated with 

new data, reflecting current market and ship conditions, and allowing for the simulation 

of different scenarios such as selling, scrapping, or recycling, evaluating the impact of 

each on the residual value. This approach significantly contributes to the creation of a 

market based on the circular economy, optimizing resource use, reducing waste, and 

maximizing the residual value of ships and their components. AI, supported by DT and 

IoT data, facilitates the reuse, recycling, and regeneration of materials, integrating su-

stainable practices and improving overall efficiency. This system can extend the useful 

life of ships, adding value throughout the entire lifecycle. 

However, it is important to emphasize that the use of IoT and AI should always be 

subject to human oversight, especially regarding navigation safety and control. From 

this perspective, machine autonomy performs specific tasks, while human autonomy 

manages supervision, particularly in conditions of changing external factors and uncer-

tainty. 

4 Discussion and Conclusion 

Proposing an integrated system of digital technologies for ship management is complex 

due to the nature and volume of data involved. Hatledal et al., 2020 as already develo-

ped a framework for DT’s maintenance management on the hull, integrating AI to pre-

dict pressure and stress states. The technical implementation of an integrated system to 

assess the residual value and condition of a ship requires a multidisciplinary design that 
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involves hardware, software, network infrastructure, data science, and maritime indu-

stry expertise. The schematic shown in Fig. 3 represents one approach to integrating 

the key components necessary for creating a framework aimed at determining the resi-

dual value of a ship using AI, IoT, and DT. This schematic illustrates how data flows 

through the various system components, from acquisition via IoT sensors to local and 

cloud processing and DT management, and finally to visualization through dashboards 

and user interfaces, with further enrichment from external contextual data. 

 

Figure 3 Diagram of Components of the AI-DT-IoT Framework 

The DT model of the ship must then be created using CAD and simulation software, 

continuously updating real-time data. Machine learning models, such as neural net-

works and random forests, are trained on historical data to predict the deterioration of 

various ship components and to assess the risk associated with continuing operations 

without maintenance interventions. Meanwhile, regression models and predictive ana-

lysis can be used to estimate the ship's residual value, based on market data, economic 

trends, and regulations, integrating external contextual data via APIs, such as market 

conditions, exchange rates, material prices, and environmental regulations. Part of the 

data processing can be done directly on board, using edge devices that reduce latency 

and ensure continuous operations even with intermittent connections, while intensive 

processing, such as AI model training and Digital Twin simulations, is carried out in 

the cloud to leverage scalable resources. Data analytics platforms provide interactive 

dashboards for operators, allowing them to monitor the ship’s status, failure predictions, 

and estimated residual value in real-time. AI can generate automated periodic reports, 

updating ship owners and operators on the ship’s condition and offering maintenance 

suggestions. 
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The end result is an intelligent and adaptive ecosystem that not only optimizes ship 

operations and maintenance but also provides a dynamic and accurate assessment of its 

residual value, supporting strategic decisions based on real and contextual data. This 

work highlights the fundamental role of an advanced framework within a DT ecosy-

stem, seamlessly integrated with the latest digital technologies, which have been at the 

forefront of technological innovation in recent years. This integration is specifically 

aimed at supporting the increasingly necessary paradigm of the circular economy. The 

key technologies identified as most effective for this purpose include BT, SCs, IoT 

devices, and DTs. When integrated, these technologies are effectively managed through 

sophisticated machine learning algorithms derived from AI. 
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